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Abstract In this paper we address the problem of matching sets of vectors embedded in
the same input space. We propose an approach which is motivated by canonical correlation

analysis (CCA), a statistical technique which has proven successful in a wide variety of pat-
tern recognition problems. Like CCA when applied to the matching of sets, our extended

canonical correlation analysis (E-CCA) aims to extract the most similar modes of variabil-
ity within two sets. Our first major contribution is the formulation of a principled framework
for robust inference of such modes from data in the presence of uncertainty associated with
noise and sampling randomness. E-CCA retains the efficiency and closed form computabil-
ity of CCA, but unlike it, does not possess free parameters which cannot be inferred directly
from data (inherent data dimensionality, and the number of canonical correlations used for
set similarity computation). Our second major contribution is to show that in contrast to
CCA, E-CCA is readily adapted to match sets in a discriminative learning scheme which
we call discriminative extended canonical correlation analysis (DE-CCA). Theoretical con-
tributions of this paper are followed by an empirical evaluation of its premises on the task
of face recognition from sets of rasterized appearance images. The results demonstrate that
our approach, E-CCA, already outperforms both CCA and its quasi-discriminative coun-
terpart constrained CCA (C-CCA), for all values of their free parameters. An even greater
improvement is achieved with the discriminative variant, DE-CCA.

Keywords Set · Matching · Vectors · Principal · Angles

1 Introduction

Central to any applied problem of pattern recognition is the issue of how the entities of inter-
est should be represented. A numerical description based on readily measurable quantities
is sought, one which (as much as possible) minimizes variability due to confounding factors
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and maximizes that due to differing class memberships. Clearly, this is a highly domain spe-
cific task. In computer vision, for example, photometric or geometric models may be used
to normalize for illumination and viewpoint changes, or to recover the three-dimensional
structure of the scene. After this explicit separation of relevant and confounding variables is
performed, the problem ultimately becomes that of inferring class boundaries by matching
patterns. In this paper we are specifically interested in set-to-set matching, that is, the case
when multiple examples from each class are available both for training, and querying using
unlabelled input.

Assembly approaches The preferred approach to set comparison is inherently governed by
the nature of the particular task to which it is applied. Thus, a large number of different
set similarity measures have been proposed and successfully used in different recognition
problems. Many of these are non-parametric methods, based on comparisons of individual
members of sets. The simplest examples included the minimum minimorum (Satoh 2000)
and maximum minimorum (Vivek and Sudha 2007) (or Hausdorff) distances which reduce
inter-set distance to the distance between only a pair of their elements. Others aggregate
member similarities over entire sets, or chosen representative subsets (Fan and Yeung 2006).

Probability density approaches Stronger assumptions are made by methods which as-
sume that different data sets corresponding to the same class are drawn from related
probability distributions. These may be estimated using non-parametric, semi-parametric
(Shakhnarovich et al. 2002) or parametric models, and the closeness between them quanti-
fied using, amongst many others, the Bhattacharyya (1943), Chernoff (1952) and resistor-
average (Sinanović and Johnson 2007; Arandjelović and Cipolla 2006) distances, or an
asymmetric similarity measure such as the Kullback-Leibler divergence (Kullback and
Leibler 1951). A major shortcoming of probability density-based set matching is the un-
derlying premise that statistical properties of a novel, unlabelled set and the corresponding
training set are in some sense alike (Arandjelović and Cipolla 2013). Implicit in this is the
assumption that novel and training data are acquired in similar conditions (such as the view-
point and illumination) or very robustly normalized—both are conditions which are difficult
to ensure in nearly all cases of interest.

Manifold approaches While the conditions in which they are acquired can change the ob-
served distribution of data samples, this variation is nonetheless constrained by the intrinsic
properties of that class—often to a manifold, as illustrated in Fig. 1. This can be exploited
by learning the structure of this manifold while disregarding higher order statistics along
it (Lee et al. 2003). A wide range of manifold learning approaches has been described in
the literature including multidimensional scaling (Borg and Groenen 2005), local topology
preserving embedding (Roweis and Saul 2001), eigenspace (Gunturk et al. 2003) piece-wise
linear approximation (Lee et al. 2003; Kim et al. 2007) and nonlinear unfolding using a Mer-
cer kernel (Bach and Jordan 2002; Wolf and Shashua 2003; Melzer et al. 2003; Yang 2002;
Fukumizu et al. 2007).

The other major issue is that of devising a suitable inter-manifold metric (or rather
pseudo-metric). Of particular interest to us are approaches employing canonical correlation

analysis (CCA), a statistical technique that has been applied with much success to a wide va-
riety of problems, including 3D reconstruction (Reiter et al. 2006), infrared to visual image
conversion (Dou et al. 2007), recognition of texture (Saisan et al. 2001), objects (Wolf and
Shashua 2003; Melzer et al. 2003) and speech (Choukri and Chollet 1986). Broadly speak-
ing, the key idea behind CCA is that a meaningful measure of similarity between two linear
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Fig. 1 To facilitate learning and be of discriminative use, the representation of patterns must possess a certain
structure. Often, this structure is exhibited by confining the locus of members of each class to a manifold.
While their higher order statistics can greatly vary (both in the original space, as well as the corresponding
class manifold) depending on the manner in which data are acquired, the manifold structure can be regarded
as containing only class-specific information

(or linearized, as touched upon previously) manifolds can be derived from the most corre-
lated modes of variation between them. Empirical evidence suggests that this indeed is the
case in a broad spectrum of problems. What makes CCA additionally attractive in practice
is that canonical correlations between linear subspaces can be computed efficiently and in a
numerically stable manner (Björck and Golub 1973). In this paper we propose a framework
which inherits these appealing properties of CCA, whilst at the same time differing from
CCA in that when applied to set matching it does not have any parameters which need to
be manually tuned and is readily extended to a discriminative framework. Our approach to
computing a distance between two sets can be considered manifold-based, but implicitly so,
as the distance is computed without explicit manifold fitting. Rather, the distance is robustly
inferred by employing second order statistics to account for the confidence that a particu-
lar observed intra-set variation corresponds to a phenomenon of interest and not noise. The
proposed discriminative framework which follows the main method is based on a similar
idea.

These issues and technical details pertaining to CCA and its application to set matching
are addressed next, in Sect. 2, followed by Sects. 3 and 4 introducing respectively extended
CCA and discriminative extended CCA, empirical evaluation in Sect. 5 and a conclusion
with a summary of contributions in Sect. 5.3.

2 Set matching using canonical correlation analysis

Consider two finite sets of vectors, X ⊂ R
D and Y ⊂ R

D :

X = {x1, . . . ,xN } (1)

Y = {y1, . . . ,yM}. (2)
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Canonical correlation analysis seeks to find a pair of latent variables or canonical vec-

tors (Hotelling 1936), u1 and v1, such that:

∃a1 ∈ R
N : u1 = [x1 | . . . | xN ]a1 = Xa1 (3)

∃b1 ∈ R
M : v1 = [y1 | . . . | yM ]b1 = Yb1, (4)

which maximizes the canonical correlation coefficient ρ1 ∈ [0,1] defined as

ρ1 = max
u1,v1

〈u1,v1〉

‖u1‖‖v1‖
= max

u1,v1

uT
1 v1

‖u1‖‖v1‖
. (5)

Canonical vectors and correlation coefficients of higher orders, up to min(N,M), can be
defined recursively under the constraint of mutual orthogonality between all ui , as well as
all vi :

∀i, j. i 	= j : 〈ui,uj 〉 = 0 and 〈vi,vj 〉 = 0 (6)

By construction, it holds that:

1 ≥ ρ1 ≥ ρ2 ≥ . . . ρmin(N,M) ≥ 0 (7)

2.1 Set matching using CCA

In most cases the application of CCA to set matching considers sets of vectors over the same
type of features (Hua and Peib 2005; Hotta 2012; Arandjelović 2012). For example, each
vector may be a rasterized representation of an image as in Sect. 5 and Kim et al. (2007),
Arandjelović (2012) for example. The usual manner of applying CCA to set matching con-
sists of three steps. (i) First, an orthonormal basis set BX of the subspace characterizing
variations within a set is estimated using principal component analysis. Specifically, then
BX ∈ R

D×dX , a matrix with columns consisting of orthonormal basis vectors spanning the
dX-dimensional linear subspace embedded in a D-dimensional image space, can be com-
puted from the corresponding non-centred covariance matrix CX :

CX =
1

N

N
∑

i=1

xixi
T , (8)

as the row and column space basis of the best rank-D approximation to CX:

BX = arg min
BX∈R

D×dX

BX
T BX=I

min
Λ∈R

dX×dX
Λij =0,i 	=j

∥

∥CX − BXΛBX
T
∥

∥

F

2
, (9)

where ‖.‖F is the Frobenius norm of a matrix.
The dimensionality dX of this subspace may be preset, it may be inferred from the distri-

bution of data energy across eigenvector directions or indeed left equal to N—the number
of data points. (ii) Then, the canonical correlation coefficients ρk between two subspaces X

and Y can be computed using singular value decomposition (SVD) as the singular values of
the matrix BX

T BY (Björck and Golub 1973). (iii) Finally, a similarity measure is computed
as a function of canonical correlation coefficients. This is often done by averaging the first
(i.e. the largest) few (Maki and Fukui 2004), although more complex learning schemes have
been proposed (Kim et al. 2007).
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Fig. 2 Canonical correlations
are invariant to isotropic scale
changes, such as those caused by
illumination or exposure
differences. This effectively
constrains the learning of
appearance variation to a
hypersphere centred at the origin

2.1.1 Motivation and advantages

In intuitive terms, canonical vectors extract the most similar modes of variation between
two sets, while the corresponding correlation coefficients quantify the degree to which these
modes actually match. This focus on that which is common is desirable because it makes
the similarity score insensitive to the presence of differing modes of variation. These may
be present in the data because of different acquisition conditions, or they may indeed cor-
respond to corrupted samples. In contrast, probability density-based methods, such as those
using the Bhattacharyya distance or the Kullback-Leibler divergence, do not exhibit such
robustness.

By modelling variations within a set by a subspace, canonical correlations are also in-
herently unaffected by uniform scaling (or, equivalently, the contrast) of individual patterns.
This makes CCA-based methods particularly suitable for various computer vision tasks,
where such variation may be introduced by the changes in illumination or the duration of
exposure of the photosensitive medium. Learning is effectively performed on a hypersphere,
as illustrated in Fig. 2.

Finally, in many cases data variations within a single set are low dimensional making
CCA-based matching practically appealing due to computational efficiency and low storage
requirements.

2.1.2 Limitations of CCA

In modelling class variation, the application of canonical correlation analysis inherently
requires the partitioning of the input space into two disjoint subspaces: the class subspace B

of observed variability, and its complementary subspace null(BT ). This hard division causes
several undesirable consequences.

Optimal parameter choice and performance sensitivity In practice the presence of noise in
data is unavoidable and the optimal choice of the dimensionality of the class subspace can
seldom be guaranteed (Gou and Fyfe 2009). Most commonly, this parameter is determined
empirically, using a training and a validation set (Kim et al. 2007). Not only through inef-
fective use of data, this approach is also unattractive due to its amplification of noise in the
non-dominant directions of the class subspace and the loss of information in the discarded
orthogonal directions.
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Fig. 3 A conceptual illustration of the principles underlying set matching using a similarity measure based
on (a) canonical correlation analysis (CCA) and (b) its discriminative extension, constrained canonical cor-
relation analysis (C-CCA). Both methods effectively compute the angles between subspaces corresponding
to vector sets, preceded by a quasi-discriminative projection in the case of C-CCA

Second order statistics To make matters worse, any principal direction is either included
at an equal footing with all others in the class subspace, or entirely discarded. As we shall
demonstrate, the performance of CCA-based matching is very sensitive to the choice of
this parameter. This is particularly pronounced in cases suffering from limited sample size,
when the number of data points needed for robust estimation for as few as two canonical
correlations, is 40 to 70 times the dimensionality of the class subspace (Barcikowski and
Stevens 1975).

Discriminative learning The described CCA-based set distance is not discriminative in
nature—sets are compared in an independent, pair-wise manner, without regard for inter-
class and intra-class variability. That this cannot be optimal can be seen easily by noting that
depending on the application, the same two sets can be regarded as belonging to either the
same or different classes: two sets of face appearance images of two different individuals
correspond to the same class if the problem is that of face detection (classification to “face”
and “non-face”), and different classes if it is face recognition (classification by the identity).

The first discriminative extension of CCA was proposed by Oja (1983). It consists of
a linear projection of data onto a subspace which orthogonalizes basis vectors of differ-
ent classes. The main shortcoming of this approach lies in its lack of robustness, with the
orthogonal discriminative criterion leading to overfitting. A different linear subspace ap-
proach, which we will refer to as constrained canonical correlation analysis (C-CCA) was
described by Fukui and Yamaguchi (2003). They introduce a discriminative, constraint sub-
space, defined by the principal components corresponding to the smallest eigenvalues of the
mean projection matrix across all classes:

P̄ =
∑

i

Pi =
∑

i

(

BiBi
T
)

(10)

The computation of canonical correlations is then preceded by a linear projection to the
constraint subspace, as illustrated conceptually in Fig. 3. For the optimal size of its di-
mensionality, C-CCA generally outperforms Oja’s orthogonal subspace method (Kim et al.
2007), as well as non-discriminative CCA (Nishiyama et al. 2005; Arandjelović and Cipolla
2006). However, ensuring that the optimal value is chosen is difficult. In addition, the con-
struction of the described constraint subspace is ad hoc in nature—it does not maximize any
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meaningful discriminative function and it does not take into account inter-class variation,
relying purely on intra-class variability. A solution to this problem was proposed by Kim
et al. (2007), in the form of an iterative method which incrementally adjusts the optimal
projection subspace to maximize expected inter-class to intra-class canonical correlations.
This is achieved at a great computational cost, the loss of closed-form computability and
with the restriction of discrimination between only two classes. Also, just like the previous
two approaches, this method suffers from an increased number of free parameters and the
“all or nothing” modelling of class distributions.

Nonlinearity Finally, for completeness, we briefly mention that simple CCA assumes lin-
ear intra-class variability. Effective solutions to this problem have been described in the
literature, involving either piece-wise linearization of class manifolds (Kim et al. 2007) or
their “unfolding” (Fukui et al. 2006; Roweis and Saul 2001). All of these approaches eventu-
ally reduce to the computation of CCA in its original form and can thus without modification
be applied with the methods we propose in this paper.

3 Extended canonical component analysis (E-CCA)

Motivated by the standard canonical component analysis, in this section we too seek to find
the most correlated modes of variation within two sets. However, unlike before, we wish
to do so without discarding any data i.e. without the partitioning of the input space into
principal (relevant) and complementary (noise) subspaces. As explained in Sect. 2.1.2 this
partitioning is a source of major problems when CCA is applied to set matching. For illustra-
tion, consider the problem of matching sets of images (see Sect. 5 for a practical example).
Generally, each of the image pixels is affected by noise which contains a non-correlated
component across different pixels. This means that if sufficient data is available, each of the
image sets will exhibit variation in all directions of the input image space. Consequently,
all of the canonical correlations between any two sets would be 1.0 if subspace projection
described in Sect. 2.1 was not applied (i.e. if the input space was not partitioned). To avoid
the need for this projection and the potential for information loss thus effected, we wish to
derive a CCA inspired set similarity measure which takes into account the confidence that
the observed mode of variation is indeed due to data variability and not noise. We achieve
this by incorporating second order statistics into the similarity measure.

Our approach is motivated by observing that for the pair of canonical vectors u1 and v1

in Eqs. (3)–(4) there exists a direction w1 for which:

u1 = BXBX
T w1 (11)

v1 = BY BY
T w1 (12)

The first multiplication, by BX
T or BY

T , has the effect of removing any variation not spanned
by the columns of BX and BY respectively (the two principal subspaces), while the second
multiplication by BX or BY , re-embeds the vectors in the original input space.

The first canonical correlation coefficient can then be written as:

ρ1 =
w1

T BXBX
T BY BY

T w1

‖BX
T w1‖‖BY

T w1‖
=

w1
T W(�̂X)

T
W(�̂Y )w1

‖BX
T w1‖‖BY

T w1‖
(13)
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Fig. 4 A conceptual illustration of the principles underlying set matching using a similarity measure based
on the proposed (a) extended canonical correlation analysis (E-CCA) and (b) its discriminative variant, dis-

criminative extended canonical correlation analysis (DE-CCA). Set similarity is computed by considering
projective space distortions corresponding to the sets’ covariances and, in the case of DC-CCA, discrimina-
tive inter-class and intra-class covariances inferred from training data

where W(. . .) is the covariance matrix whitening function (Duda et al. 2000), and:

�̂X = BX�̂XBX
T (14)

�̂Y = BY �̂Y BY
T (15)

Instead of a normalized projection of the vector w1 onto a subspace, say BX , consider
its transformation effected by the corresponding “deviation” matrix ϒX (also positive semi-
definite and symmetric) which we define as:

ϒX = (�X)1/2 = VX

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

λ
(1)
X 0 0 0

0
√

λ
(2)

X 0 0

0 0
. . . 0

0 0 0
√

λ
(D)

X

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

VX
T = VX(�X)1/2VX

T (16)

where:

�X = XXT = VX�XVX
T (17)

is the full data covariance matrix. The said transformation anisotropically scales its input,
amplifying it in the directions in which X exhibits significant variability (large λ

(i)
X ) and

attenuating in those with little (or indeed no) variability (small λ
(i)
X ), as illustrated in Fig. 4.

This effect can be considered a generalization of the projection described in Eq. (15)—while
in the application of standard CCA all variation in the complementary subspace is discarded
and the variation in the principal subspace whitened, here the transformation has the effect of
smoothly emphasizing or de-emphasizing different directions of variability according to its
extent (specifically, proportionally to the standard deviation in the corresponding direction).
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In the special case of data which exhibits isotropic variability constrained to a subspace the
result is exactly the same as in Eq. (15) (up to scale).

Motivated by this intuition and extending the analogy to Eq. (13), we seek such unit
vector ŵ1 whose projections by ϒX and ϒY have the highest degree of correlation. Formally,
we define the first extended canonical correlation coefficient ψ1 between X and Y as:

ψ1 = max
ŵ1

{

(ϒXŵ1)
T (ϒY ŵ1)

}

= max
ŵ1

{

ŵT
1 ϒX

T
ϒY ŵ1

}

(18)

= max
ŵ1

{

ŵT
1 ϒX

T
ϒY ŵ1

}

= max
ŵ1

{

ŵT
1 �XY ŵ1

}

, (19)

under the constraint:

‖ŵ1‖ = 1. (20)

The key idea here is that this measure will favour those directions of the space in which both
X and Y have significant variability (it is “amplified” both by ϒX and ϒY ). Similarly, a
direction in which ϒX (say) exhibits significant variability, but ϒY does not, will contribute
to ŵ1 less, while a direction in which neither of the sets exhibit significant variability will
be greatly de-emphasized and have little effect on ŵ1.

Note that although matrices ϒX and ϒY are symmetric, their product is not. Nonetheless,
�XY is positive semi-definite. This is because linear transformations effected by ϒX and ϒY

involve no rotation, reflection or shearing, i.e. they can be expressed purely as a combination
of orthogonal projection, and (generally anisotropic) scaling. Thus ψ1 is maximized when
ŵ is in the direction of the eigenvector of �XY corresponding to its largest eigenvalue, for
which:

ψ1 = λ
(1)
Φ , (21)

where λ
(1)
Φ ≥ λ

(2)
Φ ≥ . . . λ

(D)
Φ ≥ 0 are the eigenvalues of �XY .

When classical canonical correlation analysis is applied to pattern recognition in practice,
only the first few correlation coefficients are computed. This is largely a consequence of the
trade-off between the accuracy of matching and its speed. Our approach does not suffer from
the same weakness. Extending the analysis to higher order extended correlation coefficients,
we can quantify the degree of agreement between variations observed in sets X and Y as:

µXY =

∑D

i=1 ψi

∑D

i=1

√

λ
(i)

X λ
(i)

Y

(22)

More elaborate combinations of ψi are possible, e.g. as described in Kim et al. (2007), but
here we adopt a simple normalized summation because it lends itself to particularly efficient
computation, as we will show shortly.

Note that µXY reaches its maximum maximorum when ϒX and ϒY share the same
eigenspace and when their eigenvectors of the same rank (with respect to the magnitude
of the corresponding eigenvalue) are aligned. However, in general:

0 ≤ µXY ≤ 1. (23)

The class similarity µXY in Eq. (22) can be rapidly computed by noticing that:

D
∑

i=1

ψi = Tr[�XY ], (24)
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while the values of λ
(1)
X , . . . , λ

(D)
X and λ

(1)
Y , . . . , λ

(D)
Y are estimated in the same manner as in

the case of classical CCA.
It is important to observe that in Eq. (19) there is no concern of an ill-defined result be-

cause of a vanishing denominator (unlike in the case of the method described in Arandjelović
and Cipolla (2006) for example). Specifically, since λ

(i)
X and λ

(i)
Y are ordered in magnitude,

the product λ
(1)
X λ

(1)
Y cannot be 0 as both sets X and Y are assumed to contain at least some

variability. Indeed, this is a necessary condition both for classical CCA and the proposed
method to be meaningful in this context.

4 Discriminative extended canonical component analysis (DE-CCA)

In the previous section we derived a principled extension of canonical correlation analysis
suitable for matching sets of patterns constrained to linear subspaces. We addressed the in-
herent limitations of CCA when applied on this problem: the inevitable “hard” partitioning
of the input space, as well the practical difficulty of parameter estimation. Unlike classical
CCA, we now show that our method readily lends itself to a discriminative learning frame-
work.

In Sect. 3 we considered space transformation by means of projection using the square
root of the class covariance matrix:

w1 −→ ϒXw1 = (�X)1/2w1. (25)

Its effect is the amplification of modes of variation common to the input vector w1 and
the set X . However, this is achieved without any knowledge of variability both between
and within different classes. Here we capture these through two covariance matrices, the
normalized inter-class scatter matrix �B and the mean intra-class scatter matrix �W . Using
the notation Zi for different training set data matrices i = 1, . . . ,NC (each corresponding to
a different class) and denoting their members by {zi1, zi2, . . .}, we define the normalized
inter-class scatter matrix as follows:

�B =
1

NC

NC
∑

i=1

(

E[Zi]

‖E[Zi]‖
− m

)

(26)

where:

m =
1

NC

NC
∑

i=1

E[Zi]

‖E[Zi]‖
. (27)

Note that the explicit normalization of class data means E[Zi] in Eq. (26) is necessary here
(see Sect. 2.1.1). The mean intra-class scatter matrix is simply:

�W =
1

NC

NC
∑

i=1

Zi
T Zi =

1

NC

NC
∑

i=1

�Zi
(28)

Our definitions of inter-class and intra-class matrices are similar to those used in Fisher’s
discriminant analysis (Duda et al. 2000).
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The two scatter matrices are then used to further transform an input vector, first by ac-
centuating its components in the direction of common intra-class variations and then by
attenuating those corresponding to inter-class variability:

w1 −→ (�B)−1/2(�W )1/2
ϒXw1. (29)

The intuition behind this transformation is exactly the same as that for the non-discriminative
version in Sect. 3. Instead of partitioning the space into discriminative and non-discrimina-
tive subspaces and projecting the data onto the former, like in CCA for example, our trans-
formation of data is smoother in nature. While a projection onto the discriminative sub-
space entirely aligns the data with the subspace, our transformation instead realigns the data
smoothly first by emphasizing discriminative directions (according to the inter-class scatter
matrix) and then by further de-emphasizing the non-discriminative ones (according to the
intra-class scatter matrix). The idea is illustrated conceptually in Fig. 4(b). Note that the
aforementioned directions are not explicitly determined. Rather, inter- and intra-class vari-
ances are automatically combined into the optimal weighting matrix (�B

−1
�W )1/2. Formu-

lating a criterion similar to that in Eq. (19) now leads to eigenvalue decomposition of the
matrix �̂XY :

�̂XY = ϒXPϒY (30)

where:

P = (�W )1/2(�B)−1(�W )1/2 (31)

Just as �XY in the non-discriminative case and using the same argument as on Sect. 3,
�̂XY can be recognized as a non-symmetric but nonetheless positive semi-definite matrix.
Thus, the first discriminative extended canonical correlation coefficient is equal to its largest
eigenvalue and, as in Eq. (22), the overall similarity of sets X and Y becomes:

µ̂XY =

∑D

i=1 λ
(i)
φ

∑D

i=1

√

λ
(i)

X λ
(i)

Y

=
Tr [�̂XY ]

∑D

i=1

√

λ
(i)

X λ
(i)

Y

(32)

5 Experimental evaluation

We empirically examined the validity of theoretical arguments put forward in the preceding
sections on the problem of matching sets of images of faces. To make our experiments as
directly comparable as possible to those in the published previous work most closely related
to ours, we evaluated the proposed methods on a database already widely used for this
purpose (e.g. see Arandjelović and Cipolla 2006; Kim et al. 2007) and described in detail in
Arandjelović (2012).

This database contains video sequences of face motion for 100 individuals of varying
ages and ethnicities. For each person in the database there are 7 sequences of the person per-
forming loosely constrained, pseudo-random motion (significant translation, yaw and pitch,
negligible roll) for 10 s, as shown on an example in Fig. 5(a). Each sequence was acquired in
a different illumination setting as illustrated in Fig. 5(b). Sequences were acquired at 10 fps
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Fig. 5 (a) Frames from typical video sequences in the database used for evaluation. (b) Different illumination
conditions used to acquire data, illustrated on manually selected frontal faces. (c) Five different individuals
in the illumination setting number 6. In spite of the same spatial arrangement of light sources, their effect on
the appearance of faces changes significantly due to variations in people’s heights, the ad lib chosen position
relative to the camera etc.

and in 320 × 240 pixel resolution (face size ≈60 pixels).1 The users were asked to approach
the camera while performing arbitrary head motion. Although the illumination was kept
constant throughout each sequence, there is some variation in the manner in which faces
were lit due to the change in the relative position of the user with respect to the lighting
sources, as shown in Fig. 5(c).

Faces were detected automatically using the cascaded detector of Viola and Jones (2004)
are rescaled to the uniform resolution of 50 × 50 pixels which is approximately the average
size of a detected face (see Arandjelović 2010 for a related discussion). Face image patches
were then converted into vectors by column-wise rasterization, each video sequence thus
producing a set of vectors in the R

2500 space. Different distance measures between sets were
evaluated in the context of one-to-many matching. In other words, image sets extracted from
video sequences of different individuals in a particular setting were used as training data
while querying was performed using sets corresponding to a different illumination. Each
query set was associated with the best matching training set. In this manner, we investigated:

– the sensitivity of the classical CCA to the number of correlation coefficients,
– the sensitivity of the C-CCA to the dimensionality of the constraining subspace,
– the performance of the proposed E-CCA distance measure, and
– the performance of the proposed DE-CCA distance measure.

1A thorough description of the University of Cambridge face database with examples of video sequences is
available at http://mi.eng.cam.ac.uk/~oa214/.

http://mi.eng.cam.ac.uk/~oa214/
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Method CCA C-CCA (3 cc)
Parameters 1 cc 2 cc 3 cc −15d −25d −50d −100d
Mean correct recognition rate 42.2 67.0 75.1 78.7 83.6 83.2 74.4
Recognition rate deviation 10.6 13.9 13.5 11.1 8.3 9.0 15.4

Method E-CCA DE-CCA

Mean correct recognition rate 83.4 88.8

Recognition rate deviation 9.6 7.8

Fig. 6 A summary of experimental results. Shown are the average correct recognition rate across differ-
ent illuminations used for training and querying, and its standard deviation. Even for the optimal choice
of parameters, which is impossible to ensure in practice, classical canonical correlation analysis (CCA: a
non-discriminative approach) and its constrained extension (C-CCA: discriminative) were outperformed by
the proposed methods which are parameter-free

5.1 Results and discussion

A summary of the key results is shown in Fig. 6. As expected in the case of data with such
complex variability as exhibited by face appearance images, the performance of the classical
CCA-based matching is greatly affected by the number of canonical correlation coefficients
used to compute the set-to-set similarity measure. When their number is increased from
one to two, the average performance is improved by 59 %, and further by 78 % for three
coefficients. Additional sensitivity of the method to free parameter selection can be observed
in Fig. 7(a), which illustrates the importance of the dimensionality of class subspaces.

It is revealing to notice that while an increase in the number of computed canonical corre-
lations improves the average rate of correct identification, the confidence in the recognition
decision (quantified by the deviation of the correct identification rate across different test
and query illumination conditions) actually worsens. This phenomenon can be explained by
observing that increasing the number of coefficients does not improve matching decisions in
the most challenging cases (corresponding to test and query illumination combinations that
result in the lowest correct identification rates). In other words, in these cases, the variations
present in different appearance sets corresponding to the same person are indeed very unlike
one another, and the only way of producing an improvement is by incorporating discrimina-
tive constraints.

The results obtained using constrained CCA highlight further limitations of classical
canonical correlation analysis in set matching. In addition to the sensitivity of the method to
the free parameters shared with CCA—the number of canonical correlations used to com-
pute set similarities and the dimensionality of class subspaces, illustrated for C-CCA in
Fig. 7(b)—an additional free parameter is introduced in the form of the dimensionality of the
constraint subspace. Discriminative projection of data was found to improve performance
only for constraint subspace dimensionalities greater than (D−95), which is a narrow range
of just ∼3.8 % of the input space dimensionality D = 2500. In this range, the mean recog-
nition rate is increased and its deviation decreased. Peak correct recognition rate of 83.6 %
(33 % reduction in error rate compared to simple CCA) is achieved when three canonical
correlation coefficients are used and the dimensionality of the constraint subspace set equal
to (D − 25). However, a suboptimal choice of the constraint subspace dimensionality can
rapidly lead to significant worsening of performance, as shown in Fig. 7(c). This is a major
limitation of C-CCA, as there is no fundamental theoretical basis which could facilitate the
inference of this parameter.
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Fig. 7 The measured variation
of the correct recognition rate
averaged over different
illumination conditions used for
training and querying, as a
function of the dimensionality of
the constraint subspace and the
number of canonical correlation
coefficients used for matching
(green = 1, red = 2, blue = 3).
Optimal performance is achieved
using three canonical correlations
and (D − 25)-dimensional
constraint subspace (Color figure
online)
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Fig. 8 The most similar 6 modes of variation extracted using (a, b) E-CCA and (c, d) DE-CCA using sets
corresponding to the same person in different illuminations (a, c) and different persons. In the case of same
class matching, both methods successfully extract common directions of appearance change between two sets.
The benefit of DE-CCA is more pronounced when sets of images of different persons are matched—E-CCA
erroneously manages to find rather more alike modes of variation by effectively matching on common illu-
mination, while the discriminative algorithm correctly learns and de-emphasizes such confounding factors

As this paper argued in detail, the problem of free parameter choice is made entirely ob-
solete by our use of second order statistics. The proposed E-CCA was found to significantly
outperform not only CCA but C-CCA as well, and remarkably for all values of their free
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parameters, as can be seen in Fig. 6. Practically, this is a major advantage of our approach,
due to the difficulty of ensuring optimal parameter selection for C-CCA. Theoretically, this
confirms the premise set forth in Sect. 1 which emphasizes the loss of discriminative infor-
mation in discarding higher order statistics of class variability. This is an important result
given that unlike E-CCA, C-CCA is a discriminative approach. With that in mind, it is not
surprising that our discriminative method, DE-CCA, improves performance even further,
decreasing the error rate by 32 % from C-CCA—see Fig. 6.

5.2 Qualitative insight

It is insightful to visually examine the modes of the most probable common variability be-
tween sets of the same and different classes, extracted by the proposed methods. These
can be found as the dominant eigenvectors of the matrix �XY in the case of E-CCA (see
Sect. 3), and �̂XY (see Sect. 4) in the case of DE-CCA. Examples, visualized as images,
are shown in Fig. 8. Notice that E-CCA manages to find meaningful common modes even
when the two sets correspond to different people, just as it does when they show the same
person—it effectively matches similar appearing illumination effects. This is a consequence
of geometric and textural similarity of human faces, which makes face recognition so diffi-
cult. By learning a discriminative criterion, matching using DE-CCA has the consequence
of de-emphasizing confounding inter-personal variability and amplifying intra-personal in-
formation.

5.3 Summary and conclusions

In this paper we proposed a novel framework for matching vector sets. Our approach is
based on inference of the most similar modes of variability within two sets. This led to a
comparison with increasingly popular canonical correlation analysis-based methods. These
were discussed in detail and it was shown, both theoretically and empirically, that they
have significant practical limitations of which the most important are: (i) the presence of
free parameters which cannot be inferred from the data, (ii) non-robust partitioning of the
space into class and non-class subspaces, and (iii) intractability of discriminative learning.
In contrast, the proposed extended canonical correlation analysis-based method inherently
accounts for uncertainty in data, inferring the most likely common modes of variability. What
is more, it is shown that this can be achieved without the loss of attractive computational
efficiency of canonical correlation analysis, whereby set similarity is effectively reduced to
the computation of the trace of a matrix. The proposed framework was then extended into a
discriminative learning scheme which, unlike in the case of classical canonical correlation
analysis, follows naturally. Finally, our theoretical arguments were empirically verified on
the task of set-based face recognition. The proposed methods were shown superior even
for the optimal choice of parameters of the classical canonical correlation analysis-based
methods, which is impossible to ensure in practice.
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Arandjelović, O., & Cipolla, R. (2006). An information-theoretic approach to face recognition from face
motion manifolds. Image and Vision Computing, 24(6), 639–647. Special issue on Face Processing in
Video
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