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Abstract—Event-related potentials (ERPs) are one of the
most popular control signals for brain–computer interfaces
(BCIs). However, they are very weak and sensitive to the
experimental settings including paradigms, stimulation pa-
rameters and even surrounding environments, resulting in
a diversity of ERP patterns across different BCI experi-
ments. It’s still a challenge to develop a general decod-
ing algorithm that can adapt to the ERP diversities of dif-
ferent BCI datasets with small training sets. This study
compared a recently developed algorithm, i.e., discrimina-
tive canonical pattern matching (DCPM), with seven ERP-
BCI classification methods, i.e., linear discriminant anal-
ysis (LDA), stepwise LDA, bayesian LDA, shrinkage LDA,
spatial-temporal discriminant analysis (STDA), xDAWN and
EEGNet for the single-trial classification of two private EEG
datasets and three public EEG datasets with small train-
ing sets. The feature ERPs of the five datasets included
P300, motion visual evoked potential (mVEP), and miniature
asymmetric visual evoked potential (aVEP). Study results
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showed that the DCPM outperformed other classifiers for
all of the tested datasets, suggesting the DCPM is a robust
classification algorithm for assessing a wide range of ERP
components.

Index Terms—Brain–computer interface (BCI), electroen-
cephalogram (EEG), single-trial classification, event-related
potential (ERP), discriminative canonical pattern matching
(DCPM).

I. INTRODUCTION

B
RAIN-COMPUTER interfaces (BCIs) directly link the

brain and the external world without the involvement of

muscles and peripheral nerves, which allow users to commu-

nicate with their environments and control external devices

[1]–[4]. Moreover, BCIs have multiple applications in attention

test [5], mental workload assessment [6], glaucoma detection [7]

and so on. Most BCI systems are based on the measurements of

electroencephalography (EEG) because of its advantageous of

non-invasiveness, high temporal resolution, low cost and mobil-

ity over other brain recording/imaging techniques such as elec-

trocorticography (ECoG), functional magnetic resonance imag-

ing (fMRI), functional near infrared reflectance spectroscopy

(fNIRS) and magnetoencephalogram (MEG). Among all EEG

features, event-related potentials (ERPs) are one of the most

important brain control signals used for BCIs, which includes

P300 [8]–[10], N170 [11], N200 [12], [13], motion visual evoked

potential (mVEP) [14] and miniature asymmetric visual evoked

potential (aVEP) [15], etc. ERP-based BCIs have many practical

applications in both clinical and non-clinical fields.

A key component of an ERP-based BCI is to discriminate

ERPs from the noisy background EEG. However, as the back-

ground EEG signals are non-linear, non-stationary and often

many times larger than ERPs, it’s difficult to recognize the

single-trial ERPs and needs to collect multiple samples. Further-

more, the ERP profiles are sensitive to experimental settings. A

change of experimental parameters would result in changes in

the latencies and amplitudes of the ERPs. But the mechanism of

the ERP generation remains unclear [16], making it impossible

to construct a mathematical model to link the ERP patterns with

experimental parameters. As a result, the traditional decoding

algorithms often have variable success across different datasets.

Therefore, it’s desirable to develop a robust classification method

that can adapt to a wide range of ERP patterns for practical

applications of ERP-based BCIs.

Previous studies have developed a few algorithms for the

single-trial ERP classification. In 2008, Krusienski et al. used
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a stepwise linear discriminant analysis (SWLDA) to recognize

the single-trial P300 potential and got an average accuracy of

about 35% of character recognition [17]. In the same year,

Hoffmann et al. introduced a bayesian version of regularized

LDA, i.e., bayesian LDA (BLDA) for the single-trial P300

classification, which achieved an average accuracy of about 60%

across eight subjects including four disabled patients [18]. In

2009, Rivet et al. proposed xDAWN to enhance the P300 features

for P300-speller by projecting raw EEG on the estimated P300

subspace and the average character accuracy was nearly 30%

for only one repetition [19]. In 2011, Blankertz et al. applied

a shrinkage technique to LDA, i.e., SKLDA. It could achieve

as high as 70% in the single-trial P300 classification [20]. In

2013, Zhang et al. designed a spatial-temporal discriminant

analysis (STDA) algorithm and got an average accuracy about

61% for classifying P300 in single trials [21]. In 2018, Lawhern

et al. proposed EEGNet which was regarded as a compact CNN

architecture for EEG-based BCIs. It had been proved effective

for single-trial P300 classification and the AUC was higher than

0.9 using about 1500 training samples [22]. Besides, researchers

had tested a variety of other methods, such as support vector

machine (SVM) [23], linearly constrained minimum variance

(LCMV) [24] and independent component analysis (ICA) [25]

et al., for the single-trial ERP classification.

Recently, we have developed a new algorithm, i.e., discrimi-

native canonical pattern matching (DCPM) [15], to recognize

the miniature ERPs. It can first suppress the common-mode

noise of the background EEG and then recognize the canon-

ical patterns of ERPs. DCPM performs well in classifying

the miniature aVEPs with even as small as 0.5 microvolts in

amplitude. However, it’s still unclear what the advantage of

DCPM is over other traditional ERP classification methods,

and whether DCPM works for other ERP components. To this

end, this study compared the single-trial classification results

obtained by DCPM and other methods including LDA, SWLDA,

BLDA, STDA, SKLDA, xDAWN and EEGNet for five different

BCI paradigms including a miniature aVEP-based speller, two

different kinds of P300-spellers, a rapid serial visual presentation

(RSVP)-speller and a motion center-speller, with small training

sets as few as 30 samples.

II. MATERIALS AND METHODS

A. Introduction of Four BCI Datasets

1) Dataset 1: This study used a miniature aVEP dataset col-

lected in our previous study (please find the online video from the

URL: https://www.youtube.com/watch?v = kC7btB3mvGY)

[15]. In the offline aVEP speller experiment, twelve subjects

were asked to focus at the center of the target character indicated

by a visual cue but not the stimuli around the character. The

lateral visual stimuli with 25% duty cycle (i.e., 25 ms on and

75 ms off) would randomly appear at the bottom left or right

area, which consisted of six tiny dots gathered within 0.5° of

visual angle and located at an eccentricity of 2.1°, as shown in

Fig. 1(a). Left stimuli evoked right aVEPs while right stimuli

evoked left aVEPs.

EEG data were recorded using a Neuroscan Synamps2 system

with 64 electrodes placed at the locations following the 10/20

Fig. 1. Miniature aVEPs induced by repetitive peripheral vision stimuli.
(a) The blue dash line lying at 2° away from the cross center, which
was not displayed in the experiment, indicates the boundary between
the fovea and peripheral visions. (b) Grand average miniature aVEPs of
90 trials across subjects were obtained for the left and right stimulus, re-
spectively, which were recorded from channels PO7 and PO8. The zero
point in the time axis indicates the stimulus onset. (c) Grand average
event-related lateralization (ERL) across channels PO7 and PO8.

system. The reference electrode was put at the central area near

Cz, while the ground electrode was put at the frontal lobe. The

stored EEG data were first filtered at 2–70 Hz using a band-pass

Chebyshev filter, and then downsampled to 200 Hz. After that,

the signals were segmented from 0.05 s to 0.25 s after stimulus

onset, extracted from 21 channels (P7, P5, P3, P1, Pz, P2, P4,

P6, P8, PO7, PO5, PO3, POz, PO4, PO6, PO8, CB1, O1, Oz,

O2 and CB2) and then used for classification. The sampling rate,

filter band and selected channels are the same to our previous

study. A total of 720 segments, i.e., trials, consisting of 360 left

aVEPs and 360 right aVEPs were obtained for each subject.

2) Dataset 2: The P300 dataset was from the EPFL

BCI group (https://mmspg.epfl.ch/research/page-58317-en-

html/bci-2/bci_datasets/) [18]. EEG data were recorded from

eight subjects, including four disabled and four healthy persons

using a Biosemi Active Two amplifier (BioSemi, Netherland)

at a sampling rate of 2048 Hz from 32 electrodes placed at

the standard positions of the 10–20 international system. Visual

stimuli consisted of six images and one of them was cued as the

target for each selection. All images were highlighted one by

one in a random sequence. Each flash lasted for 100 ms with

an ISI of 300 ms. The subjects were asked to focus on the cued

target stimulus during the experiment.

The EEG signals were first band-pass filtered from 1 Hz to

12 Hz by a sixth-order forward–backward Butterworth bandpass

filter and then downsampled from 2048 Hz to 32 Hz. The same

parameters were used with the original research in which the

BLDA method was proposed [18]. The EEG trials used for

classification were extracted from the data of 32 channels (Fp1,

2, AF3, 4, Fz, F3, 4, 7, 8, FC1, 2, 5, 6, T7, 8, Cz, C3, 4, CP1, 2,

5, 6, Pz, P3, 4, 7, 8, PO3, 4, Oz and O1, 2) after re-referenced

https://www.youtube.com/watch&quest;v
https://mmspg.epfl.ch/research/page-58317-en-html/bci-2/bci_datasets/
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to the average of M1 and M2. The time window was from 0 to

1 s after stimulus onset. Least of 3240 trials consisting of 540

targets and 2700 non-targets were obtained for each subject.

3) Dataset 3: In order to further analyze the classification

performance of P300 s in the classical paradigm, we imple-

mented a row/column (RC) speller featuring a 6 × 6 character

matrix. Each row and column would be intensified in succession

according to the random sequence with an inter-stimulus interval

(ISI) of 175 ms. Each round comprised 12 intensifications (six

rows and six columns) and there were six rounds for each charac-

ter. Each of 12 subjects randomly spelled 30 characters and was

asked to concentrate on the specific character and silently count

the number of intensifications. A total of 2160 trials, consisting

of 360 targets and 1800 non-targets were collected for each

subject.

EEG data were recorded using a Neuroscan Synamps2 system

with 64 electrodes placed according to the 10/20 system. The

reference electrode was put at the central area and the ground

electrode was put at the frontal area. The stored EEG data

were first re-referenced to the average of M1 and M2, and then

filtered at 1–20 Hz using a band-pass Chebyshev I filter, and

then downsampled to 200 Hz. When classifying, we used 0.05 s

to 0.75 s after stimulus onset for each trial with 16 channels

according to previous study [26] (F3, F4, Fz, T7, T8, C3, C4,

Cz, CP3, CP4, P3, P4, Pz, PO7, PO8, and Oz).

4) Dataset 4: Dataset 4 was from an experiment of RSVP

speller (http://bnci-horizon-2020.eu/database/data-sets) con-

ducted by Acqualagna and Blankertz [27]. In the RSVP

paradigm, all symbols with different colors are presented one-

by-one in random order at the center of the screen. Participants

were asked to concentrate on the target letter and silently count

the number of times the target characters appeared on the screen.

EEG data were recorded at a sample rate of 1000 Hz with 63

channels (Fp1/2, AF3/4, Fz, F1-10, FCz, FC1-6, FT7/8, T7/8,

Cz, C1-6, TP7/8, CPz, CP1-6, Pz, P1-10, POz, PO3/4/7-10,

Oz and O1/2). All the electrodes were referenced to the left

mastoid, and grounded to the forehead area. It should be noted

that only eleven out of twelve subjects’ data were used in

this study, as the remaining one had two channels (PO6 and

O2) lost. A total of 7200 training trials including 240 targets

and 6960 non-targets and 12300 testing trials including 410

targets and 11890 non-targets were collected for each subject.

Each trial was first filtered between 1–20 Hz using a band-pass

Chebyshev filter, and then downsampled to 200 Hz. The trials for

classification were extracted from the EEG data of 55 electrodes

as the original study (all except for Fp1/2, AF3/4, F9/10, FT7/8)

from 0.05 s to 0.75 s after stimulus presentation.

5) Dataset 5: This dataset was about the motion center

speller developed by Schaeff et al. in Technical University

Berlin [28] (http://bnci-horizon-2020.eu/database/data-sets). In

the paradigm, a moving pattern in the middle of the hexagon is

used to evoke an mVEP. The grid pattern consists of arrowheads

with unique colors pointing alternately to one of the pieces.

Participants have to fixate on a central fixation point in the middle

of the moving pattern that was meant to elicit an mVEP.

EEG data from eleven subjects were recorded at 1000 Hz

with 63 electrodes placed according to the international 10–10

system. The right mastoid was chosen as a reference site and

the ground electrode was placed at forehead. A total of 2160

training trials consisting of 360 targets and 1800 non-targets

were collected for ten subjects, but one subject only has 2100

training trials. Each subject had a different number of testing

samples ranging from 3960 to 5640 trials. Each EEG trial was

directly filtered between 1–20 Hz using a band-pass Chebyshev

filter, and then down sampled to 100 Hz. The trials for classifi-

cation were extracted from the EEG data of 57 electrodes as the

original study (Fz, F1-10, FCz, FC1-6, FT7/8, T7/8, Cz, C1-6,

TP7/8, CPz, CP1-6, Pz, P1-10, POz, PO3/4/7/8, Oz and O1/2)

from 0.05 s to 0.75 s after stimulus presentation.

B. Inclusion Criteria of Algorithms for Comparison

This study compared DCPM with seven other algorithms

which were popular in the studies of ERP-BCIs, i.e., LDA,

BLDA, SKLDA, SWLDA, STDA, xDAWN and EEGNet. As

LDA is the easiest and most commonly used method for ERP

classification [29], it was selected as a default method for

comparison in this study. BLDA was selected because it was

first proposed for addressing dataset 2 and got very good per-

formance. Likewise, SKLDA performed well in datasets 4 and

5. SWLDA was selected in this study because it’s also a com-

mon method for ERP-BCIs and demonstrated to be better than

SVM [30]. The aforementioned methods concatenated temporal

points and spatial channels, but DCPM adopted spatial-temporal

samples and implemented collaboratively discriminant analysis.

Therefore, we selected STDA as a comparison, which is also

a collaboratively discriminant analysis method. xDAWN was

demonstrated to have good performance on feature enhancement

which was also claimed as an advantage of DCPM, so it was

selected for comparison. At last, deep neural network is an

emerging technique in the field of computer science, and shows

great potential on addressing EEG signals. Therefore, this study

selected a compact CNN method, i.e., EEGNet, for comparison.

C. Linear Discriminant Analysis

As one of the most popular algorithms in BCI applications,

LDA uses hyperplanes to separate the data representing different

classes (e.g., two classes: target and non-target). Let Xk ∈

RND×Nk(ND = Nt ·Nc) are the training samples of pattern

k = 1, 2. Nt represents temporal points, Nc represents the

number of channels and Nk represents the number of samples

in class Xk. Each sample xi is the concatenation of Nt and Nc.

The means and empirical covariance matrices of two classes are

computed from

µk =
1

Nk

∑

i∈Xk

xi, k = 1, 2 (1)

Σk =
1

Nk − 1

∑

i∈Xk

(xi − µk)(xi − µk)
T , k = 1, 2 (2)

Σ =
N1

N1 +N2

Σ1 +
N2

N1 +N2

Σ2 (3)

where Σ is the common covariance matrix and the hyperplane,

namely the projection vector w of LDA is written as

w = Σ−1 (µ1 − µ2) (4)

http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets


XIAO et al.: DISCRIMINATIVE CANONICAL PATTERN MATCHING FOR SINGLE-TRIAL CLASSIFICATION 2269

Although LDA has been widely applied in BCI systems, it

performs poorly in single-trial classification with few training

samples. Therefore, some advanced versions of LDA have been

proposed to address the problem.

D. Advanced Versions of LDA

1) Stepwise LDA (SWLDA): SWLDA has been employed

in the case of a small sample size because of its effectiveness

in feature dimension reduction [17]. SWLDA implements a

combination of forward and backward stepwise analysis to select

suitable features in the discriminant model. The input features

are weighted using ordinary least squares regression to predict

the target class labels. Starting with no initial features in the

discriminant function, the most statistically significant input

feature for predicting the target label (with p-value < 0.1)

is added to the discriminant function. After each new entry

to the discriminant function, a backward stepwise analysis is

performed to remove the least significant input features, with

p-values > 0.15. This process is repeated until the discriminant

function includes a predetermined number of features or until

no additional features satisfy the entry/removal criteria [30].

2) Bayesian LDA (BLDA): In BLDA, firstly, the neurophys-

iological and experimental priors are employed by modeling

the trial-level covariance, and then the weight vector covariance

of LDA is expressed explicitly as linearly separable compo-

nents, meanwhile, the relative contribution of each component

is controlled by the hyperparameters estimated using Restricted

Maximum Likelihood (ReML) [31]. BLDA is a probabilistic

method that based on Bayesian regression, and it performs better

than LDA with a small number of training sets or strong noise

contamination [18]. The Bayesian regression framework offers a

more elegant and less time-consuming solution for the problem

of choosing the hyperparameters. Details of the algorithm can

be found in [31].

3) Shrinkage LDA (SKLDA): Shrinkage is a common rem-

edy for compensating the systematic bias of the estimated co-

variance matrices and shrinkage parameter for high-dimensional

feature spaces [20]. The SKLDA improves the traditional LDA

by adjusting the extreme eigenvalues of the covariance matrix

towards the average eigenvalue and has shown its superior

performance when using insufficient training samples [21]. The

poorly estimated covariance matrix Σc can be remedied as

Σ̃c = (1− λ) Σc + λcvcI, λc ∈ [0, 1] (5)

where λc is a shrinkage parameter, vc = (tr(Σc))/(D) is de-

fined as the average eigenvalue of Σc with D being the di-

mensionality of the feature space, and I is an identity matrix.

The method to calculate the optimal shrinkage parameter can be

found in [32].

4) Spatial-Temporal Discriminant Analysis (STDA): Un-

like concatenating temporal points and spatial channels that

adopted in the traditional classification methods, STDA adopts

each spatial-temporal sample to a new one-way sample after

projecting by the matrices that calculated from spatial and tem-

poral feature subspaces, instead of the vectorized feature sample.

The STDA method implements collaboratively discriminant

analysis and performs alternatingly optimization in the spatial

and temporal dimensions of samples, which reduces feature di-

mensionalities, and hence improves the estimation of covariance

matrices in the discriminant analysis even using limited number

of training samples. This assists in enhancing the generalization

capability of the classifier. The details of the algorithm can be

found in Zhang’s study [21]. The classification performance

depends on the selected number of retained eigenvectors. This

study used the number of 6 after optimization.

E. xDAWN Algorithm

The main idea of xDAWN is to construct a spatial filter that

can enhance the synchronous response induced by the target

stimuli. In the xDAWN method, the synchronous responses are

first estimated for each channel, and then these responses are

used to estimate the spatial filters which will enhance the evoked

P300 potentials. xDAWN unfolds the response pattern as:

X = D A+N (6)

where A is the synchronized response with target stimuli, and D
is a Toeplitz matrix whose first column is defined by 1 at stimuli

onset. N are the noise and artifacts.

We used BLDA for classification after xDAWN spatial filter-

ing, and a full description of xDAWN and BLDA can be found

in [19] and [31].

F. EEGNet

CNNs were first used in computer vision and has been applied

to BCIs recently. EEGNet is a compact CNN architecture for

EEG-based BCIs which was introduced in 2018 [22]. EEGNet

uses depthwise and separable convolutions to construct an EEG-

specific model. The network has two blocks, and there are two

convolutional steps in block 1. The first step is a temporal convo-

lution that learns frequency filters, and the second is a depthwise

convolution that learns frequency-specific spatial filters. In block

2, there is a separable convolution combined with a depthwise

convolution, which is followed by a pointwise convolution.

EEGNet has been generalized across four BCI paradigms includ-

ing P300 s, error-related negativity responses, movement-related

cortical potentials, and sensory motor rhythms. Another feature

of EEGNet is the ability of being trained with limited data. More

details about EEGNet can be found in [22].

G. Discriminative Canonical Pattern Matching (DCPM)

The DCPM method consists of three major parts: (1) the

construction of discriminative spatial patterns (DSPs); (2) the

construction of CCA patterns; (3) pattern matching (see Fig. 2).

Given a parameter k = 1, 2 denotes the number of patterns,

Xk ∈ RNc×Nt×Ns are different training sets, Y ∈ RNc×Nt is

the testing sample, where Nc is the number of channels, Nt

is the number of time points, Ns is the trial number. They are

both zero mean across time. X̂k ∈ RNc×Nt is the template of

pattern k, that is derived from the average of training trials. The
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Fig. 2. Flowchart of DCPM classification algorithm.

covariance matrix of [ X̂1

X̂2

]. is written as

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

=

[

X̂1X̂
T
1

X̂1X̂
T
2

X̂2X̂
T
1

X̂2X̂
T
2

]

(7)

The variances of X1 and X2 are

σ1
2 =

1

N

Ns
∑

i=1

(X1,i − X̂1)(X1,i − X̂1)
T (8)

σ2
2 =

1

N

Ns
∑

i=1

(X2,i − X̂2)(X2,i − X̂2)
T (9)

Then a projection matrix W is constructed by DSP, λi is the

eigenvalue of the ith column of W and W could be regarded as a

set of spatial filters to make the two patterns more discriminative

after transformation,

Sw
−1SB ∗W =

⎡

⎢

⎣

λ1

. . .

λNc

⎤

⎥

⎦
∗W (10)

SB = Σ11 +Σ22 − Σ12 − Σ21 (11)

Sw = σ1
2 + σ2

2 (12)

After removing the common mode noise by W , the CCA

algorithm is used to reveal the underlying correlation between

WT X̂k and WTY by finding two projection matrixes, Uk, Vk,

which equals to solve

CCA(WT X̂k,W
TY ) =

max
Uk,Vk

E [Uk
TWT X̂kY

TWVk]
√

E [Uk
TWT X̂kX̂T

k WUk] · E [Vk
TWTY Y TWVk]

(13)

where E [·] is the expectation. In pattern matching, the similarity

between the training template and the testing signal is repre-

sented as a vector

ρk =

⎡

⎣

ρk1
ρk2
ρk3

⎤

⎦ =

⎡

⎢

⎢

⎣

corr
(

WT X̂k,W
TY

)

−dist
(

WT X̂k,W
TY

)

corr
(

Vk
TWT X̂k, Vk

TWTY
)

⎤

⎥

⎥

⎦

, k = 1, 2

(14)

where corr(∗) refers to the Pearson’s correlation, dist(∗) refers

to the Euclidean distance. The more similar it is between Y and

X̂k, the larger the ρk,1, ρk,2, and ρk,3will be. The final feature

value can be the sum of all coefficients,

ρ̃k =
∑

i=1,2,3

ρk,i (15)

Then the predicted code pattern of Y is

k̂ = argmax
k

ρ̃k (16)

III. RESULTS

A. Characteristics of ERPs

The characteristics of ERPs were first analyzed and compared

for all datasets. Fig. 3 shows the temporal and spatial differences

between two kinds of ERPs for each dataset, i.e., left vs. right

ERPs for Dataset 1 and target vs. non-target ERPs for Datasets

2, 3, 4 and 5. It was obvious that the ERP’s morphologies and

topographic patterns were very different from each other for the

five datasets. Specifically, the discriminative ERP features were

restricted to the occipital areas within a short time window for

Dataset 1, while spread over the whole scalp and lasted for a

relatively long time for the other four datasets. Although some

typical ERP components, such as P200, N200 and P300, could be

found in Datasets 2, 3, 4 and 5, they showed evident differences

among conditions. Therefore, it requires a robust and adaptable

classification algorithm to address such diverse ERPs.

B. Comparison of Classification Methods for Dataset 1

Fig. 4 and Table I show the single-trial classification of

miniature-aVEP-speller was conducted using LDA, BLDA,

SWLDA, SKLDA, STDA, xDAWN, EEGNet and DCPM, re-

spectively, with different numbers of training samples. For each

subject, 30 to 360 samples with a step of 30 samples (50% left

and 50% right aVEPs) were randomly selected for training the

classifiers while remaining 360 samples (50% left and 50% right

aVEPs) were selected for testing the trained classifiers. To ensure

fairness, all classification methods used the same training and

testing samples. This procedure repeated for 10 times, and the
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Fig. 3. Distributions of different ERP characteristics. (a) Left vs. right
aVEPs for dataset 1. (b) Target vs. non-target ERPs for dataset 2.
(c) Target vs. non-target ERPs for dataset 3. (d) Target RSVPs vs.
non-target signals for dataset 4. (e) Target mVEPs vs. non-target signals
for dataset 5.

Fig. 4. Comparison of AUCs for dataset 1 under different numbers of
training samples.

TABLE I
STATISTICAL ANALYSES BETWEEN DCPM AND THE OTHER

METHODS FOR DATASET 1

Note: ∼nonsignificant, ∗p < 0.05, #p < 0.01, †p < 0.005, ‡p < 0.001

average area under the receiver operating characteristic (ROC)

curves (AUCs) was computed. The AUC was adopted to evaluate

the classification performance for all methods.

As shown in Fig. 4, the proposed DCPM method achieved

higher AUCs than the other methods for across different numbers

of training samples. DCPM possessed a stable advantage over

the other methods for all numbers of training samples, while

xDAWN and EEGNet performed better than other traditional

classification methods. We used paired-samples T test to get

the significances for all datasets. Individual analyses showed

that DCPM achieved statistically significantly higher AUCs than

other methods (see Table I).

C. Comparison of Classification Methods for Dataset 2

The single-trial classification of the P300-speller in EPFL

dataset was conducted using LDA, BLDA, SWLDA, SKLDA,

STDA, xDAWN, EEGNet and DCPM, respectively. 30 to 540

samples with a step of 30 samples (50% target and 50% non-

target trials) were randomly selected for training classifiers

while other 540 samples were selected for testing them. The

classification procedure was as the same as used for Dataset

1 and the results are shown in Fig. 5. It’s found that DCPM

outperformed the other methods, and BLDA was the second-best
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Fig. 5. Comparison of AUCs for dataset 2 under different number of
training samples.

TABLE II
STATISTICAL ANALYSES BETWEEN DCPM AND THE OTHER

METHODS FOR DATASET 2

Note: ∼nonsignificant, ∗p < 0.05, #p < 0.01, †p < 0.005, ‡p < 0.001

algorithm for this dataset. From the individual performance,

DCPM had a higher accuracy for most subjects except subjects

1 and 6 where BLDA was the best. Table II shows the statistical

analyses between DCPM and the other methods. It’s found that

the advantage of DCPM over LDA, SWLDA, SKLDA, STDA,

xDAWN and EEGNet achieved significant level. However, al-

though DCPM had slightly higher AUCs than BLDA for the

overall performance, no significant difference could be found

between them except with 30 training samples, which might be

due to the small number of subjects in this dataset.

D. Comparison of Classification Methods for Dataset 3

For each subject in Dataset 3, 30 to 360 samples with a step of

30 samples (50% are target responses) were randomly selected

from the data set to train the classifiers, while the remaining

180 target samples and additional 180 non-target samples were

Fig. 6. Comparison of AUCs for dataset 3 under different number of
training samples.

TABLE III
STATISTICAL ANALYSES BETWEEN DCPM AND THE OTHER

METHODS FOR DATASET 3

Note: ∼nonsignificant, ∗p < 0.05, #p < 0.01, †p < 0.005, ‡p < 0.001

randomly selected to test the classifiers. The classification pro-

cedure was as the same as addressed for Dataset 1. Fig. 6 and

Table III show the results of an AUC analysis. The advantage

of DCPM was more evident for different fewer training sam-

ples. Specifically, when using only 30 training samples, DCPM

achieved 0.72 that was 0.07 higher than that of the second-best

method, i.e., EEGNet. However, the AUC advantage reduced

and even disappeared with the growth of training samples. For

STDA, SKLDA, xDAWN and EEGNet, there was no significant

difference between DCPM and them in different conditions of

training samples, nevertheless, DCPM had higher AUCs than

other methods and had significant differences with 30, 60 and

90 training samples. Therefore, DCPM had more advantages

over the other methods with few training samples.

E. Comparison of Classification Methods for Dataset 4

Fig. 7 shows the single-trial classification of RSVP-speller

was conducted using LDA, BLDA, SWLDA, SKLDA, STDA,

xDAWN, EEGNet and DCPM, respectively, with different num-

bers of training samples. The classification procedure was as

the same as described for Dataset 1. Here, 30 to 480 training

samples were selected from the offline data (50% target trials),
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Fig. 7. Comparison of AUCs for dataset 4 under different numbers of
training samples.

TABLE IV
STATISTICAL ANALYSES BETWEEN DCPM AND THE OTHER

METHODS FOR DATASET4

Note: ∼nonsignificant, ∗p < 0.05, #p < 0.01, †p < 0.005, ‡p < 0.001

while 480 testing samples were selected from the online data. It

was obviously that DCPM had better performance than the other

classification methods for most conditions of training samples.

As shown in Table IV, the superiority of DCPM to the other

methods was statistically significant. There was statistically

significant difference between DCPM and EEGNet only with

360, 390, 420 and 450 training samples, although the AUC

of DCPM was higher than EEGNet all along. It should be

noted that EEGNet was firstly applied for recognizing P300 in

the RSVP-speller [22], and the parameters about the networks

maybe more applicable to RSVP-speller.

Fig. 8. Comparison of AUCs for dataset 5 under different numbers of
training samples.

TABLE V
STATISTICAL ANALYSES BETWEEN DCPM AND THE OTHER

METHODS FOR DATASET 5

Note: ∼nonsignificant, ∗p < 0.05, #p < 0.01, †p < 0.005, ‡p < 0.001

F. Comparison of Classification Methods for Dataset 5

Fig. 8 shows the single-trial classification of motion center

speller was conducted using LDA, BLDA, SWLDA, SKLDA,

STDA, xDAWN, EEGNet and DCPM, respectively, with differ-

ent numbers of training samples. The classification procedure

was as the same as described for Dataset 1. Here, the training

samples were selected from the offline data, while 690 testing

samples were selected from the online data. DCPM possessed

an apparent advantage over the other methods for all numbers of

training samples, which could achieve around 5.9% higher AUC

than the second-best one, EEGNet. Table VI demonstrated that
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TABLE VI
AVERAGE AUCS FOR LDA AND RANKINGS OF CLASSIFICATION METHODS

performance of DCPM was significantly better than the other

methods.

G. Overall Comparison for All Datasets

This study conducted an overall comparison of these classi-

fication methods for all datasets to have a comprehensive eval-

uation of their performance. Table VI shows the grand average

AUCs of LDA across subjects and the training sample numbers

for each dataset, which were regarded as the baseline. The

performance improvements are described by percentage changes

compared to the AUC gotten by the default LDA method. All

classification methods were ranked according to the gain of AUC

for all datasets. It’s obvious that DCPM performed the best

among all the datasets, and the total improvement of DCPM

is nearly 6% higher than the total improvement of the second

method, EEGNet. DCPM also nearly 10% higher than the third

method, xDAWN, in terms of the total improvement.

IV. DISCUSSION

The performance of ERP-based BCIs depends heavily on the

classification algorithm. To find out the most powerful algo-

rithm for ERP classification, researchers have conducted a few

comparison studies in the past. Krusienski et al. compared five

methods for classifying P300 s, including Pearson’s correlation

method (PCM), LDA, SWLDA, linear support vector machine

(LSVM) and Gaussian kernel support vector machine (GSVM),

and proved that SWLDA and LDA performed better than other

methods [30]. Contrary to Krusienski’s findings, Aloise et al.

compared these five methods for a gaze-independent P300-BCI,

and found no statistically significant differences between the

considered classifier’s performance [33]. Later, Blankertz et al.

proposed SKLDA for single-trial classification of ERP compo-

nents and demonstrated its superiority over LDA and SWLDA

[20]. In 2013, Zhang et al. developed STDA for ERP-BCIs

and compared it with LDA, SWLDA and SKLDA. The re-

sults showed STDA performed best among all the methods.

Lawhern et al. introduced EEGNet for the P300 dataset and it

performed well in both within-subject classification and cross-

subject classification [22]. It’s interesting to find that different

studies draw different conclusions, which might indicate that

the best classification algorithm varied across ERP datasets.

As we know, the ERP characteristics are sensitive to the BCI

paradigm and the experimental environment. Changes in ex-

perimental parameters would result in different ERP patterns.

For example, the five datasets used in this study showed quite

different ERP profiles in both temporal and spatial domains. For

that reason, it’s difficult for researchers to draw a consistent

conclusion with their selected datasets. It also indicates that

traditional algorithms cannot adapt to the ERP diversities in

different datasets. Therefore, it’s imperative to develop a robust

classification algorithm that can deal with a wide range of ERP

patterns.

To address the above problem, this study used five different

ERP datasets collected in different paradigms and from dif-

ferent labs to test the performance of DCPM and seven other

traditional classification methods. As a result, DCPM performed

the best for all datasets. It demonstrated that DCPM had robust

performance and was adaptable to the ERP patterns in different

datasets especially with limited training samples. As to the other

algorithms, their performance varied with datasets. Specifically,

EEGNet had stable and good performance in all datasets and

overall ranked the second. xDAWN ranked in the third place

for the overall performance. In particular, it got the third place

for dataset 1, 2 and 3 but had a poor performance in dataset 4

and 5. xDAWN will perform better with more training samples

[19]. SKLDA and BLDA ranked the fourth and fifth for the

overall performance, respectively. Notably, BLDA was in the

second place for datasets 2 although it performed poorly for other

datasets. STDA ranked sixth by getting third place in dataset 4

and 5. SWLDA and LDA were in the seventh and eighth place,

respectively, for the overall performance. LDA was said to be

stable and had a low complexity as linear discriminant analysis

method [29]. SWLDA, SKLDA, and BLDA were regularized

versions of LDA and all performed better than it. The results

indicated that the traditional algorithms might have good per-

formance for a certain dataset, but could hardly adapt to the

ERP diversities across datasets.

ERPs were too weak and variable to be extracted stably.

Traditional methods always collected multiple trials and carried

out direct classification using time domain waveforms. As one of

the most classical algorithm, LDA could achieve a satisfactory

classification result with enough training samples. In previous,

researchers paid most efforts on the balance between systematic

error and bias, and developed a lot of advanced versions of

LDA. Blankertz et al. indicated that SKLDA was effective with
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insufficient training samples and got a target/non-target P300

binary validation error of 30% with 50 training samples [20].

EEGNet was a compact CNN method which could be trained

with limited data. The AUC of single-trial ERP classification

was about 0.85 using more than 250 training samples [22].

However, really few studies focused on ERP feature extraction

and enhancement. xDAWN was proposed to enhance the ERP

features by maximizing the signal-to-signal-plus-noise-ratio,

and it had shown to be effective for the detection of P300 s

using more than 500 training samples [19], [34]. The DSP filter

could enlarge the difference between two patterns and the DCPM

could enhance the SNR of ERPs [15], furthermore, the process

of canonical pattern matching could improve over-fit effect. As

a result, DCPM achieved an average of about 7.4% higher than

the second best method in AUC across all the datasets with only

30 training samples. Meanwhile, all the methods in this study

were used in the online BCI system. The computing time of

each method could guarantee the real-time and precision of the

system. Therefore, the outperformance of DCPM with small

training set may contribute to reduce the BCIs’ calibration time.

V. CONCLUSION

This study compared DCPM with seven other classification

methods, i.e., LDA, SWLDA, BLDA, SKLDA, STDA, xDAWN

and EEGNet on addressing different ERP patterns from five dif-

ferent datasets. The single-trial classification AUC was used to

estimate their performance. As a result, DCPM outperformed the

other methods for all datasets, while the other algorithms had a

variation of performance for different datasets. The study results

demonstrate that DCPM is a robust classification algorithm that

has outstanding performance in a wide range of ERP patterns.
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