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Abstract

This paper presents a new discriminative deep metric

learning (DDML) method for face verification in the wild.

Different from existing metric learning-based face verifica-

tion methods which aim to learn a Mahalanobis distance

metric to maximize the inter-class variations and minimize

the intra-class variations, simultaneously, the proposed D-

DML trains a deep neural network which learns a set of hi-

erarchical nonlinear transformations to project face pairs

into the same feature subspace, under which the distance of

each positive face pair is less than a smaller threshold and

that of each negative pair is higher than a larger threshold,

respectively, so that discriminative information can be ex-

ploited in the deep network. Our method achieves very com-

petitive face verification performance on the widely used

LFW and YouTube Faces (YTF) datasets.

1. Introduction

Overt the past two decades, a large number of face recog-

nition methods have been proposed in the literature [23, 41],

and most of them have achieved satisfying recognition per-

formance under controlled conditions. However, their per-

formance drops heavily when face images are captured in

the wild because large intra-class variations usually occur in

this scenario. Face recognition can be mainly classified into

two tasks: face identification and face verification. The for-

mer aims to recognize the person from a set of gallery face

images or videos and find the most similar one to the probe

sample. The latter is to determine whether a given pair of

face images or videos is from the same person or not. In this

paper, we consider the second one where face images con-

tain significant variations caused by varying lighting, ex-

pression, pose, resolution, and background.

Recently, many approaches have been proposed to im-

prove the face verification performance in unconstrained

environments [6, 9, 13, 28, 34, 37], and these methods can
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Figure 1. The flowchart of proposed DDML method for face veri-

fication. For a given pair of face images x1 and x2, we map them

into the same feature subspace as h
(2)
1 and h

(2)
2 by using a set

of hierarchical nonlinear transformations, where the similarity of

their outputs at the most top level is computed and used to deter-

mine whether the face pair is from the same person or not.

be roughly divided into two categories: feature descriptor-

based and metric learning-based. For the first category, a

robust and discriminative descriptor is usually employed

to represent each face image as a compact feature vector,

where different persons are expected to be separated as

much as possible in the feature space. Typical face fea-

ture descriptors include SIFT [22], LBP [1], probabilistic

elastic matching (PEM) [21], and fisher vector faces [28].

For the second category, a new distance metric is usual-

ly learned from the labeled training samples to effective-

ly measure the similarity of face samples, under which the

similarity of positive pairs is enlarged and that of negative
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pairs is reduced as much as possible. Representative met-

ric learning algorithms include logistic discriminant metric

learning (LDML) [9], cosine similarity metric learning (C-

SML) [26], pairwise constrained component analysis (PC-

CA) [25], and pairwise-constrained multiple metric learn-

ing (PMML) [6].

In this paper, we contribute to the second category and

propose a new discriminative deep metric learning (DDM-

L) method for face verification in the wild, where the basic

idea of our method is illustrated in Figure 1. Unlike most

existing metric learning methods, our DDML builds a deep

neural network which learns a set of hierarchical nonlinear

transformations to project face pairs into other feature sub-

space, under which the distance of each positive face pair

is less than a smaller threshold and that of each negative

pair is higher than a larger threshold, respectively, so that

discriminative information is exploited for the verification

task. Experimental results on the widely used LFW and

YouTube Faces (YTF) datasets are presented to show the

effectiveness of the proposed method.

2. Related Work

Metric Learning: Many metric learning algorithms

have been proposed over the past decade, and some of them

have been successfully applied to address the problem of

face verification in the wild [3, 6, 7, 9, 29]. The common

objective of these methods is to learn a good distance metric

so that the distance between positive face pairs is reduced

and that of negative pairs is enlarged as much as possible.

However, most existing metric learning methods only learn

a linear transformation to map face samples into a new fea-

ture space, which may not be powerful enough to capture

the nonlinear manifold where face images usually lie on.

To address this limitation, the kernel trick is usually adopt-

ed to first map face samples into a high-dimensional feature

space and then learn a discriminative distance metric in the

high-dimensional space [31, 38]. However, these method-

s cannot explicitly obtain the nonlinear mapping functions,

which usually suffer from the scalability problem. Different

from these metric learning methods, our proposed DDM-

L learns a set of hierarchical nonlinear transformations to

project face pairs into one feature space in a deep architec-

ture, where the nonlinear mappings are explicitly obtained.

We also achieve the very competitive performance on the

face verification in the wild problem with two existing pub-

licly available datasets.

Deep Learning: In recent years, deep learning has re-

ceived increasing interests in computer vision and machine

learning, and a number of deep learning methods have been

proposed in the literature [2, 10, 11, 13, 15, 18, 19, 20,

27, 30]. Generally, deep learning aims to learn hierarchi-

cal feature representations by building high-level features

from low-level ones. Existing deep learning methods can

be mainly categorized three classes: unsupervised, super-

vised and semi-supervised, and they have been successfully

applied to many visual analysis applications such as objec-

t recognition [27], human action recognition [15, 18], and

face verification [13]. While many attempts have been made

on deep learning in feature engineering such as deep belief

network [10], stacked auto-encoder [18], and convolutional

neural networks [15], little progress has been made in met-

ric learning with a deep architecture. More recently, Cai et

al. [3] proposed a nonlinear metric learning method by com-

bining the logistic regression and stacked independent sub-

space analysis. Differently, our proposed DDML method

employs a network to learn the nonlinear distance metric

where the back propagation algorithm can be used to train

the model. Hence, our method is complementary to existing

deep learning methods.

3. Proposed Approach

In this section, we first briefly review the conventional

Mahalanobis distance metric learning, and then present the

proposed DDML method, as well as its implementation de-

tails.

3.1. Mahalanobis Distance Metric Learning

Let X = [x1,x2, · · · ,xN ] ∈ R
d×N be the training set,

where xi ∈ R
d is the ith training sample and N is the to-

tal number of training samples. The conventional Maha-

lanobis distance metric learning aims to seek a square ma-

trix M ∈ R
d×d from the training set X, under which the

distance between any two samples xi and xj can be com-

puted as:

dM(xi,xj) =
√

(xi − xj)TM(xi − xj) (1)

Since dM(xi,xj) is a distance, it should have the prop-

erties of nonnegativity, symmetry, and triangle inequality.

Hence, M is symmetric and positive semi-definite, and can

be decomposed by as follows:

M = W
T
W (2)

where W ∈ R
p×d, and p ≤ d.

Then, dM(xi,xj) can be rewritten as

dM(xi,xj) =
√

(xi − xj)TM(xi − xj)

=
√

(xi − xj)TWTW(xi − xj)

= ‖Wxi −Wxj‖2 (3)

We can see from Eq. (3) that learning a Mahalanobis dis-

tance metric M is equivalent to seeking a linear trans-

formation W which projects each sample xi into a low-

dimensional subspace, under which the Euclidean distance

of two samples in the transformed space is equal to the Ma-

halanobis distance metric in the original space.
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3.2. DDML

The conventional Mahalanobis distance metric learning

methods [7] only seek a linear transformation, which cannot

capture the nonlinear manifold where face images usually

lie on, especially when face images are captured in uncon-

strained environments because there are usually large vari-

ations in this scenario. To address this limitation, the ker-

nel trick is usually employed to implicitly map face sam-

ples into a high-dimensional feature space and then learn

a discriminative distance metric in the high-dimensional s-

pace [31]. However, these methods cannot explicitly ob-

tain the nonlinear mapping functions, which usually suffer

from the scalability problem. Different from these previ-

ous metric learning methods, we propose a new deep metric

learning method to learn hierarchical nonlinear mappings

to address the nonlinear and scalability problems simulta-

neously.

As shown in Figure 1, we first construct a deep neural

network to compute the representations of a face pair by

passing them to multiple layers of nonlinear transformation-

s. Assume there are M + 1 layers in our designed network,

and p(m) units in the mth layer, where m = 1, 2, · · · ,M .

For a given face sample x ∈ R
d, the output of the first lay-

er is h
(1) = s(W(1)

x + b
(1)) ∈ R

p(1)

, where W
(1) ∈

R
p(1)

×d is a projection matrix to be learned in the first lay-

er, b
(1) ∈ R

p(1)

is a bias vector, and s : R 7→ R is a

nonlinear activation function which operates component-

wisely, e.g., the tanh or sigmoid function. Then, we

use the output of the first layer h(1) as the input of the sec-

ond layer. Similarly, the output of the second layer can be

computed as h
(2) = s(W(2)

h
(1) + b

(2)) ∈ R
p(2)

, where

W
(2) ∈ R

p(2)
×p(1)

, b(2) ∈ R
p(2)

, and s are the projection

matrix, bias, and nonlinear activation function of the second

layer, respectively. Similarly, the output of the mth layer is

h
(m) = s(W(m)

h
(m−1) + b

(m)) ∈ R
p(m)

, and the output

of the most top level can be computed as:

f(x) = h
(M) = s

(

W
(M)

h
(M−1) + b

(M)
)

∈ R
p(M)

(4)

where the mapping f : Rd 7→ R
p(M)

is a parametric nonlin-

ear function determined by the parameters W(m) and b
(m),

where m = 1, 2, · · · ,M .

Given a pair of face samples xi and xj , they can be fi-

nally represented as f(xi) = h
(M)
i and f(xj) = h

(M)
j at

the top level when they are passed through the M +1-layer

deep network, and their distance can be measured by com-

puting the squared Euclidean distance between the most top

level representations, which is defined as follows:

d2f (xi,xj) =
∥

∥f(xi)− f(xj)
∥

∥

2

2
. (5)

It is desirable to exploit discriminative information for

face representations of the most top level from our pro-
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Figure 2. Intuitive illustration of the proposed DDML method.

There are three face samples in the original feature space, which

are used to generate two pairs of face images, where two of them

form a positive pair (two circles) and two of them form the neg-

ative pair (one circle in the center and one triangle), respectively.

In the original face feature space, the distance between the posi-

tive pair is larger than that between the negative pair which may

be caused by the large intra-personal variations such as varying

expressions, illuminations, and poses, especially when face im-

ages are captured in the wild. This scenario is harmful to face

verification because it causes an error. When our DDML method

is applied, the distance of the positive pair is less than a smaller

threshold τ1 and that of the negative pair is higher than a larger

threshold τ2 of the most top level of our DDML model, respec-

tively, so that more discriminative information can be exploited

and the face pair can be easily verified.

posed DDML model, which is more effective to face ver-

ification. To achieve this, we expect the distances between

positive pairs are smaller than those between negative pairs

and develop a large margin framework to formulate our

method. Figure 2 shows the basic idea of our proposed

DDML method. Specifically, DDML aims to seek a non-

linear mapping f such that the distance d2f (xi,xj) between

xi and xj is smaller than a pre-specified threshold τ1 in the

transformed space if xi and xj are from the same subjec-

t (ℓij = 1), and larger than τ2 in the transformed space if

samples xi and xj are from different subjects (ℓij = −1),

where the pairwise label ℓij denotes the similarity or dis-

similarity between a face pair xi and xj , and τ2 > τ1.

To reduce the number of parameters in our experiments,

we only employ one threshold τ (τ > 1) to connect τ1 and

τ2, and enforce the margin between d2f (xi,xj) and τ is larg-

er than 1 by using the following constraint:

ℓij
(

τ − d2f (xi,xj)
)

> 1. (6)

where τ1 = τ −1 and τ2 = τ +1. With this constrain, there

is a margin between each positive and negative pairs in the

learned feature space, as shown in Figure 2.

By applying the above constrain in Eq. (6) to each pos-

itive and negative pair in the training set, we formulate our
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DDML as the following optimization problem:

argmin
f

J = J1 + J2

=
1

2

∑

i,j

g
(

1− ℓij
(

τ − d2f (xi,xj)
)

)

+
λ

2

M
∑

m=1

(

∥

∥W
(m)

∥

∥

2

F
+

∥

∥b
(m)

∥

∥

2

2

)

(7)

where g(z) = 1
β
log

(

1+exp(βz)
)

is the generalized logis-

tic loss function [25], which is a smoothed approximation of

the hinge loss function [z]+ = max(z, 0), β is a sharpness

parameter, ‖A‖F represents the Frobenius norm of the ma-

trix A, and λ is a regularization parameter. There are two

terms J1 and J2 in our objective function, where J1 defines

the logistic loss and J2 represents the regularization term,

respectively.

To solve the optimization problem in Eq. (7), we use the

stochastic sub-gradient descent scheme to obtain the param-

eters {W(m),b(m)}, where m = 1, 2, · · · ,M . The gradi-

ent of the objective function J with respect to the parame-

ters W(m) and b
(m) can be computed as follows:

∂J

∂W(m)
=

∑

i,j

(

∆
(m)
ij h

(m−1)
i

T

+∆
(m)
ji h

(m−1)
j

T)

+ λ W
(m) (8)

∂J

∂b(m)
=

∑

i,j

(

∆
(m)
ij +∆

(m)
ji

)

+ λ b
(m) (9)

where h
(0)
i = xi and h

(0)
j = xj , which are from the o-

riginal inputs of our network. For all other layers m =
1, 2, · · · ,M−1, we have the following updating equations:

∆
(M)
ij = g′(c)ℓij

(

h
(M)
i − h

(M)
j

)

⊙ s′
(

z
(M)
i

)

(10)

∆
(M)
ji = g′(c)ℓij

(

h
(M)
j − h

(M)
i

)

⊙ s′
(

z
(M)
j

)

(11)

∆
(m)
ij =

(

W
(m+1)T∆

(m+1)
ij

)

⊙ s′
(

z
(m)
i

)

(12)

∆
(m)
ji =

(

W
(m+1)T∆

(m+1)
ji

)

⊙ s′
(

z
(m)
j

)

(13)

where the operation ⊙ denotes the element-wise multiplica-

tion, and c and z
(m)
i are defined as follows:

c , 1− ℓij
(

τ − d2f (xi,xj)
)

(14)

z
(m)
i , W

(m)
h
(m−1)
i + b

(m) (15)

Then, W(m) and b
(m) can be updated by using the fol-

lowing gradient descent algorithm until convergence:

W
(m) = W

(m) − µ
∂J

∂W(m)
(16)

b
(m) = b

(m) − µ
∂J

∂b(m)
(17)

Algorithm 1: DDML

Input: Training set: X = {(xi,xj , ℓij)}, number of

network layers M + 1, threshold τ , learning

rate µ, iterative number It, parameter λ, and

convergence error ε.

Output: Weights and biases: {W(m),b(m)}Mm=1.

// Initialization:

Initialize {W(m),b(m)}Mm=1 according to Eq. (20).

// Optimization by back prorogation:

for t = 1, 2, · · · , It do

Randomly select a sample pair (xi,xj , ℓij) in X.

Set h
(0)
i = xi and h

(0)
j = xj , respectively.

// Forward propagation

for m = 1, 2, · · · ,M do

Do forward propagation to get h
(m)
i and h

(m)
j .

end

// Computing gradient

for m = M,M − 1, · · · , 1 do
Obtain gradient by back propagation

according to Eqs. (8) and (9).

end

// Back propagation

for m = 1, 2, · · · ,M do

Update W
(m) and b

(m) according to Eqs.

(16) and (17).
end

Calculate Jt using Eq (7).

If t > 1 and |Jt − Jt−1| < ε, go to Return.

end

Return: {W(m),b(m)}Mm=1.

where µ is the learning rate.

Algorithm 1 summarizes the detailed procedure of the

proposed DDML method.

3.3. Implementation Details

In this subsection, we detail the nonlinear activation

functions and the initializations of W
(m) and b

(m), 1 ≤
m ≤ M in our proposed DDML method.

Activation Function: There are many nonlinear activa-

tion functions which could be used to determine the output

of the nodes in our deep metric learning network. In our ex-

periments, we use the tanh as the activation function be-

cause it has demonstrated better performance in our experi-

ments. The tanh function and its derivative are computed

as follows:

s(z) = tanh(z) =
ez − e−z

ez + e−z
(18)

s′(z) = tanh′(z) = 1− tanh2(z) (19)

Initialization: The initializations of W
(m) and b

(m)
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(1 ≤ m ≤ M ) are important to the gradient descent based

method in our deep neural networks. Random initialization

and denoising autoencoder (DAE) [32] are two popular ini-

tialization methods in deep learning. In our experiments, we

utilize a simple normalized random initialization method in

[8], where the bias b(m) is initialized as 0, and the weight

of each layer is initialized as the following uniform distri-

bution:

W
(m) ∼ U

[

−
√
6

√

p(m) + p(m−1)
,

√
6

√

p(m) + p(m−1)

]

(20)

where p(0) is the dimension of input layer and 1 ≤ m ≤ M .

4. Experiments

To evaluate the effectiveness of our proposed DDML

method, we perform unconstrained face verification experi-

ments on the challenging LFW [14] and YTF [34] databas-

es. The following settings describe the details of the exper-

iments and results.

4.1. Datasets and Experimental Settings

The LFW dataset [14] contains more than 13000 face

images of 5749 subjects collected from the web with large

variations in expression, pose, age, illumination, resolution,

and so on. There are two training paradigms for super-

vised learning on this dataset: 1) image restricted and 2)

image unrestricted. In our experiments, we use the image

restricted setting where only the pairwise label information

is required to train our method. We follow the standard e-

valuation protocol on the “View 2” dataset [14] which in-

cludes 3000 matched pairs and 3000 mismatched pairs. The

dataset is divided into 10 folds, and each fold consists of

300 matched (positive) pairs and 300 mismatched (nega-

tive) pairs. We use two types of LFW dataset for our eval-

uation: the LFW-a dataset1 and “funneled” version2. For

the LFW-a dataset, we crop each image into 80 × 150 to

remove the background information, and then extract two

features: Dense SIFT (DSIFT) [22] and LBP [1]. Regard-

ing the “funneled” version, we use Sparse SIFT (SSIFT)

descriptors provided by [9]. These three features are sum-

marized as follows for each face image:

• DSIFT: We densely sample SIFT descriptors on each

16× 16 patch without overlapping and obtain 45 SIFT

descriptors. Then, we concatenate these SIFT descrip-

tors to form a 5760-dimensional feature vector.

• LBP: We divide each image into 8 × 15 non-

overlapping blocks, where the size of each block is

10 × 10. We extract a 59-dimensional uniform pat-

tern LBP feature for each block and concatenate them

to form a 7080-dimensional feature vector.

1Available: http://www.openu.ac.il/home/hassner/data/lfwa/.
2Available: http://vis-www.cs.umass.edu/lfw/.

• SSIFT: The SSIFT descriptors are computed at the

nine fixed landmarks with three different scales, and

then they are concatenated into a 3456-dimensional

feature vector [9].

As suggested in [16, 26, 36], we also use the square root

of each feature and evaluate the performance of our DDM-

L method when all the six different feature descriptors are

combined. For each feature descriptor, we apply Whitened

PCA (WPCA) to project it into a 500-dimensional feature

vector to further remove the redundancy.

The YTF dataset [34] contains 3425 videos of 1595 dif-

ferent persons collected from the YouTube website. There

are large variations in pose, illumination, and expression

in each video, and the average length of each video clip

is 181.3 frames. In our experiments, we follow the stan-

dard evaluation protocol [34] and test our method for un-

constrained face verification with 5000 video pairs. These

pairs are equally divided into 10 folds, and each fold has

250 intra-personal pairs and 250 inter-personal pairs. Sim-

ilar to LFW, we also adopt the image restricted protocol

to evaluate our method. For this dataset, we directly use

the provided three feature descriptors [34] including LBP,

Center-Symmetric LBP (CSLBP) [34] and Four-Patch LBP

(FPLBP) [35]. Since all face images have been aligned by

the detected facial landmarks, we average all the feature

vectors within one video clip to form a mean feature vec-

tor in our experiments. Lastly, we use WPCA to project

each mean vector into a 400-dimensional feature vector.

For our DDML method, we train a deep network with

three layers (M = 2), and the threshold τ , the learning

rate µ and regularization parameter λ are empirically set as

3, 10−3, 10−2 for all experiments, respectively. To further

improve the verification accuracy, we further fuse multiple

features in the score level. Assume there are K feature de-

scriptors extracted for each face sample, we can get K simi-

larity scores (or distances) by our DDML method. Then, we

concatenate these cores into a K-dimensional vector, and

then take the mean of this vector as the final similarity for

verification. Following the standard protocol in [14, 34], we

use two measures including the mean classification accura-

cy with standard error and the receiving operating charac-

teristic (ROC) curve from the ten-fold cross validation to

validate our method.

4.2. Experimental Comparison on LFW

Deep vs. Shadow Metric Learning: We first compare

our method with the discriminative shadow metric learning

(DSML) method. DSML means only one layer is consid-

ered in our model where M and the activation function are

1 and s(z) = z. Table 1 records the verification rate with

standard error of these two methods when different feature

descriptors are used. We see that our DDML consistently

outperforms DSML in terms of the mean verification rate.
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Table 1. Comparison of the mean verification rate and standard

error (%) with the shadow metric learning method on the LFW

dataset under the image restricted setting.

Feature DDML DSML

DSIFT (original) 86.78± 2.09 83.68± 2.06

DSIFT (square root) 87.25± 1.62 84.42± 1.80

LBP (original) 85.47± 1.85 81.88± 1.90

LBP (square root) 87.02± 1.62 84.08± 1.21

SSIFT (original) 86.98± 1.37 84.02± 1.47

SSIFT (square root) 87.83± 0.93 84.52± 1.38

All features 90.68± 1.41 87.45± 1.45

Table 2. Comparisons of the mean verification rate and standard

error (%) with the state-of-the-art results on the LFW dataset under

the image restricted setting, where NoD denotes the number of

descriptors used in each method.

Method NoD Accuracy

PCCA (SIFT) [25] 1 83.80± 0.40

CSML+SVM [26] 6 88.00± 0.37

PAF [39] 1 87.77± 0.51

STFRD+PMML [6] 8 89.35± 0.50

Fisher vector faces [28] 1 87.47± 1.49

DDML (SSIFT) 1 87.83± 0.93

DDML (combined) 6 90.68± 1.41

This is because DDML learns hierarchical nonlinear trans-

formations while DSML only learns a linear transformation,

so that DDML can better discover the nonlinear relationship

of samples in the learned distance metric.

Comparison with the State-of-the-Art Methods: We

compare our method with the state-of-the-art methods on

the LFW dataset3. These compared methods can be catego-

rized two classes: 1) metric learning based methods such

as LDML [9], PCCA [25], CSML+SVM [26], DML-eig

combined [40], and STFRD+PMML [6]; and 2) descriptor

based methods such as Multiple LE+comp [4], Pose Adap-

tive Filter (PAF) [39], and Fisher vector faces [28]. Table

2 lists the verification rate with standard error and Figure 3

shows the ROC curves of different methods on this dataset,

respectively. We clearly see that our DDML is very compet-

itive with the state-of-the-art methods in terms of the mean

verification rate under the image restricted setting.

Comparison with Existing Deep Learning Methods:

We also compare our DDML with two recently proposed

deep learning based face verification methods: CDBN [13]

and DNLML-ISA [3]. Table 3 records the performance of

different deep learning methods. We see that our DDML

consistently outperforms the other two deep learning meth-

ods in terms of the mean verification rate. The reason is

that CDBN is a unsupervised deep learning method and

3Available: http://vis-www.cs.umass.edu/lfw/results.html.
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Figure 3. Comparisons of ROC curves between our DDML and

the state-of-the-art methods on the LFW dataset under the image

restricted setting.

Table 3. Comparisons of the mean verification rate and standard

error (%) with different deep learning methods on the LFW dataset

under the image restricted setting.

Method NoD Accuracy

CDBN [13] 6 86.88± 0.62

CDBN+Hand-crafted [13] 12 87.77± 0.62

DNLML-ISA (SSIFT) [3] 1 86.17± 0.40

DNLML-ISA [3] 8 88.50± 0.40

DDML (SSIFT) 1 87.83± 0.93

DDML (combined) 6 90.68± 1.41

our method is supervised, such that more discriminative in-

formation can be exploited in our DDML. Compared with

DNLML-ISA which uses a stacked architecture, our DDM-

L adopts a convolutional architecture to design the network,

which can explore better hierarchical information.

4.3. Experimental Comparison on YTF

Deep vs. Shadow Metric Learning: We also compare

our method with the DSML method on the YTF dataset.

Table 4 records the verification rates with standard error

of these two methods when different feature descriptors are

compared. We see that our DDML consistently outperforms

DSML in terms of the mean verification rate.

Comparison with the State-of-the-Art Methods: We

compare our method with the state-of-the-art methods

on the YTF dataset4. These compared methods include

Matched Background Similarity (MBGS) [34], APEM [21],

STFRD+PMML [6], MBGS+SVM⊖ [37], VSOF+OSS

(Adaboost) [24], and PHL+SILD [16]. Table 5 and Fig-

ure 4 show the mean verification rate with the standard

4Available: http://www.cs.tau.ac.il/ wolf/ytfaces/results.html.
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Table 4. Comparisons of the mean verification rate and standard

error (%) with the shadow metric learning method on the YTF

dataset under the image restricted setting.

Feature DDML DSML

CSLBP 75.98± 0.89 73.26± 0.99

FPLBP 76.60± 1.71 73.46± 1.66

LBP 81.26± 1.63 78.14± 0.94

All features 82.34± 1.47 79.36± 1.22

Table 5. Comparisons of the mean verification rate and standard

error (%) with the state-of-the-art results on the YTF dataset under

the image restricted setting.

Method Accuracy

MBGS (LBP) [34] 76.40± 1.80

APEM (LBP) [21] 77.44± 1.46

APEM (fusion) [21] 79.06± 1.51

STFRD+PMML [6] 79.48± 2.52

MBGS+SVM⊖ (LBP) [37] 79.48± 2.52

VSOF+OSS (Adaboost) [24] 79.70± 1.80

PHL+SILD (LBP) [16] 80.20± 1.30

DDML (LBP) 81.26± 1.63

DDML (combined) 82.34± 1.47
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Figure 4. Comparisons of ROC curves between our work and the

state-of-the-art methods on the image restricted YTF dataset.

error and ROC curves of our DDML and the state-of-the-

art methods on the YTF dataset, respectively. We observe

that the performance of our DDML with the LBP feature

is 81.26± 1.63, which improves the current state-of-the-art

method (PHL+SILD) by 1.0% in the gain of the mean ver-

ification rate. Moreover, the gain can be further improved

1.08% when three similarity scores are combined.

Comparison with Existing Video-based Face Recog-

nition Methods: Lastly, we compare our DDML with ex-

isting video-based face recognition methods on the YT-

Table 6. Comparisons of the mean verification rate and standard

error (%) with the existing video-based face verification methods

on the YTF dataset under the image restricted setting.

Method Accuracy

SANP [12] 63.74± 1.69

MMD [33] 64.96± 1.00

CHISD [5] 66.24± 1.70

AHISD [5] 66.50± 2.03

DCC [17] 70.84± 1.57

DDML (LBP) 81.26± 1.63

DDML (combined) 82.34± 1.47

Table 7. Comparisons of the proposed DDML method with differ-

ent activation functions on the LFW and YTF datasets under the

image restricted setting.

Dataset sigmoid ns-sigmoid tanh

LFW 77.18± 1.82 85.80± 1.39 87.83± 0.93

YTF 70.20± 1.26 80.78± 1.15 81.26± 1.63

F dataset. These methods are Discriminant-analysis of

Canonical Correlations (DCC) [17], Manifold-Manifold

Distance (MMD) [33], Affine Hull based Image Set Dis-

tance (AHISD) [5], Convex Hull based Image Set Distance

(CHISD) [5], and Sparse Approximated Nearest Points

(SANP) [12]. Table 6 tabulates the mean verification rate

with the standard error of our DDML and existing video-

based face recognition methods on the YTF dataset. As seen

in this table, our DDML significantly outperforms these

video-based face recognition methods.

4.4. Effect of the Activation Function

In this subsection, we analyze the effect of the ac-

tivation function in our DDML method. We compare

the tanh function with two other popular activation

functions: sigmoid and non-saturating sigmoid

(ns-sigmoid)5. Table 7 lists the performance of our

DDML method with different activation functions on the

LFW and YTF datasets, where the SSIFT (square root) fea-

ture and LBP feature are used for the LFW and YTF dataset-

s, respectively. We see from this table that the tanh func-

tion performs the best and the sigmoid function performs

the worse in our DDML method.

4.5. Computational Time

Lastly, we report the computational time of our DDML

method. Our hardware configuration comprises a 3.2-GHz

CPU and a 8GB RAM. For each fold, the training time of

our DDML are 33.8 and 27.4 seconds, and the testing time

5The sigmoid function is defined as s(z) = 1/1 + e−z , and the ns-

sigmoid function is defined as z = s3(z)/3 + s(z).
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are 0.1 and 0.1 seconds on the LFW and YTF datasets6,

respectively. Compared with most existing deep learning

methods in [11, 13, 15, 18, 20], our deep learning method

is more efficient, especially the training time of our model

is much faster. Hence, our DDML complements well to the

existing deep learning methods.

5. Conclusion

In this paper, we have presented a new discriminative

deep metric learning (DDML) method for face verification

in the wild. Our method achieves the very competitive ver-

ification performance on the widely used LFW and YTF

datasets. How to apply our DDML method to other visual

applications such as image classification and activity recog-

nition is an interesting direction of future work.
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