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Discriminative correlation �lter- (DCF-) based trackers are computationally e	cient and achieve excellent tracking in challenging
applications. However, most of them su
er low accuracy and robustness due to the lack of diversity information extracted from
a single type of spectral image (visible spectrum). Fusion of visible and infrared imaging sensors, one of the typical multisensor
cooperation, provides complementarily useful features and consistently helps recognize the target from the background e	ciently
in visual tracking.�erefore, this paper proposes a discriminative fusion correlation learningmodel to improveDCF-based tracking
performance by e	ciently combiningmultiple features from visible and infrared images. Fusion learning �lters are extracted via late
fusion with early estimation, in which the performances of the �lters are weighted to improve the �exibility of fusion. Moreover,
the proposed discriminative �lter selection model considers the surrounding background information in order to increase the
discriminability of the template �lters so as to improve model learning. Extensive experiments showed that the proposed method
achieves superior performances in challenging visible and infrared tracking tasks.

1. Introduction

Visual tracking has received widespread attention for its
extensive applications in video surveillance, autonomous
driving and human-machine interaction, military attack,
robot vision, etc. [1, 2]. Depending on the appearance model,
existing tracking algorithms can be categorized into two cat-
egories: generative and discriminative tracking. Generative
tracking algorithms build a target model and search for the
candidate image patch with maximal similarity. For example,
Wang et al. [3] proposed a novel regression-based object
tracking framework which successfully incorporates Lucas
and Kanade algorithm into an end-to-end deep learning
paradigm. Chi et al. [4] trained a dual network with random
patches measuring the similarities between the network
activation and target appearance to leverage the robustness
of visual tracking. On the contrary, the goal of discriminative
algorithms is to learn a classi�er to discriminate between
its appearance and that of the environment given an initial
image patch containing the target. Yang et al. [5] proposed a
temporal restricted reverse-low-rank learning algorithm for

visual tracking to jointly represent target and background
templates via candidates, which exploits the low-rank struc-
ture among consecutive target observations and enforces the
temporal consistency of target in a global level. A new peak
strengthmetric [6] is proposed tomeasure the discriminative
capability of the learned correlation �lter that can e
ectively
strengthen the peak of the correlation response, leading to
more discriminative performance than previous methods.

Besides these e
orts, other researchers have worked on
trackingmethods that are both generative and discriminative.
For instance, Zhang et al. [7] obtained an object likelihood
map to adaptively regularize the correlation �lter learning
by suppressing the clutter background noises while making
full use of the long-term stable target appearance informa-
tion. Qi et al. [8] proposed a structure-aware local sparse
coding algorithm, which encodes a target candidate using
templates with both global and local sparsity constraints,
and also obtains a more precise and discriminative sparse
representation to account for appearance changes. In [9],
an adaptive set of �ltering templates is learned to alleviate
dri�ing problem of tracking by carefully selecting object
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candidates in di
erent situations to jointly capture the target
appearance variations. Moreover, a variety of simple yet
e
ective features are e
ectively integrated into the learning
process of �lters to further improve the discriminative power
of the �lters. In the salient-sparse-collaborative tracker [10],
an object salient feature map is built to create a salient-sparse
discriminative model and a salient-sparse generative model
to both handle the appearance variation and reduce track-
ing dri�s e
ectively. A multilayer convolutional network-
based visual tracking algorithm based on important region
selection [11] is proposed to build high entropy selection
and background discrimination models and to obtain the
feature maps by weighting the template �lters with cluster
weights, which enables the training samples to be informative
in order to provide enough stable information and also be
discriminative so as to resist distractors. Generally speaking,
discriminative and generative methods have complementary
advantages in appearance modeling, and the success of a
visual tracking method depends not only on its represen-
tation ability against appearance variations but also on the
discriminability between target and background, thus leading
to the requirement of a more robust training model [12].

Recently, discriminative correlation �lter- (DCF-) based
visual tracking methods [13–18] have shown excellent per-
formances on real-time visual tracking for its advantage
of robustness and computational e	ciency. �e DCF-based
methods work by learning an optimal correlation �lter used
to locate the target in the next frame. �e signi�cant gain
in speed is obtained by exploiting the fast Fourier transform
(FFT) at both learning and detection stages [14]. Bolme
et al. [13] presented an adaptive correlation �lter, named
Minimum Output Sum of Squared Error (MOSSE) �lter,
which produces stable correlation �lters by optimizing the
output sum of squared error. Based on MOSSE, Danelljan et
al. [14, 15] proposed a novel scale adaptive tracking approach
by learning separate discriminative correlation �lters for
translation and scale estimation, which achieves accurate and
robust scale estimation in a tracking-by-detection frame-
work. Galoogahi et al. [16] proposed a computationally
e	cient Background-aware correlation �lter-based on hand-
cra�ed features that can e	ciently model how both the fore-
ground and background of the object varies over time. �e
work in [17] reformulates DCFs as a one-layer convolutional
neural network composed of integrates feature extraction,
response map generation, and model update with residual
learning. Johnander et al. [18] proposed a uni�ed formulation
for learning a deformable convolution �lter in which the
deformable �lter is represented as a linear combination of
sub�lters, and both the sub�lter coe	cients and their relative
locations are inferred jointly in our formulation. However,
the above trackers fail when the target undergoes severe
appearance changes due to limited data supplied by single
features.

Multiple feature fusion contains more useful information
than single feature, thus providing higher precision, certainty,
and reliability for visual tracking. Wu et al. [19] proposed a
data fusion approach via sparse representation with applica-
tions to robust visual tracking. Uzkent et al. [20] proposed
an adaptive fusion tracking method that combines likelihood

maps from multiple bands of hyperspectral imagery into
one single more distinctive representation, which increases
the margin between mean value of foreground and back-
ground pixels in the fused map. Chan et al. [21] proposed a
robust adaptive fusion tracking method, which incorporates
a novel complex cell into the group of object representation
to enhance the global distinctiveness. Feature fusion also
achieves superior performances on correlation �lter-based
tracking. For example, Rapuru et al. [22] proposed a robust
tracking algorithm by e	ciently fusing tracking, learning,
and detection with the systematic model update strategy of
kernelized correlation �lter tracker.

Although much e
orts have been made, single-sensor
feature fusion-based tracking su
er low accuracy and robust-
ness due to the lack of diversity information. Fusion of visible
and infrared sensors, one of the typical multisensor coopera-
tions, provides complementarily useful features, which is able
to achieve a more robust and accurate tracking result [23]. Li
et al. [24] designed a fusion scheme containing joint sparse
representation and colearning update model to fuse color
visual spectrum and thermal spectrum images for object
tracking. Li et al. [25] proposed an adaptive fusion scheme
based on collaborative sparse representation in Bayesian
�ltering framework for online tracking. Mangale and Kham-
bete [26] developed reliable camou�aged target detection and
tracking system using fusion of visible and infrared imaging.
Yun et al. [23] proposed a compressive time-space Kalman
fusion tracking with time-space adaptability for visible and
infrared images and introduced extended Kalman �lter to
update fusion coe	cients optimally. A visible and infrared
fusion tracking algorithm based on multiview multikernel
fusionmodel is presented in [27]. Zhang et al. [28] transferred
visible tracking data to infrared data to obtain better tracking
performances. Lan et al. [29] proposed joint feature learning
and discriminative classi�er framework for multimodality
tracking, which jointly eliminate outlier samples caused by
large variations and learn discriminability-consistent features
from heterogeneous modalities. Li et al. [30] proposed a
convolutional neural network architecture including a two-
streamConvNet and a FusionNet, which proves that tracking
with visible and infrared fusion outperforms that with single
sensor in terms of accuracy and robustness.

DCF-based trackers have signi�cant low computational
load and are especially suitable for a variety of real-time
challenging applications. However, most of the DCF-based
trackers su
er low accuracy and robustness due to the lack of
diversity information extracted from a single type of spectral
image (visible spectrum). �erefore, this paper proposes a
discriminative fusion correlation learning model to improve
DCF-based tracking performance by combining multiple
features from visible and infrared imaging sensors. �e main
contributions of our work are summarized as follows:

(i) A discriminative fusion correlation learning model
is presented to fuse visible and infrared features
such that valuable information from all sensors is
preserved.

(ii) �e proposed fusion learning �lters are obtained
via late fusion with early estimation, in which the
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Figure 1: Discriminative fusion correlation learning for visible and infrared tracking. Blue and green boxes denote the target and background
samples extracted from the tracking result, respectively.

performances of the �lters are weighted to improve
the �exibility of fusion.

(iii) �e proposed discriminative �lter selection model
considers the surrounding background information
in order to increase the discriminability of the tem-
plate �lters so as to improve model learning.

�e remainder of this paper is organized as follows. In
Section 2, the multichannel discriminative correlation �lter
is introduced. In Section 3, we describe our work in detail.
�e experimental results are presented in Section 4. Section 5
concludes with a general discussion.

2. Multichannel Discriminative
Correlation Filter

Multichannel DCF provides superior robustness and e	-
ciency in dealing with challenging tracking tasks [14]. In
the multichannel DCF-based tracking algorithm, � channel
Histogram of Oriented Gradient (HOG) features [14] from
the target sample � are extracted tomaintain diverse informa-
tion. During training process, the goal is to learn correlation
�lter ℎ, which is achieved by minimizing the error of the
correlation response compared to the desired correlation
output � as

� =
����������
� −
�
∑
�=1

ℎ� ∗ ��
����������

2

+ 

�
∑
�=1

�����ℎ
������
2 , (1)

where ∗ denotes circular correlation and 
 is the weight

parameter [14]. �� and ℎ� (� = 1, ⋅ ⋅ ⋅ , �) are the �-th channel
feature and the corresponding correlation �lter, respectively.
�e correlation output � is supposed to be a Gaussian
function with a parametrized standard deviation [14].

�e minimization of (1) can be solved by minimizing (2)
in the Fourier domain as


� = ���

∑��=1 �
��� + 


, � = 1, ⋅ ⋅ ⋅ , �, (2)

where 
, �, and � are the discrete Fourier transform (DFT)
of ℎ, �, and �, respectively. �e symbol bar ⋅ denotes complex
conjugation. �e multiplications and divisions in (2) are

performed pointwise.�e numerator��� and denominator ��
of the �lter
�� in (2) are updated as

��� = (1 − �)���−1 + �����, � = 1, ⋅ ⋅ ⋅ , �,
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�
∑
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where � is a learning rate parameter.

During tracking process, the DFT of the correlation score
�� of the test sample �� is computed in the Fourier domain
as

�� =
∑��=1 �

�
�−1���

��−1 + 
 , (4)

where�� and��� are theDFTs of�� and ���, respectively.��� and
�� are the numerator and denominator of the �lter updated in
the previous frame, respectively. �en the correlation scores

�� is obtained by taking the inverse DFT �� = F
−1{��}. �e

estimate of the current target state is obtained by �nding the
maximum correlation score among the test samples.

3. Proposed Discriminative Fusion
Correlation Learning

In this section, we introduce the tracking framework of the
proposed algorithm, the general scheme ofwhich is described
in Figure 1. Firstly, the multichannel features are extracted,
respectively, from the visible and infrared images according
to [14]. Secondly, the proposed discriminative �lter selection
and the fusion �lter learning are applied to get the fusion
response map. Finally, the discriminative �lters and fusion
�lters are updated via the tracking result obtained by the
response map. We will discuss them speci�cally below.
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3.1. Discriminative Filter Selection. According to DCF-based
trackers, we obtain the correlation output � by

� =
�
∑
�=1

ℎ�� ∗ ���, � = 1, ⋅ ⋅ ⋅ , �, (5)

where ��� and ℎ�� are the target sample and target correlation
�lter corresponding to the �-th channel feature among �
channels, respectively. In this paper, � is selected as a 2D
Gaussian function where � = 2.0 [13].

Before tracking, we need to choose the optimal target
correlation �lters in the training step via minimizing (6) as


�� =
����

∑��=1 �
�
���� + 


, � = 1, ⋅ ⋅ ⋅ , �, (6)

where ���, 
��, and � are the DFTs of ���, ℎ��, and �,
respectively.

Di
erent from a single training sample of the target
appearance, multiple background samples at di
erent loca-
tions around target need to be considered to maintain a sta-
ble model. However, extracting multichannel features from
each background sample increase computational complex
signi�cantly. Moreover, in practice, single channel features
from multiple background samples are enough to present
satis�ed performances. �erefore, in this paper, we extract
� background samples randomly in the range of an annulus
around the target location [11] and obtain the correlation
output � as

� =
�
∑
�=1

ℎ	 ∗ ��	 , � = 1, ⋅ ⋅ ⋅ ,�, (7)

where ��	 , � = 1, ⋅ ⋅ ⋅ ,� denotes the�-th background sam-
ple.

Similarly, the optimal background correlation �lters in
the training step are selected via minimizing (8) as


�	 = ���	
∑�
=1 �



	�
	 + 


, � = 1, ⋅ ⋅ ⋅ ,�, (8)

where ��	 and
�	 are the DFTs of ��	 and ℎ�	 , respectively.
While tracking, DFT ��,�� of the estimated discriminative

correlation score ��,�� of the test sample �� is de�ned as

��,�� =
��,��,�
��,��,	
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where ��,��,� and ��,��,	 are the DFTs of the target and
background correlation scores ��,��,� and ��,��,	, respectively,
and ��� is the DFTs of ���. ���−1,� and ��−1,� denote the

numerator and denominator of the �lter 
�� in (6). ���−1,	

and��−1,	 denote the numerator and denominator of the �lter

�	 in (8).�en the discriminative correlation scores ��,�� are
obtained by taking the inverse DFT ��,�� = F

−1{��,��}. �e
estimate of the current target state ��0 ,�� is obtained by �nding
the maximum correlation score among the test samples as
��0 ,�� !→ #0 : #0 = arg max���,��.

3.2. Fusion Learning Filter. As proved by Wagner et al. [31],
late fusion with early estimation provides better performance
than early fusion with late estimation. Based on this conclu-
sion, we use the discriminative correlation �lters to obtain
the estimate of target location in visible and infrared images,
respectively, and then do fusion with the fusion correlation
�lters. Let ��,��,
, $ ∈ {V$, $&} denote the estimate of target
location of visible V$ or infrared $& images. �en we de�ne
the region'∘(⋅, ∙) denoting theminimumbounding rectangle
that contains the regions of samples ⋅ and ∙ in image ∘.
�us, we extract the fusion test samples through ��,
 ∈
'
(��,��,V
, ��,��,
�), $ ∈ {V$, $&} and de�ne the DFT ��,�� of
the fusion correlation score ��,�� of fusion sample ��,
 that is
de�ned as
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where ��,��,� and ��,��,	 are the DFTs of the target and back-
ground fusion correlation scores ��,��,� and ��,��,	, respec-
tively. ���,
 ∈ '
�(��,��,V
, ��,��,
�), $ ∈ {V$, $&} in which $� is the �-th
channel feature of image $. ���,
 and ��,
 are the DFTs of sam-

ples ���,
 and ��,
, respectively.3
 denotes the imageweights that
are denoted as

3i =
max
��,��,


∑
∈{V
,
�}max
��,��,

, (11)

where ��,��,
 is the correlation score of the $-th image com-
puted by (9).

A�er obtaining ��,��, the fusion correlation score ��,��
is obtained by taking the inverse DFT ��,�� = F

−1{��,��}.
�e fusion location of the current target state is obtained
by �nding the maximum correlation score among the test
samples.

�e whole tracking process of DFCL is summarized in
Algorithm 1.

4. Experiments

�e proposed DFCL algorithm was tested on several chal-
lenging real-world sequences, and some qualitative and
quantitative analyses were performed on the tracking results
in this section.
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Input:�e #-th visible and infrared images
For # = 1 to number of frames do

1. Crop the samples and extract the �-th (� = 1, ⋅ ⋅ ⋅, �) channel features ��� for visible and
infrared images, respectively.

2. Compute the discriminative correlation scores ��,�� using Eq. (9).
3. Compute the fusion correlation scores ��,�� using Eq. (10).
4. Obtain the tracking result by maximizing ��,��.
5. Extract the �-th (� = 1, ⋅ ⋅ ⋅, �) channel feature ��� of the target samples and the�-th

(� = 1, ⋅ ⋅ ⋅,�) sample ��	.
6. Update the discriminative correlation �lters
�� and
�	 using Eq. (6) and Eq. (8),

respectively.
end for

Output: Target result and the discriminative correlation �lters
�� and
�	

Algorithm 1: Discriminative fusion correlation learning for visible and infrared tracking.

4.1. Experimental Environment and Evaluation Criteria.
DFCL was implemented with C++ programming language
and.Net Framework 4.0 in Visual Studio 2010 on an Intel
Dual-Core 1.70GHz CPU with 4 GB RAM. Two metrics,
i.e., location error (pixel) and overlapping rate, are used
to evaluate the tracking results quantitatively. �e location

error is computed as 4&&5& = √(7� − 7�)2 + (�� − ��)2,
where (7�, ��) and (7�, ��) are the ground truth (either
downloaded from a standard database or located manually)
and tracking bounding box centers, respectively.�e tracking
overlapping rate is de�ned as 5V4&�899$;� = 8&48('<>� ∩
'<>�)/8&48('<>�∪'<>�), where'<>� and'<>� denote the
ground truth and tracking bounding box, respectively, and
8&48(⋅) is the rectangular area function. A smaller location
error and a larger overlapping rate indicate higher accuracy
and robustness.

4.2. Experimental Results. �e performance of DFCL was
compared with state-of-the-art trackers Struck [32], ODFS
[33], STC [34], KCF [35], ROT [36], DCF-based trackers
MOSSE [13], DSST [14], fDSST [15], and visible-infrared
fusion trackers TSKF [23], MVMKF [27], L1-PF [19], JSR
[24], and CSR [25]. Figures 2–6 present the experimental
results of the test trackers in challenging visible sequences
named Biker [37], Campus [37], Car [38], Crossroad [39],
Hotkettle [39], Inglassandmobile [39], Labman [40], Pedes-
trian [41], and Runner [38], as well as their corresponding
infrared sequences Biker-ir, Campus-ir, Car-ir, Crossroad-
ir, Labman-ir, Hotkettle-ir, Inglassandmobile-ir, Pedestrian-
ir, and Runner-ir. Single-sensor trackers were separately
tested on visible and the corresponding infrared sequences,
while visible-infrared fusion trackers obtain the results with
information fromboth visible and infrared sequences. For the
convenience of presentation, some tracking curves are not
shown entirely in the Figures. Next, the performance of the
trackers in each sequence is described in detail.

(a) SequencesBiker andBiker-ir:Biker presents the exam-
ple of complex background clutters. �e target human in the
visible sequence encounters similar background disturbance
(i.e., bikes), which causes the ODFS, MOSSE, fDSST, TSKF,

and MVMKF trackers to dri� away from the target. �e
corresponding infrared sequence Biker-ir provides temper-
ature information that eliminates the background clutter in
Biker. But when the target is approaching another person at
around Frame #20, Struck, ODFS, STC, MOSSE, TSKF, and
MVMKF do not perform well because they are not able to
distinguish target from persons with similar temperature in
infrared sequences. Only KCF, ROT, DSST, and our DFCL
have achieved precise and robust performances in these
sequences.

(b) Sequences Campus and Campus-ir: the target in
Campus and Campus-ir undergoes background clutters,
occlusion, and scale variation. At the beginning of Campus,
ODFS, STC, KCF, and ROT lose the target due to background
disturbance. Only TSKF and DFCL perform well, while
Struck, fDSST, and MVMKF do not achieve accurate results.
Because of the infrared information provided by Campus-ir,
fewer test trackers lose tracking when background clutters
happen as shown in Figure 2. But Struck, KCF, and ROT
mistake another person for the target. As shown in Figure 2,
most of the trackers result in tracking failures, whereas DFCL
outperforms the others in most metrics (location accuracy
and success rate).

(c) SequencesCar andCar-ir:Car andCar-ir demonstrate
the e	ciency of DFCL on coping with heavy occlusions. �e
target driving car is occluded by lampposts and trees many
times, which cause tracking failures of most trackers. Only
TSKF, MVMKF, and DFCL are able to handle the occlusion
throughout the tracking process in this sequence. As shown
in Figure 2,most trackers performbetter inCar-ir than inCar
because the infrared features can overcome the di	culties
of target detection among surrounding similar background.
STC, TSKF, MVMKF, and DFCL are able to handle this
problem, whereas the result of DFCL is the most accurate, as
shown in Figure 2.

(d) Sequences Crossroad and Crossroad-ir: the target in
Crossroad and Crossroad-ir undergoes heavy background
clutters when she crosses the road.While the target is passing
by the road lamp, both ODFS and JSR lose the target. �en,
when a car passes by the target, Struck, TSKF, and MVMKF
dri� away from the target. When the target goes toward
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Figure 2: Tracking performances of the test sequences.
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Figure 4: Overlapping rate of the test sequences.

the sidewalk, most of the trackers are not able to handle
the problem of heavy background clutters, but our tracker
performs satisfying tracking results as shown in Figures 2–4.

(e) Sequences Hotkettle and Hotkettle-ir: in these
sequences, tracking is hard because of the changes of the
complex background clutters. Most trackers perform better
in Hotkettle-ir than in Hotkettle for the reason that the
temperature diverge makes the hot target more distinct in
the cold background. Struck, KCF, DSST, fDSST, and DFCL

can achieve robust and accurate tracking performances as
shown in Figures 2–4.

(f) Sequences Inglassandmobile and Inglassandmobile-ir:
Sequences Inglassandmobile and Inglassandmobile-ir demon-
strate the performances of the 14 trackers under the cir-
cumstances of background clutters, illumination changes,
and occlusion. As shown in Figure 2, when the illumination
changes at around Frames #300, ODFS and fDSST lose the
target, and KCF, TSKF, and L1-PF dri� a little away from the
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Figure 5: Average location error (pixel) of the test sequences.
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Figure 6: Success rate of the test sequences.

target.When the target is approaching a tree, the background
clutters makes most of trackers cause tracking failures that
can be seen from Figure 2. Our DFCL can overcome these
challenges and perform well in these sequences.

(g) Sequences Labman and Labman-ir: the experiments
in Sequences Labman and Labman-ir aim to evaluate the per-
formances on tracking under appearance variation, rotation,
scale variation, and background clutter. In Labman, when
the target man is walking into the laboratory, ODFS, STC,
and MOSSE lose the target. When the man keeps shaking

and turning around his head at around Frame #400, KCF,
ROT, and DSST cause tracking failures. Also, most trackers
achieve better tracking performances in Labman-ir as shown
in Figure 2.

(h) Sequences Pedestrian and Pedestrian-ir: the target in
Pedestrian and Pedestrian-ir undergoes heavy background
clutters and occlusion. As shown in Figure 2, other trackers
result in tracking failures in Pedestrian, whereas our tracker
shows satisfying performances in terms of both accuracy
and robustness.�e e	cient infrared features extracted from



Mathematical Problems in Engineering 9

DFCLDCL MOSSE

Average location error (pixel) Success rate

0.11 
0.01 0.06 

0.59 

0.00 

0.12 
0.02 0.04 0.04 

0.52 

0.19 0.17 

0.63 

0.21 

0.73 

0.39 

0.53 

0.37 

1.00 1.00 

0.82 0.82 

0.57 

0.99 1.00 0.99 0.99 

187.42 
151.24 

106.35 

20.78 

313.87 

116.46 

390.21 

100.63 

144.67 

18.53 
61.66 89.40 

17.86 

95.45 

49.90 56.58 
26.92 

92.28 

3.40 3.15 
18.99 

6.52 4.95 7.23 10.13 1.38 2.84 

B
ik

er

C
am

p
u

s

C
ar

C
ro

ss
ro

ad

H
o

tk
et

tl
e

In
gl

as
sa

n
d

m
o

b
il

e

L
ab

m
an

P
ed

es
tr

ia
n

R
u

n
n

er

B
ik

er

C
am

p
u

s

C
ar

C
ro

ss
ro

ad

H
o

tk
et

tl
e

In
gl

as
sa

n
d

m
o

b
il

e

L
ab

m
an

P
ed

es
tr

ia
n

R
u

n
n

er

Figure 7: Average location error (pixel) and success rate of DCL, DFCL, and MOSSE on the test sequences.

Pedestrian-ir ensure the tracking successes of Struck, STC,
and DFCL, as can be seen from Figures 2–4.

(i) Sequences Runner and Runner-ir: Runner and Runner-
ir contain examples of heavy occlusion, abrupt movement,
and scale variation. �e target running man is occluded
by lampposts, trees, stone tablet, and bushes many times,
resulting in tracking failures ofmost trackers. Also, the abrupt
movement and scale variation cause many trackers to dri�
away the target in both Runner and Runner-ir as shown in
Figure 2. Once again, ourDFCL is able to overcome the above
problems and achieve good performances.

Figures 5 and 6 are included here to demonstrate quan-
titatively the performances on average location error (pixel)
and success rate. �e success rate is de�ned as the number
of times success is achieved in the whole tracking process
by considering one frame as a success if the overlapping rate
exceeds 0.5 [33]. A smaller average location error and a larger
success rate indicate increased accuracy and robustness.
Figures 5 and 6 show that DFCL performs satisfying most of
the tracking sequences.

To validate the e
ectiveness of the discriminative �lter
selection model of DFCL, we compare the tracker DCL
(the proposed DFCL without the fusion learning model)
with DFCL and the original DCF tracker MOSSE on visible
sequences.�e performances shown in Figure 7 demonstrate
the e	ciency of the discriminative �lter selection model
especially in the sequences with background clutters, i.e.,
Sequences Biker,Hotkettle, Inglassandmobile, and Pedestrian.

5. Conclusion

Discriminative correlation �lter- (DCF-) based trackers have
the advantage of being computationally e	cient and more
robust than most of the other state-of-the-art trackers in
challenging tracking tasks, thereby making them especially
suitable for a variety of real-time challenging applications.

However,most of theDCF-based trackers su
er low accuracy
due to the lack of diversity information extracted from a
single type of spectral image (visible spectrum). Fusion of
visible and infrared sensors, one of the typical multisensor
cooperation, provides complementarily useful features and
consistently helps recognize the target from the background
e	ciently in visual tracking. For the above reasons, this paper
proposes a discriminative fusion correlation learning model
to improve DCF-based tracking performance by combining
multiple features from visible and infrared imaging sensors.
�e proposed fusion learning �lters are obtained via late
fusion with early estimation, in which the performances of
the �lters are weighted to improve the �exibility of fusion.
Moreover, the proposed discriminative �lter selection model
considers the surrounding background information in order
to increase the discriminability of the template �lters so
as to improve model learning. Numerous real-world video
sequences were used to test DFCL and other state-of-the-
art algorithms, and here we only selected representative
videos for presentation. Experimental results demonstrated
that DFCL is highly accurate and robust.
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