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Abstract—There have been several studies that jointly use audio,
lip intensity, and lip geometry information for speaker identifica-
tion and speech-reading applications. This paper proposes using
explicit lip motion information, instead of or in addition to lip in-
tensity and/or geometry information, for speaker identification and
speech-reading within a unified feature selection and discrimina-
tion analysis framework, and addresses two important issues: 1) Is
using explicit lip motion information useful, and, 2) if so, what
are the best lip motion features for these two applications? The
best lip motion features for speaker identification are considered
to be those that result in the highest discrimination of individual
speakers in a population, whereas for speech-reading, the best fea-
tures are those providing the highest phoneme/word/phrase recog-
nition rate. Several lip motion feature candidates have been consid-
ered including dense motion features within a bounding box about
the lip, lip contour motion features, and combination of these with
lip shape features. Furthermore, a novel two-stage, spatial, and
temporal discrimination analysis is introduced to select the best lip
motion features for speaker identification and speech-reading ap-
plications. Experimental results using an hidden-Markov-model-
based recognition system indicate that using explicit lip motion
information provides additional performance gains in both appli-
cations, and lip motion features prove more valuable in the case of
speech-reading application.

Index Terms—Bayesian discriminative feature selection, lip mo-
tion, speaker identification, speech recognition, temporal discrim-
inative feature selection.

I. INTRODUCTION

L
IP information has been extensively employed in the state-
of-the-art audio-visual speech and speaker recognition

applications, since lip movements are highly correlated with the
audio signal. Hence, it is natural to expect that speech content
can be revealed through lip reading; and lip movement patterns
also contain information about the identity of the speaker. In
audio-visual recognition literature, there exist three alternative
representations for lip information: 1) lip texture; 2) lip geom-
etry (shape); and 3) lip motion features. The first alternative
implicitly represents lip movements with texture. The texture
information itself might sometimes carry useful discrimination
information; but in some other cases it may degrade the recogni-
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tion performance since it is sensitive to acquisition conditions.
The second, lip geometry, usually requires tracking of the lip
contour and fitting contour model parameters and/or com-
puting geometric features such as horizontal/vertical openings,
contour perimeter, lip area, etc. This option may seem as the
most powerful one for modeling lip movement, especially for
the speech-reading problem, since it is easier to match mouth
openings-closings with the corresponding phonemes. However,
lip tracking and contour fitting are very challenging tasks, since
contour tracking algorithms are in general very sensitive to
lighting conditions and image quality. The last option is the use
of explicit lip motion features, which are potentially easy to
compute and robust to lighting variations between the training
and test data sets. Determination of the best lip motion features
for speech-reading and speaker identification is the focus of
this work. We also consider combination of lip motion and lip
geometry in this study.

In audio-visual speech recognition (speech-reading), lip tex-
ture information is widely used. In [1] and [2], principal compo-
nent analysis (PCA) has been applied to raw lip intensity image
to reduce its dimension, and the reduced vector is used as the vi-
sual feature. Another possibility is to use discrete cosine trans-
form (DCT) coefficients of the gray-scale lip image [3]. Potami-
anos et al. [3] apply linear discriminant analysis (LDA) to the
final feature vector formed by concatenating a number of con-
secutive feature vectors centered at the current frame so as to
capture dynamic speech information. However, lip texture fea-
tures are sensitive to intensity variations between the training
and test data sets.

Geometric features have been employed in speech-reading
[4]–[9], since it is easier to match mouth openings-closings with
the corresponding phonemes. Deformable templates [4], [5], ac-

tive shape models (ASM) [6], [10], [11], and snakes [12] have
been used to obtain different lip geometry features; however,
they all suffer from complex feature extraction and training pro-
cedures. In [5], Gaussian mixture models (GMM) are used to
model both the lip and the non-lip region, and lip tracking is
performed by deformable templates. A number of horizontal
and vertical Euclidean distances representing the lip openings
are then selected as features. Kaynak et al. [8] also use hori-
zontal/vertical distances along with the orientation angle to rep-
resent lip shape. In fact, most of the techniques in the speech-
reading literature utilize a combination of lip texture and primi-
tive geometric lip shape features. In [13], the lip feature vector is
formed by concatenating the Karhunen Lòeve transform (KLT)
coefficients of the inner-outer lip contour points with the tex-
ture information which is represented in a similar way as in the
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so-called eigenlip technique [1]. In [11], the geometric informa-

tion modeled by ASM is used along with the gray-level appear-

ance features and then fused with audio for speech recognition.

Perez et al. [10] utilize a set of lip shape features extracted by

ASM together with DCT coefficients of the gray-level appear-

ance information.

There is only a limited amount of work reported in which

explicit lip motion information is used for speech-reading.

Aleksic et al. [12] use gradient vector flow (GVF) snakes

to extract outer lip contour and calculate the lip movement

at ten predefined points by point-wise coordinate difference.

They then reduce the feature dimension by PCA and use lip

features together with other facial animation features. However,

selection of the best lip motion features has not been addressed

within a framework.

For speaker identification, unlike speech-reading, lip infor-

mation has been employed in only a few works. In [14], [15],

the DCT coefficients of gray-scale lip images are considered

as lip features. It is relatively easy to obtain this feature, but it

again suffers from illumination variation between the training

and test data sets. Lip geometry is used in [16], where lip

segmentation is carried out by forming an accumulated dif-

ference image, and considering moving parts of that image.

Then, a number of predefined horizontal and vertical distances

are taken as geometric lip features. Mok et al., in [17], find the

outer lip contour by active shape models, and form a feature

vector using both the model parameters and some additional

distances representing the lip shape. In the audio-visual fusion

system presented in [18], the lip contour is first tracked and

then each contour pixel is associated with chromatic features

that constitute the initial feature vector. The dimension of the

feature vector is then reduced via PCA followed by LDA. How-

ever, the initial step of PCA reduction filters out some useful

discrimination information valuable to biometric speaker iden-

tification, and temporal correlations in lip motion are not taken

into account in discrimination analysis. The lip feature vector

proposed in [19] for speaker verification is composed of lip

shape parameters concatenated with intensity values along the

lip contour. The feature dimension is then reduced by PCA

with no discrimination analysis at all.

In the speaker identification literature, there are only two

reported works employing explicit lip motion as lip features. In

[20], following the computation of the optical flow between two

consecutive lip frames, the power spectrum from the three-di-

mensional motion field is calculated and used as lip motion

features. In [21], the lip motion is represented by the full set of

DCT coefficients of the dense optical flow vectors computed

within rectangular lip frames and then fused with face texture

and acoustic features for multimodal speaker identification.

However no discrimination analysis is performed, and no

specific attention is paid to optimize the unimodal performance

of the lip motion modality. In our recent studies [22], [23], we

observed that speaker identification systems can benefit from

discriminative lip motion feature extraction.

Although numerous methods have been proposed for integra-

tion of lip information to speech and speaker recognition solu-

tions, there is no framework proposed for selection of the most

discriminative lip motion features optimally in the literature.

This paper aims at providing quantitative answers to the fol-

lowing open questions.

1) Is explicit lip motion, instead of or in addition to lip in-

tensity and/or geometry useful for speech/speaker recog-

nition?

2) If so, what are the best lip motion features for speech-

reading and speaker identification applications?

In order to answer these questions, several lip motion feature

candidates have been considered including dense motion fea-

tures within a bounding box about the lip, lip contour motion

features, and combination of these with lip shape features. Fur-

thermore, a novel framework for two-stage, spatial and tem-

poral, discrimination analysis is introduced to select the best lip

motion features for speaker identification and speech-reading

applications. Hence, the main contribution of this paper is in-

troduction of a framework for determination of the most dis-

criminative lip motion and shape features for speech-reading

and speaker identification.

A speaker/speech recognition system has three major com-

ponents: feature extraction, probabilistic modeling of features,

and classification. The standard modeling and classification

aspects of our system are briefly presented in Section II for

speaker identification and speech-reading problems. The main

focus of this paper is on the feature extraction/analysis part.

Section III describes the lip extraction/tracking procedures that

are employed, and different alternatives that are considered

for lip motion representation. The success of a recognition

system eventually depends on how efficiently the extracted

lip information is represented in a relatively low-dimensional

feature vector. For speech-reading, the general approach (in the

literature) has been to extract the principal components of the

lip movement in order to establish a one-to-one correspondence

between phonemes of speech and visemes of lip shape. For the

speaker identification problem, however, the use of lip motion

requires more sophisticated processing, which has not been

addressed in the literature. The main reason for this is that

the principal components of the lip movement are not usually

sufficient to well discriminate the biometric properties of a

speaker. High frequency or nonprincipal components of the

motion should also be valuable especially when the objective

is to model specific lip movements of an individual rather than

what is uttered. In other words, discrimination among speakers

should be emphasized and selected features should minimize

the recognition error rather than the reconstruction error. The

discrimination analysis framework proposed in Section IV ad-

dresses this dimension reduction problem optimally, taking into

account the intra-class and inter-class distribution of individual

single-frame lip feature vectors as well as the temporal dis-

crimination information. The experimental results are provided

in Section V both for speaker identification and speech-reading

problems.

II. SYSTEM OVERVIEW

A. Speaker/Speech Recognition

Speaker and speech recognition tasks can be formulated as

open-set or closed-set identification problems. In the closed-set

identification problem, a reject scenario is not defined, and an
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unknown observation is classified as belonging to one of the

registered pattern classes. In the open-set problem, the objec-

tive is, given the observation from an unknown pattern, to find

whether it belongs to a pattern class registered in the database

or not; the system identifies the pattern if there is a match and

rejects otherwise. Hence, the problem can be thought of as an

class identification problem, including a reject class.

The maximum a posteriori probability solution to the -class

closed-set classification problem requires, given a feature vector

representing the sample data of an unknown observation,

computing for each class , . Alterna-

tively, one can employ the maximum likelihood solution, which

maximizes the class-conditional probability, , for

. Hence, a decision in the closed-set identification

is taken as

(1)

In the open-set identification problem, an imposter class

can be introduced as the th class. Since it is difficult to

accurately model the imposter class, , we employ the fol-

lowing solution which includes a reject strategy through the def-

inition of the log-likelihood ratio

(2)

The decision strategy of the open-set identification can then be

implemented in two steps. First, determine

(3)

and then

(4)

where is the optimal threshold which is usually determined

experimentally to achieve the desired false accept or false reject

rate.

Computation of class-conditional probabilities needs a prior

modeling step, through which a feature probability density func-

tion is estimated for each class by using available

training data. A common and effective approach to model the

impostor class is to use a universal background model, which is

estimated by using all available training data regardless of which

class they belong to.

B. Probabilistic Modeling of Features

Hidden Markov models (HMMs) are widely used for both

audio-based speaker identification and speech recognition ap-

plications [24]. The speaker identification problem can further

be classified as text-dependent or text-independent. In the

text-independent case, speaker identification is performed over

a content free utterance, whereas in the text-dependent case,

each speaker is expected to utter a personalized secret phrase.

State-of-the-art speaker identification systems use HMMs for

the text-dependent case and GMMs for text-independent case

[25]. HMM-based techniques are preferred in the text-de-

pendent scenario since HMMs can successfully exploit the

temporal correlations in a speech signal. Because lip motion

is strongly coupled with the audio utterance, HMMs can also

model temporal correlations of lip motion features effectively.

In this work, we address the speaker identification application

under the text-dependent scenario as an open-set identification

problem. We use word-level continuous-density HMM struc-

tures for temporal characterization of lip features. Each speaker

in the database is modeled using a separate HMM that is trained

over some repetitions of the lip motion sequences of the corre-

sponding class. Given a test feature set, each HMM structure

associated with a speaker produces a likelihood. A world HMM

model representing the impostor class is also trained over the

whole training data of the population. The log-ratios of the

speaker likelihoods to the world class likelihood result in a

stream of log-likelihood ratios that are used to identify or reject

a speaker.

The performance of speaker identification systems are often

measured using the equal error rate (EER) figure. The EER is

calculated as the operating point where false accept rate (FAR)

equals false reject rate (FRR). In the open-set identification case,

false accept, and false reject rates can be defined as

(5)

where and are the number of false accepts and rejects,

and and are the total number of trials for the true and

imposter clients in the testing, respectively.

In the speech-reading application, we employ the same HMM

system described above. However, we address the speech-

reading problem as a closed-set identification problem. Hence,

an impostor class is not defined and the best match is given by

the utterance class for which the corresponding HMM produces

the highest likelihood as defined in (1). The performance of

speech recognition systems is usually measured by the ratio of

the number of true matches to the total number of trials.

III. LIP MOTION FEATURE EXTRACTION

The proposed lip motion feature extraction and analysis

system is depicted in Fig. 1. It consists of a preprocessing

module, a lip motion estimation module, a Bayesian discrim-

ination module, and a temporal discrimination module. We

consider two alternatives for lip motion estimation:

1) dense motion vectors within a rectangular grid;

2) motion vectors along the lip contour together with lip shape

information.

Each of these modules are explained in detail as follows.

A. Preprocessing

The purpose of the preprocessing module is to register lip

regions in successive frames by eliminating global head motion

so that the extracted motion features within the lip region

correspond to speaking act only. Hence, each frame of the se-

quence is aligned with the first frame using a two-dimensional

(2-D) parametric motion estimator. For every two consecutive

frames, global head motion parameters are calculated using

hierarchical Gaussian image pyramids and the 12-parameter
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Fig. 1. Block diagram of the lip feature extraction system and the two-stage
discrimination analysis.

quadratic motion model [26]. The frames are successively

warped using the calculated parameters. Thus by only hand-la-

beling the mid-point of the lip region in the first frame, we can

automatically extract the lip region for the whole sequence.

Using the quadratic transform to model head motion, the

image intensity of a pixel at frame is estimated

from the intensity , by

(6)

The quadratic transform provides an exact description of the

three-dimensional (3-D) rotation, translation and scaling of

an object with a parabolic surface under parallel projection

[27]. Thus, it is effective in modeling rigid motion of the head

between consecutive frames, where the movement is not very

abrupt.

Fig. 2. Block diagram for extraction of grid-based lip motion features.

B. Extraction of Grid-Based Motion Features

We first consider dense motion estimation over a uniform

grid of size on the extracted lip region image. We

use hierarchical block matching to estimate the lip motion

with quarter-pel accuracy by interpolating the original lip

image using the 6-tap Wiener and bilinear filters specified in

H.264/MPEG-4 AVC [28].

The motion estimation procedure yields two 2-D

matrices, and , which contain the - and - components

of the motion vectors at grid points, respectively. The motion

matrices, and , are separately transformed via 2-D-DCT.

The first DCT coefficients along the zig-zag scan order, both

for and directions, are combined to form a feature vector

of dimension as depicted in Fig. 2. This feature vector

representing the dense grid motion will be denoted by .

Transforming the motion data into DCT domain has two ad-

vantages. First, it serves as a tool to reduce the feature dimen-

sion by filtering out the high frequency components of the mo-

tion signal. These high frequency components are mostly due to

noise and irrelevant to our analysis since it is unnatural to have

very abrupt motion changes between neighboring pixels of the

lip region, where the motion signal is expected to have some

smoothness. Second, DCT de-correlates the feature vector so

that the discriminative power of each feature component can in-

dependently be analyzed as will later be addressed in Section IV.

C. Extraction of Contour-Based Motion Features

1) Lip Contour Extraction: The accuracy and robustness of

the lip contour extraction method are crucial for a recognition

system that uses lip shape information. There exist many

techniques in the literature that attempt to solve the lip seg-

mentation/tracking problem [12], [29]–[35]. The performance

of these techniques usually depend on acquisition specifics

such as image quality, resolution, head pose and illumination

conditions. In region-based lip segmentation techniques, color
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Fig. 3. Extraction of contour-based lip motion features: (a) The six key points and the parametric models fitted on the outer contour (P P ; and P P are line
segments, whereas P P , P P , P P and P P are cubic polynomials). (b) The eight lip shape parameters. (c) Extracted lip contours.

information is often used as an important cue to differentiate

lip pixels from those of the skin. In order to achieve this, the

state-of-the-art techniques use, for instance, Markov random

fields [34], LDA [35], adaptive Gaussian mixture models [29]

or fuzzy clustering methods as in [30], [32]. There are also

a number of boundary-based techniques to represent and to

extract the lip contour, such as splines, active shape models,

snakes, and parametric models, that use color gradient and/or

edge information. Active shape models [6], [36] impose a

priori information about possible lip movements so as to avoid

unrealistic lip models, however they require a large training

set of registered lip images acquired under predefined face

orientation and lighting. Classical active contours [31] and

their extensions such as GVF-snakes [12] suffer from complex

parameter tuning, and they are unable to perfectly fit to certain

characteristic lip parts such as Cupid’s bow.

For lip contour extraction, we employ the quasi-automatic

technique proposed in [33], where we fit polynomials on the

outer lip contour. The technique is based on six designated key

points detected on the lip contour (see Fig. 3). The algorithm

starts with manual selection of a seed point above the mouth,

that guides the so-called ”jumping snake” onto the upper-lip

boundary. The jumping snake along with the pseudo hue gra-

dient information is then used to locate the upper and lower key

points. The detected key points serves as the junction points of

the four cubic polynomials and two line segments to be fitted

onto the lip contour via least-squares optimization. The key

points are tracked from one image to the other using a variant of

the Lucas-Kanade algorithm [37] adapted to the particular ge-

ometry of the lip. Fig. 3(a) shows the six key points and the

fitted parametric model on a sample lip image. When tested

on our visual database, the technique proposed in [33] mostly

yields very accurate lip tracking results. Nevertheless, the algo-

rithm fails in about one-tenth of the sample video sequences.

For some speakers, the lack of discriminative color informa-

tion, especially on the lower lip boundary, becomes occasion-

ally so severe that even a human eye can hardly make a distinc-

tion. Thus we have integrated a user interaction mechanism into

the original algorithm described in [33]. In cases where it fails,

the algorithm is assisted with some extra key points which are

hand-labelled on the lip boundary. Fig. 3(c) displays examples

of lip contours extracted from various images of our database.

2) Contour-Based Motion Features: In the contour-based lip

motion representation, only motion vectors computed on the

pixels along the extracted lip contour are taken into account and

the rest is discarded. In this case, the two sequences of and

motion components on the contour pixels are separately trans-

formed using one-dimensional DCT. Note that the length of the

resulting sequence of motion components on each direction may

vary from one frame to another according to varying lip shape.

In order to obtain a feature vector of fixed size in each frame,

prior to 1-D DCT transformation, the length of the sequence

is normalized to a fixed number by using linear interpolation.

This number, , is the maximum number of contour points

achieved in any lip frame of all available sequences. The DCT

coefficients computed separately for and directions are con-

catenated to form the feature vector that is denoted by .

Fig. 4 depicts the procedure for extraction of contour-based lip

motion features.

D. Lip Shape Features

The contour-based lip motion feature vector can further

be fused with lip shape parameters to improve the representa-

tion. We will denote the lip shape feature vector by . Recall

that we parameterize the lip shape with four cubic polynomial

and two line segments. Polynomial segments can be specified

by sampling four points on each whereas a pair of endpoints is

sufficient to represent a line segment. Since the lip contour is
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Fig. 4. Extraction of lip shape and contour-based motion features (the dashed
lines show the optional path for the feature level fusion of lip shape and contour-
based lip motion).

composed of these six segments articulated at their endpoints,

a minimum number of 14 points is necessary to uniquely rep-

resent the parameterized lip shape, which corresponds to a fea-

ture vector of 28 point coordinates in and directions. These

points should appropriately be sampled on the lip contour. In

order to assure translation and rotation invariance, we represent

the lip shape in terms of horizontal and vertical distances be-

tween the sampled points. A possible such feature vector is com-

posed of eight simple parameters: the maximum horizontal dis-

tance, , and the 7 vertical distances from the Cupid’s bow and

from the equidistant upper lip points to the lower lip boundary

as depicted in Fig. 3(b). The vertical lines are se-

lected to be perpendicular to the line joining the two corners

of the lip. The concatenation of lip shape parameters with con-

tour-based motion information is illustrated in Fig. 4.

IV. DISCRIMINATION ANALYSIS

There are a number of subspace representation techniques

that can be used for reduction of dimensionality of feature

vectors in recognition systems. Linear discriminant analysis

(LDA) is a well-known dimension reduction and feature extrac-

tion method to achieve discrimination among multiple classes

[3], [38], [39]. In this paper, we propose a novel approach

for feature reduction, where we select the most discriminative

lip motion features in two successive stages, the so-called

Bayesian and temporal discrimination stages. In the Bayesian

discrimination analysis stage, we use a probabilistic measure

that maximizes the ratio of intra-class and inter-class proba-

bilities. The temporal stage uses LDA analysis. The details of

these two stages are discussed in the following.

A. Bayesian Discriminative Feature Selection

Let denote the th component of a feature vector .

Given an observation , the maximum a posteriori (MAP) es-

timator selects the class with the MAP probability

which can be written in terms of class conditional probability

distributions

(7)

Then the MAP estimator becomes the maximum mutual infor-

mation estimator (MMIE) [40] by maximizing the ratio

(8)

This ratio can be interpreted as the ratio of intra-class and inter-

class probabilities, and when maximized, it can serve as a mea-

sure of discrimination between the class and all other classes

for the corresponding feature component .

When the class conditional probability distributions are avail-

able for a dimensional feature vector , where

the components are statistically independent, one can compute

the discriminative power of the independent feature that be-

longs to class using . The larger the ratio ,

the more discriminative is the feature; that is, the class condi-

tional probability for its own class is high and the average of

the class conditional probabilities over all other classes is low.

In most cases, the class probabilities, , can be assumed to

be equally likely. The class conditional probability distributions

are generally computed over some training data using expec-

tation-maximization type algorithms, assuming an underlying

probability distribution. Let us refer to this training data as ,

that is a collection of observations of the th feature compo-

nent from the th class, which is available for all feature com-

ponents and for all classes. We propose the following discrimi-

nation measure, , to estimate the discriminative power of

each feature

(9)

where is the number of observations in each class .

1) Discriminative Feature Ranking: The proposed discrim-

ination measure, when computed for each independent feature,

creates an ordering among the components of the feature

vector such that

(10)
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This ordering can be used to select the most discriminative

features, or similarly to eliminate the least discriminative

features from the full set of features. Then the reduced discrim-

inative feature vector can be written as

(11)

This selection strategy makes sense whenever the joint discrim-

ination measure of any two features is less than the sum of their

individual discriminative powers. A sufficient condition for this

is to have statistically independent features. In this case, the pro-

posed ordering is a valid ordering with respect to feature dis-

criminative power.

We considered two alternative feature vectors and

to represent the lip motion in Section III. Both involve

the DCT coefficients of the motion vectors computed either

on a 2-D rectangular grid covering the lip region or along the

one–dimensional (1-D) lip boundary pixels. Under the Gaussian

distribution assumption, the DCT transformation de-correlates

observation vectors so that each feature approximately becomes

independent from the rest of the features. After applying the

DCT transformation, traditionally, the low indexed coeffi-

cients, that we refer as FirstN, are used as the representative

features since they yield the best reconstruction for the original

observations. Following the notation introduced in this section,

this feature vector can be expressed as .

The discriminative set of features, , that are introduced in

(11), will be referred to as DiscrimN. Note that they are selected

according to the discriminative power ordering specified in

(10). The class conditional probability distribution of each

transform domain coefficient is estimated so that the discrimi-

nation measure for each coefficient can be calculated using (9).

The Gaussian mixture models (GMMs) are used to represent

the class-conditional probability density functions. For GMM

estimation, the EM (expectation-maximization) algorithm is

employed using diagonal covariance matrices, since feature

components are assumed to be independent of each other.

2) Total Discrimination Measure: The proposed discrimina-

tion analysis also offers a means to assess and compare the ex-

pected identification performances of the different lip feature

sets. Note that the measure in (9) is an estimate of the dis-

crimination power of each component in the feature vector. The

discriminative power of the selected features (the reduced

feature vector) can then be estimated by the total discrimination

measure, , which is defined as follows:

(12)

The numerical estimates for and will

later be provided in the experimental results section along with

the corresponding recognition results. Note that the Bayesian

discrimination analysis can not be applied to the lip shape fea-

ture vector since the lip shape parameters, which are few

in number, are not in general statistically independent of each

other.

B. Temporal Discriminative Feature Selection Using LDA

The Bayesian discriminative feature selection technique de-

scribed in Section IV-A does not model and exploit the temporal

correlations existing between successive lip frames. Following

the work of Potamianos et al. [3], we use the LDA for tem-

poral discrimination analysis, where we successively concate-

nate the Bayesian-reduced lip feature vectors through a window

of fixed duration so as to capture dynamic visual speech infor-

mation, and obtain a new sequence of higher dimensional fea-

ture vectors. Then, each of these feature vectors is projected to a

lower dimensional discriminative feature space using the LDA

analysis.

The LDA maps a given high dimensional feature vector to

a subspace of reduced dimension that best describes the dis-

crimination among classes. This is achieved using two statis-

tical measures, the within-class scatter matrix and the be-

tween-class scatter matrix [41]. The goal is to maximize

the between-class scattering while minimizing the within-class

variations. Hence, LDA seeks for a projection matrix that

maximizes the function:

(13)

provided that is a nonsingular matrix. The function

is maximized when the column vectors of the projection matrix

are the eigenvectors of . The LDA has two important

limitations.

• The matrix has nonzero eigenvalues at most one

less than the total number of classes , that puts an

upper bound on the reduced dimension.

• At least training samples are needed to guarantee

the existence of the inverse matrix , where denotes

the initial feature vector dimension.

Thus, the common practice is, prior to LDA, to use an interme-

diate dimension reduction technique such as PCA that does not

involve a discrimination analysis. This intermediate reduction

is also preferable to reduce the computational complexity of

the LDA analysis. In this regard, the Bayesian analysis that

we propose in Section IV-A, can also serve as an intermediate

dimension reduction method that selects a discriminative set of

features from a larger set of DCT coefficients including some

non-principle (or minor) feature components at each time instant.

As shown in Fig. 1, the Bayesian discrimination analysis re-

sults in a feature vector for each time instant . Prior to con-

catenation within a window, the feature vector is linearly

interpolated in time by some factor whose value depends on the

frame rate. In the interpolated temporal domain, each feature

vector at time instant is concatenated with the previous and

the next feature vectors, so as to form a new higher dimen-

sional feature vector that we denote by

(14)

The LDA analysis is then performed on this concatenated vector

of dimension . The dimension of the resulting dis-
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criminative feature space is bounded above by , that is

one less than the total number of classes. Fig. 1 illustrates the

formation of the final feature vector, that we will denote by

, via temporal and spatial discrimination analysis.

V. EXPERIMENTAL RESULTS

Speaker identification and speech-reading experiments have

been conducted using the MVGL-AVD audio-visual databases

[42]. We have two distinct databases, the name and the

digit datasets, each containing frontal views of 50 speakers

. The video frames are 720 576 pixels at a rate of

15 fps with 24 bit/pixel color. In the name dataset, each subject

utters ten repetitions of her/his name as the secret phrase. A

set of impostor data is also collected with each subject in the

population uttering five different names from the population. In

the digit dataset, each subject utters ten repetitions of a fixed

digit password 348–572. All experiments have been conducted

for three cases: 1) Speaker identification under name scenario

using , 2) Speaker identification under digit scenario using

, and 3) Speech-reading. The speech-reading dataset is a

subset of , that includes at least 12 repetitions of each name

utterance. Hence this experiment addresses a limited vocabulary

speech-reading application.

In order to extract lip motion features, first an initial lip region

of size 128 80 is segmented from each video frame, following

registration of successive face regions by global motion com-

pensation. For grid-based motion analysis, a rectangular grid

of size is used for each lip segment.

Following motion estimation and 2-D-DCT, a feature vector of

size , is obtained by interlacing features from direc-

tion and features from direction, where is used

in the experiments. Then, the FirstN features, , are ex-

tracted by eliminating some high-indexed DCT coefficients to

obtain a vector of size , where . For contour-based

motion analysis, we follow a similar procedure. First, the lip

contour is extracted in each frame with the method described

in Section III-C1. Following motion estimation and 1-D-DCT

on the lip contour pixel locations, a feature vector of size ,

is obtained, where is set to 50, i.e., the same number as in

grid-based motion analysis. The low-indexed DCT coefficients

then provide us with the contour-based FirstN features, .

The third lip feature representation is obtained by concatenating

the contour-based motion features with the eight lip shape pa-

rameters, that is .

The experimental results are presented with the following or-

ganization. In Section V-A, we present an evaluation of var-

ious lip motion features, , , and with

for the cases of speaker identification under

name scenario, speaker identification under digit scenario, and

speech-reading. In Section V-B, we compare the results of the

proposed Bayesian discrimination, DiscrimN, for feature reduc-

tion with those of the FirstN (PCA) analysis with or without

LDA. We also demonstrate that the proposed discrimination

measure (12) correlates well with the equal error rate (EER).

Finally, Section V-C shows that the fusion of lip-motion and

lip-intensity features provides improved performance compared

to intensity-only features.

A. Evaluation of Various Lip Motion Features

1) Speaker Identification: Name Scenario: In the name sce-

nario implementation, the database is partitioned into two

disjoint sets, , each having five repetitions from

each subject in the database. The subset is used for training,

and is used for testing. Since there are 50 subjects and

five repetitions for each true and imposter client tests, the total

number of trials for the true accepts and true rejects is respec-

tively and .

The three lip motion feature representations, ,

and , are tested on the database. Fig. 5(a) dis-

plays the EER performances with varying feature dimension .

We observe that the grid-based motion features, , achieve

6.8% EER, and outperform the contour-based features. We also

observe that addition of lip shape features, , to the con-

tour-based motion features, , results in additional perfor-

mance gain.

2) Speaker Identification: Digit Scenario: In the digit

scenario, the database is partitioned into two disjoint sets,

, each having five repetitions of the same 6-digit

number from each subject in the database. Again, is used

for training and is used for testing. Note that, in the digit

scenario, no imposter recordings are performed since every

subject utters the same 6-digit number. Hence, the imposter

clients are generated by the leave-one-out scheme, where each

subject becomes the imposter of the remaining subjects

in the population. Having subjects and five testing rep-

etitions, the resulting total number of trials for the true accepts

and true rejects (imposters) becomes respectively

and .

Fig. 5(b) shows the EER performances for different lip mo-

tion representations with varying feature dimension . We ob-

serve that the grid-based motion features, , and the con-

tour-based motion with shape features, , achieve

the same minimum 12.8% EER, and outperform the contour-

based only features . Note that the EER performance of

speaker identification under the name scenario is significantly

better than that of the digit scenario. This is as expected since in

the name scenario each speaker in the database utters a different

person-specific phrase, making the identification task easier.

3) Speech-reading Scenario: The speech reading database

is constructed as a subset of speaker identification data-

base for the name scenario. It includes 35 different phrases,

i.e., . Each phrase is a name from the name database

with twelve repetitions. The number of source speakers for each

phrase varies, we have at least four and at most seven speakers.

The database is partitioned into two disjoint sets and

, one for training and the other for testing, each having six

utterance repetitions. Fig. 5(c) displays the recognition rates for

different lip motion representations with varying feature dimen-

sion . We observe that the contour-based motion combined

with shape features, , achieve the best recognition

rate, 70.48%. However, the contour-based only, , and the

grid-based motion features, , perform quite close to this

best recognition rate, yielding 69.52% and 67.62%, respectively.

Furthermore, under all scenarios, as observed in Fig. 5, the

performance of contour-based motion features starts to degrade
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Fig. 5. Speaker identification and speech-reading results for grid-based motion, fff , contour-based motion, fff , and contour-based motion combined with
shape, fff + fff .

after a certain value of the feature dimension . This is because

the length of the lip contour can adequately be sampled by this

value of , and there is no further gain from increasing the

dimension .

B. Evaluation of Bayesian Discrimination Analysis

This subsection compares the results of the proposed

Bayesian discrimination analysis, DiscrimN, for feature reduc-

tion with those of the FirstN (PCA) analysis with or without

temporal LDA, considering all lip motion features discussed in

the previous subsection. The EER or recognition rates obtained

by selecting the feature dimension as the one that maximizes

the performance for each case are provided in Table I. In

Table I, and stand for the FirstN and DiscrimN fea-

tures, whereas and denote the features

obtained by applying the temporal LDA using as the

temporal window parameter. The best performance rate for

each scenario is indicated in bold in the table. The best EER

rate attained for speaker identification is 5.2% under both name

and digit scenarios after two-stage discrimination, whereas the

best recognition rate for speech-reading, 72.86%, is achieved

using Bayesian discrimination alone. Note that the temporal

LDA brings significant performance gain in speaker identifica-

tion especially under the digit scenario. On the other hand, the

Bayesian discriminative feature selection method, when used

alone, yields performance gain in all scenarios. Also note that

TABLE I
EVALUATION OF THE PROPOSED TWO-STAGE DISCRIMINATION ANALYSIS

FOR SPEAKER IDENTIFICATION AND SPEECH-READING

the use of lip shape parameters in addition to contour-based

motion features improves the performance to 9.2% and 8.8%

EER in name and digit scenarios, respectively, and to 70.48%

recognition rate in speech-reading.
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Fig. 6. Total discrimination measures (D ) and the corresponding experimental performances of grid-based DiscrimN (~fff ) and contour-based DiscrimN

(~fff ) motion features with varying dimension N for name, digit, and speech-reading scenarios.

In Table I, we observe that the best performances are obtained

using the grid-based motion features for both speaker identifi-

cation and speech-reading. The key observations of these exper-

iments are the following.

• DiscrimN achieves the same or better performance at

relatively lower dimensions by selecting a discriminative

subset of coefficients, which are not necessarily the prin-

ciple components.

• The use of temporal LDA in addition to Bayesian discrimi-

nation, brings additional EER gain in speaker identification

with grid-based features.

In Table I, we also observe that the discrimination analysis with

or without LDA, when applied to contour-based motion features,

does not always perform well and improve the performance as

expected. There seem to be two main reasons for this poor per-

formance. First, the dimension of contour-based motion vectors

(computed only along the lip contour) is much smaller than that

of the grid-based motion vectors, and second, these motion vec-

tors are noisier due to possible tracking failures, which makes

it more difficult to capture temporal correlations. This observa-

tion leads us to the conclusion that grid-based motion features

are more robust and effective than contour-based motion features

for use in recognition applications. Another observation is that

the temporal LDA may degrade the recognition rate in speech

reading even with grid-based motion features, which is likely

to be due to the fact that our application addresses a word-level

speech reading problem.

In Fig. 6, we observe that the total discrimination measure

, defined by (12), correlates well with the relative recog-

nition performances of different lip feature representations. The

left column of Fig. 6 presents the total discrimination measures

of the DiscrimN features of these two representations, and the

right column presents the corresponding experimental EER and

recognition rates for speaker identification and speech-reading.

We observe that the numerical discrimination measures and the

corresponding experimental performances match each other;

that is, the higher the discriminative power for a given feature

representation, the higher is the corresponding recognition

performance.

Finally, we note that the Bayesian discrimination analysis

specifies a reordering (ranking) of the transform domain coef-

ficients and the first of these coefficients are selected as the

most discriminative features. Fig. 7 shows the discrimination

values of the selected 50 coefficients out of 100 (50 from

and 50 from directions, respectively) for different recogni-

tion scenarios in the case of grid-based motion feature vector
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Fig. 7. DCT coefficients selected by Bayesian discrimination analysis in the case of grid-based lip motion for N = 50. Minor coefficients are defined as those
with index greater than 25.

. We note that the FirstN (PCA) feature selection pro-

cedure (with ) would have selected the first 25 from

and directions, respectively. We observe that the Bayesian

feature selection procedure selects some feature coefficients

whose index is greater than 25 in all cases. Moreover, the

number of selected coefficients whose index is greater than 25

is higher in the speaker identification application, which indi-

cates that higher frequency coefficients are more valuable for

speaker identification than for speech-reading. One can also

note that the number of coefficients with index greater than 25

is higher for the component of the lip motion vectors than

for the component.

C. Combining Motion and Intensity Information

We have performed experiments to determine whether using

explicit lip motion features, instead of or in addition to lip

intensity information, provides further performance gain. Fol-

lowing the common practice of other lip-based recognition

systems such as [3] and [14], we form the intensity-based

lip feature vector by scanning the 2-D-DCT coefficients in

the zig-zag order, that are computed from the raw intensity

values within the rectangular lip region. The best performance

rates achieved with intensity-only and motion-only features

are presented in Table II for speaker identification (name and

digit) and speech-reading. The last row of Table II displays the

TABLE II
SPEAKER IDENTIFICATION AND SPEECH-READING PERFORMANCE RESULTS

FOR INTENSITY-ONLY FEATURES, MOTION-ONLY FEATURES,
AND THEIR DECISION FUSION

corresponding performance rates when lip motion is combined

with lip intensity by using the decision fusion scheme, the

reliability weighted summation, proposed in [14]. We use the

best grid-based lip motion features for each scenario and the

DiscrimN features to represent intensity information without

any further temporal discrimination as they yield the best

performance in all scenarios. We observe that the addition

of intensity information yields a significantly higher perfor-

mance gain in the case of speaker identification under the

digit scenario as compared to the other lip-based scenarios and

representations. This is mostly due to the texture information

conveyed in the intensity-based lip features. The texture serves

as an important discriminative information especially under

the digit scenario since the imposters of this scenario are
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generated by the leave-one-out scheme and thus not registered

in the population. It is also as expected to observe that, for

speech-reading, the lip motion features perform better than

the intensity-based lip features since the speech information

is strongly coupled with the lip movement and thus better

represented with motion-based features. The use of lip intensity

information in addition to lip motion does not neither improve

the performance in the case of speech-reading.

VI. CONCLUSION

In this paper, we have investigated different lip motion repre-

sentations and proposed a two-stage discriminative lip feature

selection method for speaker identification and speech-reading.

We have shown by experiments that, for speaker/speech

recognition:

• explicit lip motion is useful in addition to lip intensity

and/or geometry;

• grid-based dense lip motion features are superior and more

robust compared to contour-based lip motion features.

The best equal error rate and recognition rate performances

of the grid-based lip motion features are reported as 5.2%

and 72.86%, respectively, for speaker identification and

speech-reading, whereas its fusion with lip intensity provides

additional performance gain only in speaker identification, the

EER rate being improved to 3.6% and 1.6% under the name

and digit scenarios, respectively. The lip motion is found to be

more valuable than the lip intensity for speech-reading.

We have proposed a two-stage discrimination analysis tech-

nique that involves the spatial Bayesian feature selection and

the temporal LDA. The experimental results reveal that the

Bayesian discrimination analysis improves the performance in

both speaker identification and speech-reading. The Bayesian

discriminative feature selection serves also as an interme-

diate dimension reduction step prior to the temporal LDA,

by successfully selecting the lip features that are tailored for

the specific recognition problem. The temporal LDA seems

beneficial for speaker identification, especially under the digit

scenario.
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