
Discriminative Embeddings of Latent Variable Models for Structured Data

Hanjun Dai, Bo Dai {HANJUNDAI, BODAI}@GATECH.EDU

Le Song LSONG@CC.GATECH.EDU

College of Computing, Georgia Institute of Technology, Atlanta, USA

Abstract

Kernel classifiers and regressors designed for

structured data, such as sequences, trees and

graphs, have significantly advanced a number

of interdisciplinary areas such as computational

biology and drug design. Typically, kernels are

designed beforehand for a data type which either

exploit statistics of the structures or make use

of probabilistic generative models, and then a

discriminative classifier is learned based on the

kernels via convex optimization. However, such

an elegant two-stage approach also limited kernel

methods from scaling up to millions of data

points, and exploiting discriminative information

to learn feature representations.

We propose, structure2vec, an effective

and scalable approach for structured data

representation based on the idea of embedding

latent variable models into feature spaces, and

learning such feature spaces using discriminative

information. Interestingly, structure2vec

extracts features by performing a sequence of

function mappings in a way similar to graphical

model inference procedures, such as mean

field and belief propagation. In applications

involving millions of data points, we showed that

structure2vec runs 2 times faster, produces

models which are 10, 000 times smaller, while

at the same time achieving the state-of-the-art

predictive performance.

1. Introduction
Structured data, such as sequences, trees and graphs,

are prevalent in a number of interdisciplinary areas such

as protein design, genomic sequence analysis, and drug

design (Schölkopf et al., 2004). To learn from such

complex data, we have to first transform such data

explicitly or implicitly into some vectorial representations,

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

and then apply machine learning algorithms in the resulting

vector space. So far kernel methods have emerged as one

of the most effective tools for dealing with structured data,

and have achieved the state-of-the-art classification and

regression results in many sequence (Leslie et al., 2002a;

Vishwanathan & Smola, 2003) and graph datasets (Gärtner

et al., 2003; Borgwardt, 2007).

The success of kernel methods on structured data relies

crucially on the design of kernel functions — positive

semidefinite similarity measures between pairs of data

points (Schölkopf & Smola, 2002). By designing a

kernel function, we have implicitly chosen a corresponding

feature representation for each data point which can

potentially has infinite dimensions. Later learning

algorithms for various tasks and with potentially very

different nature can then work exclusively on these

pairwise kernel values without the need to access the

original data points. Such modular structure of kernel

methods has been very powerful, making them the most

elegant and convenient methods to deal with structured

data. Thus designing kernel for different structured objects,

such as strings, trees and graphs, has always been an

important subject in the kernel community. However,

in the big data era, this modular framework has also

limited kernel methods in terms of their ability to scale

up to millions of data points, and exploit discriminative

information to learn feature representations.

For instance, a class of kernels are designed based

on the idea of “bag of structures” (BOS), where each

structured data point is represented as a vector of counts for

elementary structures. The spectrum kernel and variants

for strings (Leslie et al., 2002a), subtree kernel (Ramon

& Gärtner, 2003), graphlet kernel (Shervashidze et al.,

2009) and Weisfeiler-lehman graph kernel (Shervashidze

et al., 2011) all follow this design principle. In other

words, the feature representations of these kernels are

fixed before learning, with each dimension corresponding

to a substructure, independent of the supervised learning

tasks at hand. Since there are many unique substructures

which may or may not be useful for the learning tasks, the

explicit feature space of such kernels typically has very

high dimensions. Subsequently algorithms dealing with

Discriminative Embeddings of Latent Variable Models for Structured Data

the pairwise kernel values have to work with a big kernel

matrix squared in the number of data points. The square

dependency on the number of data points largely limits

these BOS kernels to datasets of size just thousands.

A second class of kernels are based on the ingenious idea

of exploiting the ability of probabilistic graphical models

(GM) in describing noisy and structured data to design

kernels. For instance, one can use hidden Markov models

for sequence data, and use pairwise Markov random fields

for graph data. The Fisher kernel (Jaakkola & Haussler,

1999) and probability product kernel (Jebara et al., 2004)

are two representative instances within the family. The

former method first fits a common generative model to

the entire dataset, and then uses the empirical Fisher

information matrix and the Fisher score of each data

point to define the kernel; The latter method instead fits

a different generative model for each data point, and

then uses inner products between distributions to define

the kernel. Typically the parameterization of these GM

kernels are chosen before hand. Although the process

of fitting generative models allow the kernels to adapt

to the geometry of the input data, the resulting feature

representations are still independent of the discriminative

task at hand. Furthermore, the extra step of fitting

generative models to data can be a challenging computation

and estimation task by itself, especially in the presence of

latent variables. Very often in practice, one finds that BOS

kernels are easier to deploy than GM kernels, although the

latter is supposed to capture the additional geometry and

uncertainty information of data.

In this paper, we wish to revisit the idea of using graphical

models for kernel or feature space design, with the goal of

scaling up kernel methods for structured data to millions

of data points, and allowing the kernel to learn the feature

representation from label information. Our idea is to model

each structured data point as a latent variable model, then

embed the graphical model into feature spaces (Smola

et al., 2007; Song et al., 2009), and use inner product in

the embedding space to define kernels. Instead of fixing a

feature or embedding space beforehand, we will also learn

the feature space by directly minimizing the empirical loss

defined by the label information.

The resulting embedding algorithm, structure2vec,

runs in a scheme similar to graphical model inference

procedures, such as mean field and belief propagation.

Instead of performing probabilistic operations (such as

sum, product and renormalization), the algorithm performs

nonlinear function mappings in each step, inspired by

kernel message passing algorithm in Song et al. (2010;

2011). Furthermore, structure2vec is also different

from the kernel message passing algorithm in several

aspects. First, structure2vec deals with a different

scenario, i.e., learning similarity measure for structured

data. Second, structure2vec learns the nonlinear

mappings using the discriminative information. And third,

a variant of structure2vec can run in a mean field

update fashion, different from message passing algorithms.

Besides the above novel aspects, structure2vec is also

very scalable in terms of both memory and computation

requirements. First, it uses a small and explicit feature

map for the nonlinear feature space, and avoids the

need for keeping the kernel matrix. This makes the

subsequent classifiers or regressors order of magnitude

smaller compared to other methods. Second, the nonlinear

function mapping in structure2vec can be learned

using stochastic gradient descent, allowing it to handle

extremely large scale datasets.

Finally in experiments, we show that structure2vec

compares favorably to other kernel methods in terms

of classification accuracy in medium scale sequence and

graph benchmark datasets including SCOP and NCI.

Furthermore, structure2vec can handle extremely

large data set, such as the 2.3 million molecule dataset from

Harvard Clean Energy Project, run 2 times faster, produce

model 10, 000 times smaller and achieve state-of-the-art

accuracy. These strong empirical results suggest that the

graphical models, theoretically well-grounded methods for

capturing structure in data, combined with embedding

techniques and discriminative training can significantly

improve the performance in many large scale real-world

structured data classification and regression problems.

2. Backgrounds
We denote by X a random variable with domain X , and

refer to instantiations of X by the lower case character,

x. We denote a density on X by p(X), and denote

the space of all such densities by P . We will also deal

with multiple random variables, X1, X2, . . . , Xℓ, with joint

density p(X1, X2, . . . , Xℓ). For simplicity of notation, we

assume that the domains of all Xt, t ∈ [ℓ] are the same,

but the methodology applies to the cases where they have

different domains. In the case when X is a discrete domain,

the density notation should be interpreted as probability,

and integral should be interpreted as summation instead.

Furthermore, we denote by H a hidden variable with

domain H and distribution p(H). We use similar notation

convention for variable H and X .

Kernel Methods. Suppose the structured data is

represented by χ ∈ G. Kernel methods owe the name to

the use of kernel functions, k(χ, χ′) : G × G 7→ R, which

are symmetric positive semidefinite (PSD), meaning that

for all n > 1, and χ1, . . . , χn ∈ G, and c1, . . . , cn ∈ R,

we have
∑n

i,j=1 cicjk(χi, χj) > 0. A signature of kernel

methods is that learning algorithms for various tasks and

with potentially very different nature can work exclusively

Discriminative Embeddings of Latent Variable Models for Structured Data

on these pairwise kernel values without the need to access

the original data points.

Kernels for Structured Data. Each kernel function will

correspond to some feature map φ(χ), where the kernel

function can be expressed as the inner product between

feature maps, i.e., k(χ, χ′) = 〈φ(χ), φ(χ′)〉. For structured

input domain, one can design kernels using counts on

substructures. For instance, the spectrum kernel for two

sequences χ and χ′ is defined as (Leslie et al., 2002a)

k(χ, χ′) =
∑

s∈S
#(s ∈ χ)#(s ∈ χ′) (1)

where S is the set of possible subsequences, #(s ∈
x) counts the number occurrence of subsequence s in

x. In this case, the feature map φ(χ) = (#(s1 ∈
χ),#(s2 ∈ χ), ...)⊤ corresponds to a vector of dimension

|S|. Similarly, the graphlet kernel (Shervashidze et al.,

2009) for two graphs χ and χ′ can also be defined as (1),

but S is now the set of possible subgraphs, and #(s ∈ χ)
counts the number occurrence of subgraphs. We refer to

this class of kernels as “bag of structures” (BOS) kernel.

Kernels can also be defined by leveraging the power of

probabilistic graphical models. For instance, the Fisher

kernel (Jaakkola & Haussler, 1999) is defined using a

parametric model p(χ|θ∗) around its maximum likelihood

estimate θ∗, i.e., k(χ, χ′) = U⊤
χ I−1Uχ′ , where Uχ :=

∇θ=θ∗ log p(χ|θ) and I = EG [UGU
⊤
G] is the Fisher

information matrix. Another classical example along the

line is the probability product kernel (Jebara et al., 2004).

Different from the Fisher kernel based on generative model

fitted with the whole dataset, the probability product kernel

is calculated based on the models p(χ|θ) fitted to individual

data point, i.e., k(χ, χ′) =
∫
G p(τ |θχ)ρp(τ |θχ′)ρdτ where

θχ and θχ′ are the maximum likelihood parameters for data

point χ and χ′ respectively. We refer to this class of kernels

as the “graphical model” (GM) kernels.

Hilbert Space Embedding of Distributions. Hilbert

space embeddings of distributions are mappings of

distributions into potentially infinite dimensional feature

spaces (Smola et al., 2007),

µX := EX [φ(X)] =

∫

X

φ(x)p(x)dx : P 7→ F (2)

where the distribution is mapped to its expected feature

map, i.e., to a point in a feature space. Kernel embedding of

distributions has rich representational power. Some feature

map can make the mapping injective (Sriperumbudur et al.,

2008), meaning that if two distributions, p(X) and q(X),
are different, they are mapped to two distinct points in

the feature space. For instance, when X = R
d, the

feature spaces of many commonly used kernels, such as

the Gaussian RBF kernel exp(−‖x− x′‖22), can make the

embedding injective.

Alternatively, one can treat an injective embedding µX of

Y	 =	 active/inactive

𝐻"𝐻# 𝐻$𝐻% 𝐻&

𝑋# 𝑋% 𝑋$ 𝑋" 𝑋&

Y

A G C T A
A G C T A

(a) Represent string data as a latent variable model

Y	 =	 Energy	 level

𝑋"

𝑋#
𝑋$

𝐻$

𝐻"

𝐻#

𝐻&

Y

𝑋&

(b) Represent graph data as a latent variable model

Figure 1. Building graphical model with hidden variables from

structured string and general graph data. Y is the supervised

information, which can be real number (for regression) or discrete

integer (for classification).

a density p(X) as a sufficient statistic of the density. Any

information we need from the density is preserved in µX :

with µX one can uniquely recover p(X), and any operation

on p(X) can be carried out via a corresponding operation

on µX with the same result. For instance, this property will

allow us to compute a functional f : P 7→ R of the density

using the embedding only, i.e.,

f(p(x)) = f̃(µX) (3)

where f̃ : F 7→ R is a corresponding function applied

on µX . Similarly the property can also be generalized to

operators. For instance, applying an operator T : P 7→ R
d

to a density can also be equivalently carried out using its

embedding, i.e.,
T ◦ p(x) = T̃ ◦ µX , (4)

where T̃ : F 7→ R
d is the alternative operator working on

the embedding. In our later sections, we will extensively

exploit this property of injective embeddings, by assuming

that there exists a feature space such that the embeddings

are injective. We include the discussion of other related

work in Appendix A.

3. Model for a Structured Data Point
Without loss of generality, we assume each structured data

point χ is a graph, with a set of nodes V = {1, . . . , V }
and a set of edges E . We will use xi to denote the value

of the attribute for node i. We note the node attributes

are different from the label of the entire data point. For

instance, each atom in a molecule will correspond to a

node in the graph, and the node attribute will be the

atomic number, while the label for the entire molecule can

be whether the molecule is a good drug or not. Other

structures, such as sequences and trees, can be viewed as

special cases of general graphs.

We will model the structured data point χ as an instance

Discriminative Embeddings of Latent Variable Models for Structured Data

drawn from a graphical model. More specifically, we

will model the label of each node in the graph with

a variable Xi, and furthermore, associate an additional

hidden variable Hi with it. Then we will define a

pairwise Markov random field on these collection of

random variables

p({Hi} , {Xi}) ∝
∏

i∈V

Φ(Hi, Xi)
∏

(i,j)∈E

Ψ(Hi, Hj) (5)

where Ψ and Φ are nonnegative node and edge potentials

respectively. In this model, the variables are connected

according to the graph structure of the input data point.

That is to say, we use the graph structure of the input

data directly as the conditional independence structure of

an undirected graphical model. Figure 1 illustrates two

concrete examples in constructing the graphical models

for strings and graphs. One can design more complicated

graphical models which go beyond pairwise Markov

random fields, and consider longer range interactions

with potentials involving more variables. We will focus

on pairwise Markov random fields for simplicity of

representation.

We note that such a graphical model is built for each

individual data point, and the conditional independence

structures of two graphical models can be different if the

two data points χ and χ′ are different. Furthermore, we

do not observe the value for the hidden variables {Hi},

which makes the learning of the graphical model potentials

Φ and Ψ even more difficult. Thus, we will not pursue

the standard route of maximum likelihood estimation, and

rather we will consider the sequence of computations

needed when we try to embed the posterior of {Hi} into

a feature space.

4. Embedding Latent Variable Models
We will embed the posterior marginal p(Hi| {xi}) of a

hidden variable using a feature map φ(Hi), i.e.,

µi =

∫

H

φ(hi)p(hi| {xi})dhi. (6)

The exact form of φ(Hi) and the parameters in MRF

p(Hi| {xi}) is not fixed at the moment, and we will

learn them later using supervision signals for the ultimate

discriminative target. For now, we will assume that

φ(Hi) ∈ R
d is a finite dimensional feature space, and the

exact value of d will determined by cross-validation in later

experiments. However, compute the embedding is a very

challenging task for general graphs: it involves performing

an inference in graphical model where we need to integrate

out all variables expect Hi, i.e.,

p(Hi| {xi}) =
∫

HV −1

p(Hi, {hj} | {xj})
∏

j∈V\i

dhj . (7)

Only when the graph structure is a tree, exact computation

can be carried out efficiently via message passing (Pearl,

1988). Thus in the general case, approximate inference

algorithms, e.g., mean field inference and loopy belief

propagation (BP), are developed. In many applications,

however, these variational inference algorithms exhibit

excellent empirical performance (Murphy et al., 1999).

Several theoretical studies have also provided insight into

the approximations made by loopy BP, partially justifying

its application to graphs with cycles (Wainwright & Jordan,

2008; Yedidia et al., 2001a).

In the following subsection, we will explain the embedding

of mean field and loopy BP. The embedding of other

variational inference methods, e.g., double-loop BP,

damped BP, tree-reweighted BP, and generalized BP will be

explained in Appendix C. We show that the iterative update

steps in these algorithms, which are essentially minimizing

approximations to the exact free energy, can be simply

viewed as function mappings of the embedded marginals

using the alternative view in (3) and (4).

4.1. Embedding Mean-Field Inference

The vanilla mean-field inference tries to approximate

p({Hi} | {xi}) with a product of independent density

components p({Hi} | {xi}) ≈ ∏
i∈V qi(hi) where

each qi(hi) ≥ 0 is a valid density, such that∫
H qi(hi)dhi = 1. Furthermore, these density components

are found by minimizing the following variational free

energy (Wainwright & Jordan, 2008),

min
q1,...,qd

∫

Hd

∏

i∈V

qi(hi) log

∏
i∈V qi(hi)

p({hi} | {xi})
∏

i∈V

dhi.

One can show that the solution to the above optimization

problem needs to satisfy the following fixed point equations

for all i ∈ V
log qi(hi) = ci + log(Φ(hi, xi))+ (8)
∑

j∈N (i)

∫

H

qj(hj) log(Ψ(hi, hj)Φ(hj , xj))dhj

where N (i) are the set of neighbors of variable Hi in the

graphical model, and ci is a constant. The fixed point

equations in (8) imply that qi(hi) is a functional of a set

of neighboring marginals {qj}j∈N (i), i.e.,

qi(hi) = f
(
hi, xi, {qj}j∈N (i) , {xj}j∈N (i)

)
. (9)

If for each marginal qi, we have an injective embedding

µ̃i =

∫

H

φ(hi)qi(hi)dhi,

then, using similar reasoning as in (3), we can equivalently

express the fixed point equation from an embedding point

of view, i.e., qi(hi) = f̃(hi, xi, {µ̃j}j∈N (i), {xj}j∈N (i)),
and consequently using the operator view from (4), we have

µ̃i = T̃ ◦
(
xi, {µ̃j}j∈N (i) , {xj}j∈N (i)

)
. (10)

For the embedded mean field (10), the function f̃ and

operator T̃ have complicated nonlinear dependencies on

the potential functions Ψ, Φ, and the feature mapping

Discriminative Embeddings of Latent Variable Models for Structured Data

Algorithm 1 Embedding Mean Field

1: Input: parameter W in T̃
2: Initialize µ̃

(0)
i = 0, for all i ∈ V

3: for t = 1 to T do

4: for i ∈ V do

5: li =
∑

j∈N (i) µ̃
(t−1)
i

6: µ̃
(t)
i = σ(W1xi +W2li +W3

∑
j∈N (i) xj)

7: end for

8: end for{fixed point equation update}
9: return {µ̃T

i }i∈V

φ which is unknown and need to be learned from data.

Instead of first learning the Ψ and Φ, and then working

out T̃ , we will pursue a different route where we directly

parameterize T̃ and later learn it with supervision signals.

In terms of the parameterization, we will assume µ̃i ∈ R
d

where d is a hyperparameter chosen using cross-validation.

For T̃ , one can use any nonlinear function mappings. For

instance, we can parameterize it as a neural network

µ̃i = σ
(
W1xi +W2

∑

j∈N (i)

µ̃j +W3

∑

j∈N (i)

xj

)
(11)

where σ(·) := max{0, ·} is a rectified linear unit applied

elementwisely to its argument, and W = {W1,W2,W3}.

The number of the rows in W equals to d. With such

parameterization, the mean field iterative update in the

embedding space can be carried out as Algorithm 1. We

could also multiply µ̃i with V to rescale the range of

message embeddings if needed. In fact, with or without V ,

the functions will be the same in terms of the representation

power. Specifically, for any (W , V), we can always find

another ‘equivalent’ parameters (W ′, I) where W
′ =

{W1,W2V,W3}.

4.2. Embedding Loopy Belief Propagation

Loopy belief propagation is another variational inference

method, which essentially optimizes the Bethe free energy

taking pairwise interactions into account (Yedidia et al.,

2001b),

min{qij}(i,j)∈E
−∑i(|N (i)| − 1)

∫
H qi(hi) log

qi(hi)
Φ(hi,xi)

dhi

+
∑

i,j

∫
H2 qij(hi, hj) log

qij(hi,hj)
Ψ(hi,hj)Φ(hi,xi)Φ(hj ,xj)

dhidhj

subject to pairwise marginal consistency constraints:∫
H qij(hi, hj)dhj = qi(hi),

∫
H qij(hi, hj)dhj = qi(hi),

and
∫
H qi(hi)dhi = 1. One can obtain the fixed point

condition for the above optimization for all (i, j) ∈ E ,

mij(hj) ∝
∫

H

∏

k∈N (i)\j

mki(hi)Φi(hi, xi)Ψij(hi, hj)dhi,

qi(hi) ∝ Φ(hi, xi)
∏

j∈N (i)

mji(hi). (12)

where mij(hj) is the intermediate result called the message

from node i to j. Furthermore, mij(hj) is a nonnegative

Algorithm 2 Embedding Loopy BP

1: Input: parameter W in T̃1 and T̃2
2: Initialize ν̃

(0)
ij = 0, for all (i, j) ∈ E

3: for t = 1 to T do

4: for (i, j) ∈ E do

5: ν̃tij = σ(W1xi +W2

∑
k∈N (i)\j ν̃

(t−1)
ki)

6: end for

7: end for

8: for i ∈ V do

9: µ̃i = σ(W3xi +W4

∑
k∈N (i)\j ν̃

(T)
ki)

10: end for

11: return {µ̃i}i∈V

function which can be normalized to a density, and hence

can also be embedded.

Similar to the reasoning in the mean field case, the (12)

implies the messages mij(hj) and marginals qi(hi) are

functionals of messages from neighbors, i.e.,

mij(hj) = f
(
hj , xi, {mki}k∈N (i)\j

)
,

qi(hi) = g
(
hi, xi, {mki}k∈N (i)

)
.

With the assumption that there is an injective embedding

for each message ν̃ij =
∫
φ(hj)mij(hj)dhj and for

each marginal µ̃i =
∫
φ(hi)qi(hi)dhi, we can apply the

reasoning from (3) and (4), and express the messages and

marginals from the embedding view,

ν̃ij = T̃1 ◦
(
xi, {ν̃ki}k∈N (i)\j

)
, (13)

µ̃i = T̃2 ◦
(
xi, {ν̃ki}k∈N (i)

)
. (14)

We will also use parametrization for loopy BP embedding

similar to the mean field case, i.e., neural network with

rectified linear unit σ. Specifically, assume ν̃ij ∈ R
d,

µ̃i ∈ R
d

ν̃ij = σ
(
W1xi +W2

∑

k∈N (i)\j

ν̃ki

)
(15)

µ̃i = σ
(
W3xi +W4

∑

k∈N (i)

ν̃ki

)
(16)

where W = {W1,W2,W3,W4} are matrices with

appropriate sizes. Note that one can use other nonlinear

function mappings to parameterize T̃1 and T̃2 as well.

Overall, the loopy BP embedding updates is summarized

in Algorithm 2.

With similar strategy as in mean field case, we will learn

the parameters in T̃1 and T̃2 later with supervision signals

from the discriminative task.

4.3. Embedding Other Variational Inference

In fact, there are many other variational inference

methods, with different forms of free energies or different

optimization algorithms, resulting different message

update forms, e.g., double-loop BP (Yuille, 2002), damped

BP (Minka, 2001), tree-reweightd BP (Wainwright et al.,

Discriminative Embeddings of Latent Variable Models for Structured Data

2003), and generalized BP (Yedidia et al., 2001b). The

proposed embedding method is a general technique which

can be tailored to these algorithms. The major difference

is the dependences in the messages. For the details of

embedding of these algorithms, please refer to Appendix C.

5. Discriminative Training
Similar to kernel BP (Song et al., 2010; 2011) and kernel

EP (Jitkrittum et al., 2015), our current work exploits

feature space embedding to reformulate graphical model

inference procedures. However, different from the kernel

BP and kernel EP, in which the feature spaces are chosen

beforehand and the conditional embedding operators are

learned locally, our approach will learn both the feature

spaces, the transformation T̃ , as well as the regressor

or classifier for the target values end-to-end using label

information.

Specifically, we are provided with a training dataset

D = {χn, yn}Nn=1, where χn is a structured data point

and yn ∈ Y , where Y = R for regression or Y =
{1, . . . ,K} for classification problem, respectively. With

the feature embedding procedure introduced in Section 4,

each data point will be represented as a set of embeddings

{µ̃n
i }i∈Vn

∈ F . Now the goal is to learn a regression or

classification function f linking {µ̃n
i }i∈Vn

to yn.

More specifically, in the case of regression problem, we

will parametrize function f(χn) as u⊤σ(
∑Vn

i=1 µ̃
n
i), where

u ∈ R
d is the final mapping from summed (or pooled)

embeddings to output. The parameters u and those W

involved in the embeddings are learned by minimizing the

empirical square loss

min
u,W

∑N

n=1

(
yn − u⊤σ

(∑Vn

i=1
µ̃n
i

))2

. (17)

Note that each data point will have its own graphical model

and embedded features due to its individual structure, but

the parameters u and W , are shared across these graphical

models.

In the case of K-class classification problem, we denote z

is the 1-of-K representation of y, i.e., z ∈ {0, 1}K , zk = 1
if y = k, and zi = 0, ∀i 6= k. By adopt the softmax loss,

we obtain the optimization for embedding parameters and

discriminative classifier estimation as,

min
u={uk}K

k=1,W

N∑

n

K∑

k=1

−zkn log u
kσ

(
Vn∑

i=1

µ̃n
i

)
, (18)

where u = {uk}Kk=1, uk ∈ R
d are the parameters for

mapping embedding to output.

The same idea can also be generalized to other

discriminative tasks with different loss functions. As

we can see from the optimization problems (17) and

(18), the objective functions are directly related to the

corresponding discriminative tasks, and so as to W and u.

Algorithm 3 Discriminative Embedding

Input: Dataset D = {χn, yn}Nn=1, loss function

l(f(χ), y).
Initialize U

0 = {W 0,u0} randomly.

for t = 1 to T do

Sample {χt, yt} uniform randomly from D.

Construct latent variable model p({Ht
i }|χn) as (5).

Embed p({Ht
i }|χn) as {µ̃n

i }i∈Vn
by Algorithm 1 or 2

with W
t−1.

Update U
t = U

t−1 + λt∇Ut−1 l(f(µ̃n;U t−1), yn).
end for

return U
T = {W T ,uT }

Conceptually, the procedure starts with representing each

datum by a graphical model constructed corresponding to

its individual structure with sharing potential functions,

and then, we embed these graphical models with the same

feature mappings. Finally the embedded marginals are

aggregated with a prediction function for a discriminative

task. The shared potential functions, feature mappings and

final prediction functions are all learned together for the

ultimate task with supervision signals.

We optimize the objective (17) or (18) with stochastic

gradient descent for scalability consideration. However,

other optimization algorithms are also applicable, and our

method does not depend on this particular choice. The

gradients of the parameters W are calculated recursively

similar to recurrent neural network for sequence models.

In our case, the recursive structure will correspond the

message passing structure. The overall framework is

illustrated in Algorithm 3. For details of the gradient

calculation, please refer to Appendix D.

6. Experiments

Below we first compare our method with algorithms using

prefixed kernel on string and graph benchmark datasets.

Then we focus on Harvard Clean Energy Project dataset

which contains 2.3 million samples. We demonstrate that

while getting comparable performance on medium sized

datasets, we are able to handle millions of samples, and

getting much better when more training data are given. The

two variants of structure2vec are denoted as DE-MF

and DE-LBP, which stands for discriminative embedding

using mean field or loopy belief propagation, respectively.

Our algorithms are implemented with C++ and CUDA,

and experiments are carried out on clusters equipped

with NVIDIA Tesla K20. The code is available on

https://github.com/Hanjun-Dai/graphnn.

6.1. Benchmark structure datasets

We compare our algorithm on string benchmark datasets

with the kernel method with existing sequence kernels, i.e.,

the spectrum string kernel (Leslie et al., 2002a), mismatch

string kernel (Leslie et al., 2002b) and fisher kernel with

Discriminative Embeddings of Latent Variable Models for Structured Data

HMM generative models (Jaakkola & Haussler, 1999).

On graph benchmark datasets, we compare with subtree

kernel (Ramon & Gärtner, 2003) (R&G, for short), random

walk kernel(Gärtner et al., 2003; Vishwanathan et al.,

2010), shortest path kernel (Borgwardt & Kriegel, 2005),

graphlet kernel(Shervashidze et al., 2009) and the family

of Weisfeiler-Lehman kernels (WL kernel) (Shervashidze

et al., 2011). After getting the kernel matrix, we train SVM

classifier or regressor on top.

Without explicitly mentioned, we perform cross validation

for all methods, and report the average performance. We

include the details of tuning hyper parameters for baselines

and our methods in Appendix E.2.

6.1.1. STRING DATASET

Here we do experiments on two string binary classification

benchmark datasets. The first one (denoted as SCOP)

contains 7329 sequences obtained from SCOP (Structural

Classification of Proteins) 1.59 database (Andreeva et al.,

2004). Methods are evaluated on the ability to detect

members of a target SCOP family (positive test set)

belonging to the same SCOP superfamily as the positive

training sequences, and no members of the target family

are available during training. We use the same 54 target

families and the same training/test splits as in remote

homology detection (Kuang et al., 2005). The second one

is FC and RES dataset (denoted as FC RES) provided by

CRISPR/Cas9 system, on which the task it to tell whether

the guide RNA will direct Cas9 to target DNA. There are

5310 guides included in the dataset. Details of this dataset

can be found in Doench et al. (2014); Fusi et al. (2015). We

use two variants for spectrum string kernel: 1) kmer-single,

where the constructed kernel matrix K
(s)
k only consider

patterns of length k; 2) kmer-concat, where kernel matrix

K(c) =
∑k

i=1 K
(s)
k . We also find the normalized kernel

matrix KNorm
k (x, y) = Kk(x,y)√

Kk(x,x)Kk(y,y)
helps.

FC RES SCOP

kmer-single 0.7606±0.0187 0.7097±0.0504

kmer-concat 0.7576±0.0235 0.8467±0.0489

mismatch 0.7690±0.0197 0.8637±0.1192

fisher 0.7332±0.0314 0.8662±0.0879

DE-MF 0.7713±0.0208 0.9068±0.0685

DE-LBP 0.7701±0.0225 0.9167±0.0639

Table 1. Mean AUC on string classification datasets

Table 1 reports the mean AUC of different algorithms. We

found two variants of structure2vec are consistently

better than the string kernels. Also, the improvement in

SCOP is more significant than in FC RES. This is because

SCOP is a protein dataset and its alphabet size |Σ| is much

larger than that of FC RES, an RNA dataset. Furthermore,

the dimension of the explicit features for a k-mer kernel

is O(|Σ|k), which can make the off-diagonal entries of

PCE range
0 5 10

#
s
a

m
p

le
s

#10
4

0

0.5

1

1.5

2

2.5
PCE distribution

(a) PCE distribution (b) Sample molecules

Figure 3. PCE value distribution and sample molecules from CEP

dataset. Hydrogens are not displayed.

kernel matrix very small (or even zero) with large alphabet

size and k. That’s also the reason why kmer-concat

performs better than kmer-single. structure2vec

learns a discriminative feature space, rather than prefix it

beforehand, and hence does not have this problem.

6.1.2. GRAPH DATASETS

We test the algorithms on five benchmark datasets for

graph kernel: MUTAG, NCI1, NCI109, ENZYMES

and D&D. MUTAG (Debnath et al., 1991). NCI1 and

NCI109 (Wale et al., 2008) are chemical compounds

dataset, while ENZYMES (Borgwardt & Kriegel, 2005)

and D&D (Dobson & Doig, 2003) are of proteins. The

task is to do multi-class or binary classification. For more

details of dataset, please refer to Appendix E.1.

The results of baseline algorithms are taken

from Shervashidze et al. (2011) since we use exactly

the same setting here. From the accuracy comparison

shown in Figure 2, we can see the proposed embedding

methods are comparable to the alternative graph kernels,

on different graphs with different number of labels, nodes

and edges. Also, in dataset D&D which consists of 82

different types of labels, our algorithm performs much

better. As reported in Shervashidze et al. (2011), the

time required for constructing dictionary for the graph

kernel can take up to more than a year of CPU time in this

dataset, while our algorithm can learn the discriminative

embedding efficiently from structured data directly without

the construction of the handcraft dictionary.

6.2. Harvard Clean Energy Project(CEP) dataset

The Harvard Clean Energy Project (Hachmann et al.,

2011) is a theory-driven search for the next generation of

organic solar cell materials. One of the most important

properties of molecule for this task is the overall efficiency

of the energy conversion process in a solar cell, which

is determined by the power conversion efficiency (PCE).

The Clean Energy Project (CEP) performed expensive

simulations for the 2.3 million candidate molecules on

IBMs World Community Grid, in order to get this property

value. So using machine learning approach to accurately

predict the PCE values is a promising direction for the high

throughput screening and discovering new materials.

In this experiment, we randomly select 90% of the data for

Discriminative Embeddings of Latent Variable Models for Structured Data

75

80

85

90

a
c
c
u
ra

c
y

MUTAG

60

70

80

a
c
c
u
ra

c
y

NCI1

60

70

80

a
c
c
u
ra

c
y

NCI109

20

40

60

a
c
c
u
ra

c
y

ENZYMES

60

70

80

a
c
c
u
ra

c
y

DD

WL subtree WL edge WL sp R&G p-rand walk Rand walk Graphlet sp DE-MF DE-LBP

Figure 2. 10-fold cross-validation accuracies on graph classification benchmark datasets. The ‘sp’ in the figure stands for shortest-path.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

#iterations #10
6

0

0.2

0.4

0.6

0.8

M
A

E

CEP test error

0 2 4 6 8 10 12

PCE range

0

0.1

0.2

0.3

0.4

0.5

M
A

E

Prediction quality

DE-MF-iter-1
DE-MF-iter-2
DE-MF-iter-3
DE-MF-iter-4
DE-LBP-iter-1
DE-LBP-iter-2
DE-LBP-iter-3
DE-LBP-iter-4

Figure 4. Details of training and prediction results for DE-MF and

DE-LBP with different number of fixed point iterations.

training, and the rest 10% for testing. This setting is similar

to Pyzer-Knapp et al. (2015), except that we use the entire

2.3m dataset here. Since the data is distributed unevenly

(see Figure 3), we resampled the training data (but not

the test data) to make the algorithm put more emphasis

on molecules with higher PCE values, in order to make

accurate prediction for promising candidate molecules.

Since the traditional kernel methods are not scalable, we

make the explicit feature maps for WL subtree kernel by

collecting all the molecules and creating dictionary for the

feature space. The other graph kernels, like edge kernel and

shortest path kernel, are having too large feature dictionary

to work with. We use RDKit (Landrum, 2012) to extract

features for atoms (nodes) and bonds (edges).

The mean absolute error (MAE) and root mean square

error (RMSE) are reported in Table 2. We found utilizing

graph information can accurately predict PCE values.

Also, our proposed two methods are working equally

well. Although WL tree kernel with degree 6 is also

working well, it requires 10, 000 times more parameters

than structure2vec and runs 2 times slower. The

preprocessing needed for WL tree kernel also makes it

difficult to use in large datasets.

To understand the effect of the inference embedding in the

proposed algorithm framework, we further compare our

methods with different number of fixed point iterations

test MAE test RMSE # params

Mean Predictor 1.9864 2.4062 1

WL lv-3 0.1431 0.2040 1.6m

WL lv-6 0.0962 0.1367 1378m

DE-MF 0.0914 0.1250 0.1m

DE-LBP 0.0850 0.1174 0.1m

Table 2. Test prediction performance on CEP dataset. WL lv-k

stands for Weisfeiler-lehman with degree k.

in Figure 4. It can see that, higher number of fixed

point iterations will lead to faster convergence, though the

number of parameters of the model in different settings

are the same. The mean field embedding will get much

worse result if only one iteration is executed. Compare to

the loopy BP case with same setting, the latter one will

always have one more round message passing since we

need to aggregate the messages from edge to node in the

last step. And also, from the quality of prediction we find

that, though making slightly higher prediction error for

molecules with high PCE values due to insufficient data,

the variants of our algorithm are not overfitting the ‘easy’

(i.e., the most popular) range of PCE value.

7. Conclusion
We propose, structure2vec, an effective and

scalable approach for structured data representation

based on the idea of embedding latent variable

models into feature spaces, and learning such feature

spaces using discriminative information. Interestingly,

structure2vec extracts features by performing a

sequence of function mappings in a way similar to

graphical model inference procedures, such as mean field

and belief propagation. In applications involving millions

of data points, we showed that structure2vec runs 2

times faster, produces models 10, 000 times smaller, while

at the same time achieving the state-of-the-art predictive

performance. structure2vec provides a nice example

for the general strategy of combining the strength of

graphical models, Hilbert space embedding of distribution

and deep learning approach, which we believe will become

common in many other learning tasks.

Acknowledgements. This project was supported in

part by NSF/NIH BIGDATA 1R01GM108341, ONR

N00014-15-1-2340, NSF IIS-1218749, and NSF CAREER

IIS-1350983.

Discriminative Embeddings of Latent Variable Models for Structured Data

References

Andreeva, A., Howorth, D., Brenner, S. E., Hubbard, T. J.,
Chothia, C., and Murzin, A. G. Scop database in 2004:
refinements integrate structure and sequence family data.
Nucleic acids research, 32(suppl 1):D226–D229, 2004.

Borgwardt, K. M. Graph Kernels. PhD thesis,
Ludwig-Maximilians-University, Munich, Germany, 2007.

Borgwardt, K. M. and Kriegel, H.-P. Shortest-path kernels on
graphs. In ICDM, 2005.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. arXiv
preprint arXiv:1312.6203, 2013.

Chang, C. C. and Lin, C. J. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

Chen, L. C., Schwing, A. G., Yuille, A. L., and Urtasun,
R. Learning deep structured models. arXiv preprint
arXiv:1407.2538, 2014.

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G.,
Shusterman, A. J., and Hansch, C. Structure-activity
relationship of mutagenic aromatic and heteroaromatic nitro
compounds. correlation with molecular orbital energies and
hydrophobicity. J Med Chem, 34:786–797, 1991.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme structures
from non-enzymes without alignments. J Mol Biol, 330(4):
771–783, Jul 2003.

Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde,
H., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J.,
and Root, D. E. Rational design of highly active sgrnas for
crispr-cas9-mediated gene inactivation. Nature biotechnology,
32(12):1262–1267, 2014.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R.,
Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Convolutional
networks on graphs for learning molecular fingerprints. In
Advances in Neural Information Processing Systems, pp.
2215–2223, 2015.

Fusi, N., Smith, I., Doench, J., and Listgarten, J. In silico
predictive modeling of crispr/cas9 guide efficiency. bioRxiv,
2015. doi: 10.1101/021568. URL http://biorxiv.org/

content/early/2015/06/26/021568.

Gärtner, T., Flach, P.A., and Wrobel, S. On graph kernels:
Hardness results and efficient alternatives. In Schölkopf, B.
and Warmuth, M. K. (eds.), Proceedings of Annual Conference.
Computational Learning Theory, pp. 129–143. Springer, 2003.

Caruana, R., Lawrence, S., and Giles, L. Overfitting in neural
nets: Backpropagation, conjugate gradient, and early stopping.
In Advances in Neural Information Processing Systems 13,
volume 13, pp. 402. MIT Press, 2001.

Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S.,
Amador-Bedolla, C., Sánchez-Carrera, R. S., Gold-Parker, A.,
Vogt, L., Brockway, A. M., and Aspuru-Guzik, A. The harvard
clean energy project: large-scale computational screening and
design of organic photovoltaics on the world community grid.
The Journal of Physical Chemistry Letters, 2(17):2241–2251,
2011.

Henaff, M., Bruna, J., and LeCun, Y. Deep convolutional
networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

Hershey, J. R., Roux, J. L., and Weninger, F. Deep unfolding:
Model-based inspiration of novel deep architectures. arXiv
preprint arXiv:1409.2574, 2014.

Heskes, T. Stable fixed points of loopy belief propagation are
local minima of the bethe free energy. Advances in Neural
Information Processing Systems, pp. 343–350. MIT Press,
2002.

Jaakkola, T. S. and Haussler, D. Exploiting generative models in
discriminative classifiers. In Kearns, M. S., Solla, S. A., and
Cohn, D. A. (eds.), Advances in Neural Information Processing
Systems 11, pp. 487–493. MIT Press, 1999.

Jebara, T., Kondor, R., and Howard, A. Probability product
kernels. J. Mach. Learn. Res., 5:819–844, 2004.

Jitkrittum, W., Gretton, A., Heess, N., Eslami, S. M. A.,
Lakshminarayanan, B., Sejdinovic, D., and Szabó, Z.
Kernel-based just-in-time learning for passing expectation
propagation messages. In Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, UAI 2015,
July 12-16, 2015, Amsterdam, The Netherlands, pp. 405–414,
2015.

Kuang, R., Ie, E., Wang, K., Wang, K., Siddiqi, M., Freund,
Y., and Leslie, C. Profile-based string kernels for remote
homology detection and motif extraction. Journal of
bioinformatics and computational biology, 3(03):527–550,
2005.

Landrum, G. Rdkit: Open-source cheminformatics (2013), 2012.

Leslie, C., Eskin, E., and Noble, W. S. The spectrum kernel: A
string kernel for SVM protein classification. In Proceedings
of the Pacific Symposium on Biocomputing, pp. 564–575,
Singapore, 2002a. World Scientific Publishing.

Leslie, C., Eskin, E., Weston, J., and Noble, W. S. Mismatch
string kernels for SVM protein classification. In Advances
in Neural Information Processing Systems, volume 15,
Cambridge, MA, 2002b. MIT Press.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.. Gated graph
sequence neural networks. arXiv preprint arXiv:1511.05493,
2015.

Lin, G., Shen, C., Reid, I., and van den Hengel, A. Deeply
learning the messages in message passing inference. In
Advances in Neural Information Processing Systems, 2015.

Minka, T. The EP energy function and minimization schemes.
See www. stat. cmu. edu/minka/papers/learning. html, August,
2001.

Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z.. Convolutional
neural networks over tree structures for programming language
processing. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

Murphy, K. P., Weiss, Y., and Jordan, M. I. Loopy belief
propagation for approximate inference: An empirical study. In
UAI, pp. 467–475, 1999.

Discriminative Embeddings of Latent Variable Models for Structured Data

Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufman, 1988.

Pyzer-Knapp, E. O., Li, K., and Aspuru-Guzik, A. Learning from
the harvard clean energy project: The use of neural networks
to accelerate materials discovery. Advanced Functional
Materials, 25(41):6495–6502, 2015.

Ramon, J. and Gärtner, T. Expressivity versus efficiency
of graph kernels. Technical report, First International
Workshop on Mining Graphs, Trees and Sequences (held with
ECML/PKDD’03), 2003.

Ross, S., Munoz, D., Hebert, M., and Bagnell, J. A.
Learning message-passing inference machines for structured
prediction. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2737–2744. IEEE, 2011.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Schölkopf, B., Tsuda, K., and Vert, J.-P. Kernel Methods in
Computational Biology. MIT Press, Cambridge, MA, 2004.

Schölkopf, B., and Smola, A. J. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn,
K., and Borgwardt, K. Efficient graphlet kernels for large
graph comparison. Proceedings of International Conference
on Artificial Intelligence and Statistics. Society for Artificial
Intelligence and Statistics, 2009.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn,
K., and Borgwardt, K. M. Weisfeiler-lehman graph kernels.
The Journal of Machine Learning Research, 12:2539–2561,
2011.

Smola, A. J., Gretton, A., Song, L., and Schölkopf, B. A
Hilbert space embedding for distributions. In Proceedings of
the International Conference on Algorithmic Learning Theory,
volume 4754, pp. 13–31. Springer, 2007.

Song, L., Huang, J., Smola, A. J., and Fukumizu, K. Hilbert space
embeddings of conditional distributions. In Proceedings of the
International Conference on Machine Learning, 2009.

Song, L., Gretton, A., and Guestrin, C. Nonparametric tree
graphical models. In 13th Workshop on Artificial Intelligence
and Statistics, volume 9 of JMLR workshop and conference
proceedings, pp. 765–772, 2010.

Song, L., Gretton, A., Bickson, D., Low, Y., and Guestrin,
C. Kernel belief propagation. In Proc. Intl. Conference
on Artificial Intelligence and Statistics, volume 10 of JMLR
workshop and conference proceedings, 2011.

Sriperumbudur, B., Gretton, A., Fukumizu, K., Lanckriet, G.,
and Schölkopf, B. Injective Hilbert space embeddings of
probability measures. In Proceedings of Annual Conference.
Computational Learning Theory, pp. 111–122, 2008.

Sugiyama, M. and Borgwardt, K. Halting in random walk kernels.
In Advances in Neural Information Processing Systems, pp.
1630–1638, 2015.

Vishwanathan, S. V. N. and Smola, A. J. Fast kernels for string
and tree matching. In Becker, S., Thrun, S., and Obermayer,
K. (eds.), Advances in Neural Information Processing Systems
15, pp. 569–576. MIT Press, Cambridge, MA, 2003.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, I. R., and
Borgwardt, K. M. Graph kernels. Journal of Machine Learning
Research, 2010. URL http://www.stat.purdue.

edu/˜vishy/papers/VisSchKonBor10.pdf. In
press.

Wainwright, M., Jaakkola, T., and Willsky, A. Tree-reweighted
belief propagation and approximate ML estimation by
pseudo-moment matching. In 9th Workshop on Artificial
Intelligence and Statistics, 2003.

Wainwright, M. J. and Jordan, M. I. Graphical models,
exponential families, and variational inference. Foundations
and Trends in Machine Learning, 1(1 – 2):1–305, 2008.

Wale, N., Watson, I. A., and Karypis, G. Comparison of descriptor
spaces for chemical compound retrieval and classification.
Knowledge and Information Systems, 14(3):347–375, 2008.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. Generalized belief
propagation. Advances in Neural Information Processing
Systems, pp. 689–695. MIT Press, 2001a.

Yedidia, J.S., Freeman, W.T., and Weiss, Y. Bethe free energy,
kikuchi approximations and belief propagation algorithms.
Technical report, Mitsubishi Electric Research Laboratories,
2001b.

Yedidia, J.S., Freeman, W.T., and Weiss, Y. Constructing
free-energy approximations and generalized belief propagation
algorithms. IEEE Transactions on Information Theory, 51(7):
2282–2312, 2005.

Yuille, A. L. Cccp algorithms to minimize the bethe and kikuchi
free energies: Convergent alternatives to belief propagation.
Neural Computation, 14:2002, 2002.

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, B., Su,
Z., Du, D., Huang, C., and Torr, P. Conditional random fields as
recurrent neural networks. arXiv preprint arXiv:1502.03240,
2015.

