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Abstract
We describe a new method for phoneme sequence recognition
given a speech utterance, which is not based on the HMM. In con-
trast to HMM-based approaches, our method uses a discriminative
kernel-based training procedure in which the learning process is
tailored to the goal of minimizing the Levenshtein distance be-
tween the predicted phoneme sequence and the correct sequence.
The phoneme sequence predictor is devised by mapping the speech
utterance along with a proposed phoneme sequence to a vector-
space endowed with an inner-product that is realized by a Mercer
kernel. Building on large margin techniques for predicting whole
sequences, we are able to devise a learning algorithm which dis-
tills to separating the correct phoneme sequence from all other
sequences. We describe an iterative algorithm for learning the
phoneme sequence recognizer and further describe an efficient im-
plementation of it. We present initial encouraging experimental
results with the TIMIT and compare the proposed method to an
HMM-based approach.
Index Terms: speech recognition, phoneme recognition, acoustic
modeling, support vector machines.

1. Introduction
Most previous work on phoneme sequence recognition has focused
on Hidden Markov Models (HMM). See for example [1, 2, 3] and
the references therein. Despite their popularity, HMM-based ap-
proaches have several drawbacks such as convergence of the EM
procedure to local maximum and overfitting effects due to the large
number of parameters. Moreover, HMMs do not faithfully reflect
the underlying structure of speech signals as they assume condi-
tional independence of observations given the state sequence [4]
and often require uncorrelated acoustic features [5]. Another prob-
lem with HMMs is that they do not directly address discriminative
tasks. In particular, for the task of phoneme sequence prediction,
HMMs as well as other generative models, are not trained to mini-
mize the Levenshtein distance between the model-based predicted
phoneme sequence and the correct one.

In this paper we propose an alternative approach for phoneme
sequence recognition that builds upon recent work on discrimina-
tive supervised learning and overcome the inherent problems of the
HMM approaches. The advantage of discriminative learning algo-
rithms stems from the fact that the objective function used during
the learning phase is tightly coupled with the decision task one
needs to perform. In addition, there is both theoretical and empir-
ical evidence that discriminative learning algorithms are likely to
outperform generative models for the same task (see for instance

[6, 7]). One of the main goals of this work is to extend the notion of
discriminative learning to the complex task of phoneme sequence
prediction.

Our proposed method is based on recent advances in kernel
machines and large margin classifiers for sequences [8, 9], which
in turn build on the pioneering work of Vapnik and colleagues
[6, 7]. The phoneme sequence recognizer we devise is based on
mapping the speech signal along with the target phoneme sequence
into a vector-space endowed with an inner-product that is defined
by a kernel operator. One of the well-known discriminative learn-
ing algorithms is the support vector machine (SVM), which has
already been successfully applied in speech applications [10, 11].
Building on techniques used for learning SVMs, our phoneme se-
quence recognizer distills to a classifier in this vector-space which
is aimed at separating correct phoneme sequences from incorrect
ones. The classical SVM algorithm is designed for simple decision
tasks such as binary classification and regression. Hence, its ex-
ploitation in speech systems so far has also been restricted to sim-
ple decision tasks such as phoneme classification. The phoneme
sequence recognition problem is more complex, since we need to
predict a whole sequence rather than a single number. Previous
kernel machine methods for sequence prediction [12, 8, 13] intro-
duce optimization problems which require long run-time and high
memory resources, and are thus problematic for the large datasets
that are typically encountered in speech processing. We propose an
alternative approach which uses an efficient iterative algorithm for
learning a discriminative phoneme sequence predictor by travers-
ing the training set a single time.

This paper is organized as follows. In Sec. 2 we formally in-
troduce the phoneme sequence recognition problem. Next, our
specific learning method is described in Sec. 3. Our method is
based on non-linear phoneme recognition function using Mercer
kernels. A specific kernel for our task is presented in Sec. 4. We
present preliminary experimental results in Sec. 5 and conclude
with a discussion in Sec. 6.

2. Problem Setting
In the problem of phoneme sequence recognition, we are given a
speech utterance and our goal is to predict the phoneme sequence
corresponding to it. We represent a speech signal as a sequence of
acoustic feature-vectors x̄ = (x1, . . . ,xT ), where xt ∈ Rd for
all 1 ≤ t ≤ T . We denote the domain of the acoustic feature-
vectors by X ⊂ Rd. Each utterance corresponds to a sequence
of phoneme symbols. Formally, we denote each phoneme symbol
by p ∈ P , where P is a set of phoneme symbols, and we denote



the sequence of phoneme symbols by p̄ = (p1, . . . , pK). Fur-
thermore, we denote by sk ∈ N the start time of phoneme pk (in
frame units) and we denote by s̄ = (s1, . . . , sK) the sequence of
all phoneme start-times. Naturally, the length of the speech sig-
nal and hence the number of phonemes varies from one utterance
to another and thus T and K are not fixed. We denote by P∗
(and similarly X ∗ and N∗) the set of all finite-length sequences
over P . Our goal is to learn a function f that predicts the cor-
rect phoneme sequence given an acoustic sequence. That is, f is
a function from X ∗ to the set of finite-length sequences over the
domain of phoneme symbols, P∗. We also refer to f as a phoneme
sequence recognizer or predictor.

The ultimate goal of the phoneme sequence prediction is usu-
ally to minimize the Levenshtein distance between the predicted
sequence and the correct one. Throughout this paper we denote by
γ(p̄, p̄′) the Levenshtein distance between the predicted phoneme
sequence p̄′ and the true phoneme sequence p̄. In the next sec-
tion we present an algorithm which directly aims at minimizing
the Levenshtein distance between the predicted phoneme sequence
and the correct phoneme sequence.

3. The Learning Algorithm
In this section we describe a discriminative supervised learning
algorithm for learning a phoneme sequence recognizer f from a
training set of examples. Each example in the training set is com-
posed of an acoustic signal x̄, a sequence of phonemes, p̄, and a
sequence of phoneme start-times, s̄.

Our construction is based on a predefined vector feature func-
tion φ : X ? × (P × N)∗ → H, where H is a reproducing kernel
Hilbert space (RKHS). Thus, the input of this function is an acous-
tic representation, x̄, together with a candidate phoneme symbol
sequence p̄ and a candidate phoneme start time sequence s̄. The
feature function returns a vector in H, where, intuitively, each
element of the vector represents the confidence in the suggested
phoneme sequence. For example, one element of the feature func-
tion can sum the number of times phoneme p comes after phoneme
p′, while other element of the feature function may extract prop-
erties of each acoustic feature vector xt provided that phoneme p
was pronounced at time t. The description of the concrete form of
the feature function is differed to Sec. 4.

Our goal is to learn a phoneme sequence recognizer f , which
takes as input a sequence of acoustic features x̄ and returns a se-
quence of phoneme symbols p̄. The form of the function f we use
is

f(x̄) = arg max
p̄

“
max

s̄
w · φ(x̄, p̄, s̄)

”
, (1)

where w ∈ H is a vector of importance weights that should be
learned. In words, f returns a suggestion for a phoneme sequence
by maximizing a weighted sum of the scores returned by the fea-
ture function elements. Learning the weight vector w is analogous
to the estimation of the parameters of the local probability func-
tions in HMMs. Our approach, however, does not require w to
take a probabilistic form. The maximization defined by Eq. (1)
is over an exponentially large number of all possible phoneme se-
quences. Nevertheless, as in HMMs, if the feature function, φ, is
decomposable, the optimization in Eq. (1) can be efficiently calcu-
lated using a dynamic programming procedure.

We now describe a simple iterative algorithm for learning the
weight vector w. The algorithm receives as input a training set
S = {(x̄1, p̄1, s̄1), . . . , (x̄m, p̄m, s̄m)} of examples. Initially we
set w = 0. At each iteration the algorithm updates w according

to the ith example in S as we now describe. Denote by wi−1 the
value of the weight vector before the ith iteration. Let (p̄′i, s̄

′
i) be

the predicted phoneme sequence for the ith example according to
wi−1,

(p̄′i, s̄
′
i) = arg max

(p̄,s̄)
wi−1 · φ(x̄i, p̄, s̄) . (2)

We set the next weight vector wi to be the minimizer of the fol-
lowing optimization problem,

min
w∈H,ξ≥0

1

2
‖w −wi−1‖2 + Cξ (3)

s.t. w · φ(x̄i, p̄i, s̄i)−w · φ(x̄i, p̄
′
i, s̄

′
i) ≥ γ(p̄i, p̄

′
i)− ξ ,

whereC serves as a complexity-accuracy trade-off parameter as in
the SVM algorithm (see [7]) and ξ is a non-negative slack variable,
which indicates the loss of the ith example. Intuitively, we would
like to minimize the loss of the current example, i.e., the slack
variable ξ, while keeping the weight vector w as close as pos-
sible to our previous weight vector wi−1. The constraint makes
the projection of the correct phoneme sequence (x̄i, p̄i, s̄i) onto
w higher than the projection of the predicted phoneme sequence
(p̄′i, s̄

′
i) onto w by at least the Levenshtein distance between them.

It can be shown (see [14]) that the solution to the above optimiza-
tion problem is

wi = wi−1 + αi∆φi , (4)

where ∆φi = φ(x̄i, p̄i, s̄i)−φ(x̄i, p̄
′
i, s̄

′
i). The value of the scalar

αi is based on the Levenshtein distance γ(p̄i, p̄
′
i), the different

scores that p̄i and p̄′i received according to wi−1, and a parameter
C. Formally,

αi = min


C ,

max{γ(p̄i, p̄
′
i)−wi−1 ·∆φi, 0}
‖∆φi‖2

ff
. (5)

The optimization problem given in Eq. (3) is based on ongo-
ing work on online learning algorithms appearing in [14, 9, 15].
These papers demonstrated that, under some mild technical con-
ditions, the cumulative Levenshtein distance of the iterative pro-
cedure,

Pm
i=1 γ(p̄i, p̄

′
i), is likely to be small. Moreover, it can be

shown [16] that if the cumulative Levenshtein distance of the it-
erative procedure is small, there exists at least one weight vector
among the vectors {w1, . . . ,wm} which attains small averaged
Levenshtein distance on unseen examples as well. To find this
weight vector we simply calculate the averaged Levenshtein dis-
tance attained by each of the weight vectors on a validation set.

To conclude this section, we extend the family of linear
phoneme sequence recognizers given in Eq. (1) to non-linear
recognition functions. This extension is based on Mercer ker-
nels often used in SVM algorithms [6]. Recall that the update
rule of the algorithm is wi = wi−1 + αi∆φi and that the ini-
tial weight vector is w0 = 0. Thus, wi can be rewritten as,
wi =

Pi
j=1 αj∆φj and f can be rewritten as

f(x̄) = arg max
p̄

max
s̄

iX
j=1

αj

“
∆φj · φ(x̄, p̄, s̄)

”
. (6)

By substituting the definition of ∆φj and replacing the inner-
product in Eq. (6) with a general kernel operator K(·, ·) that sat-
isfies Mercer’s conditions [6], we obtain a non-linear phoneme



recognition function,

f(x̄) = arg max
p̄

max
s̄

iX
j=1

αj

“
K(x̄i, p̄i, s̄i; x̄, p̄, s̄)−

K(x̄i, p̄
′
i, s̄

′
i; x̄, p̄, s̄)

”
. (7)

It is easy to verify that the definition of αi given in Eq. (5) can also
be rewritten using the kernel operator.

4. Non-Linear Feature Function
In this section we describe the specific feature function we used.
As mentioned in the previous section, our goal is to design a non-
linear phoneme sequence recognizer using Mercer kernels. There-
fore, rather than describing the feature function φ, we describe
a kernel operator, which computes implicitly the inner-product
φ(x̄, p̄, s̄) · φ(x̄′, p̄′, s̄′). To simplify our notation we denote by z̄
the triplet (x̄, p̄, s̄) and similarly z̄′ denotes (x̄′, p̄′, s̄′). The kernel
operators K(z̄, z̄′) we devise can be written as a weighted sum of
three kernel operatorsK(z̄, z̄′) =

P3
i=1 βiKi(z̄, z̄

′), where βi are
positive parameters. In the following we describe the three kernel
operators we use.

The first kernel operator, K1, is reminiscent of the acoustic
model, which appears in HMMs. First, for each phoneme p ∈ P ,
let Tp(z̄) be the set of all frame times in which the phoneme p is
uttered. That is, Tp(z̄) = {t : ∃k, pk = p ∧ sk ≤ t ≤ sk+1}.
Using this definition, the first kernel operator is defined to be

K1(z̄, z̄
′) =

X
p∈P

X
t∈Tp(z̄)

X
τ∈Tp(z̄′)

exp

„
−‖xt − x′τ‖2

2σ2

«
,

where σ is a predefined constant. We would like to note in passing
that the term K1(z̄i, z̄) − K1(z̄

′
i, z̄) in Eq. (7) can be rewritten in

the following more compact form

X
p∈P

" X
t∈Tp(z̄i)

X
τ∈Tp(z̄)

exp

„
−‖xi,t − xτ‖2

2σ2

«

−
X

t∈Tp(z̄′
i)

X
τ∈Tp(z̄)

exp

„
−‖xi,t − xτ‖2

2σ2

« #
.

Rewriting the term in the big brackets in a more compact form,

X
p∈P

X
τ∈Tp(z̄)

|x̄i|X
t=1

ψ(t; z̄i, z̄
′
i) exp

„
−‖xi,t − xτ‖2

2σ2

«
, (8)

where

ψ(t; z̄i, z̄
′
i) =

8<: 1 t ∈ Tp(z̄i) ∧ t /∈ Tp(z̄′i)
−1 t /∈ Tp(z̄i) ∧ t ∈ Tp(z̄′i)
0 otherwise

In particular, for all frames xi,t such that z̄i and z̄′i agree on the
uttered phoneme, the value of ψ(t; z̄i, z̄

′
i) is zero, which means

that frame xi,t does not effect the prediction.
Before describing K2 and K3, we give a simple example of

the calculation ofK1. Assume that the phoneme sequence p̄i is /f
aa r/ with the corresponding start-time sequence s̄i = (0, 3, 7)

frame 0 1 2 3 4 5 6 7 8 9
p̄ f f f aa aa aa aa r r r
p̄′ f f f f ih ih ih r r r

Table 1: Calculation of K1: only the bold lettered phonemes are
taken into account.

and the phoneme sequence p̄′i is /f ih r/with the start-time se-
quence s̄′i = (0, 4, 7). Expanding and comparing these sequences,
we see that frames 0–2 and 7–9 match while frames 3–6 mismatch
(see Table 1). Note that the matched frames do not effect Eq. (8)
in any way. In contrast, each mismatched frame influences two
summands in Eq. (8): one with a plus sign corresponding to the
sequence p̄i (the phoneme /aa/) and one with a minus sign cor-
responding to the sequence p̄′i (phonemes /f/ and /ih/).

The second kernel operator K2 is reminiscent of a phoneme
duration model and is thus oblivious to the speech signal itself and
merely examines the duration of each phoneme. Let D denote a
set of predefined thresholds. For each p ∈ P and d ∈ D let
Np,d(z̄) denote the number of times the phoneme p appeared in p̄
while its duration was at least d, that is, Np,d(z̄) = |{k : pk =
p ∧ (sk+1 − sk) ≥ d}|. Using this notation, K2 is defined to be

K2(z̄, z̄
′) =

X
p∈P

X
d∈D

Np,d(z̄)Np,d(z̄′) .

The last kernel operator K3 is reminiscent of a phoneme tran-
sition model. Let A(p′, p) be an estimated transition probability
matrix from phoneme p′ to phoneme p. Additionally, let Θ be a
set of threshold values. For each θ ∈ Θ let Nθ(z̄) be the number
of times we switch from phoneme pk−1 to phoneme pk such that
A(pk−1, pk) is at least θ, that is, Nθ(z̄) = |{k : A(pk−1, pk) ≥
θ}|. Using this notation, K3 is defined to be

K3(z̄, z̄
′) =

X
θ∈Θ

Nθ(z̄)Nθ(z̄
′) .

We conclude this section with a brief discussion on
the practical evaluation of the function f . Recall that
calculating f requires solving the optimization problem
f(x̄) = arg maxp̄ maxs̄

Pm
j=1 αj

`
K(z̄j , z̄)−K(z̄′j , z̄)

´
. A

direct search for the maximizer is not feasible since the number
of possible phoneme sequences is exponential in the length of the
sequence. Fortunately, the kernel operator we have presented is
decomposable and thus the best phoneme sequence can be found
in polynomial time using dynamic programming (similarly to the
Viterbi procedure often implemented in HMMs [17]).

5. Experimental Results
To validate the effectiveness of the proposed approach we per-
formed experiments with the TIMIT corpus. All the experiments
described here have followed the same methodology. We divided
the training portion of TIMIT (excluding the SA1 and SA2 utter-
ances) into two disjoint parts containing 3600 and 96 utterances.
The first part is used as a training set and the second part is used
as a validation set. Mel-frequency cepstrum coefficients (MFCC)
along with their first and second derivatives were extracted from
the speech waveform in a standard way along with cepstral mean
subtraction (CMS). Leading and trailing silences from each ut-
terance were removed. The TIMIT original phoneme set of 61
phonemes was mapped to a 39 phoneme set as proposed by [1].



Correct Accuracy Ins. Del. Sub.
Kernel-based 60.8 54.9 5.9 10.8 28.4
HMM 62.7 59.1 3.6 10.5 26.8

Table 2: Phoneme recognition results comparing our kernel-based
discriminative algorithm versus HMM.

Performance was evaluated over the TIMIT core test set by cal-
culating the Levenshtein distance between the predicted phoneme
sequence and the correct one.

We applied our method as discussed in Sec. 3 and Sec. 4 where
σ2 = 6, C = 80, β = {1, 0.02, 0.005}, D = {5, 10, 15, . . . , 40}
and Θ = {0.1, 0.2, . . . , 0.9}. We compared the results of our
method to the HMM approach, where each phoneme was repre-
sented by a simple left-to-right HMM of 5 emitting states with 40
diagonal Gaussians. These models were enrolled as follows: first
the HMMs were initialized using K-means, and then enrolled in-
dependently using EM. The second step, often called embedded
training, re-enrolls all the models by relaxing the segmentation
constraints using a forced alignment. Minimum values of the vari-
ances for each Gaussian were set to 20% of the global variance of
the data. All HMM experiments were done using the Torch pack-
age [18]. All hyper-parameters including number of states, number
of Gaussians per state, variance flooring factor, were tuned using
the validation set. The overall results are given in Table 2. We
report the number of insertions (Ins.), deletions (Del.) and substi-
tutions (Sub.), as calculated by the Levenshtein distance. The Lev-
enshtein distance is defined as the sum of insertions, deletions, and
substitutions. Accuracy stands for 100% minus the Levenshtein
distance and Correct stands for Accuracy plus insertions. As can
be seen, the HMM method outperforms our method in terms of
accuracy, mainly due to the high level of insertions of our method,
suggesting that a better duration model should be explored. Nev-
ertheless, we believe that the potential of our method is larger than
the results reported and we discuss some possible improvements
in the next section. Source code of our method can be found in
http://www.cs.huji.ac.il/˜jkeshet/.

6. Discussion
To date, the most successful phoneme sequence recognizers have
been based on HMMs. In this paper, we propose an alternative
learning scheme for phoneme recognition which is based on dis-
criminative supervised learning and Mercer kernels. The work
presented in this paper is part of an ongoing research trying to
apply discriminative kernel methods to speech processing prob-
lems [19, 15]. So far, the experimental results we obtained with
our method for the task of phoneme recognition are still inferior
to state-of-the-art results obtained by HMMs. However, while
there has been extensive continuous effort on using HMMs for
phoneme sequence recognition, our method is rather innovative
and the choice of features and kernel operators is by no means
comprehensive. We intend to utilize the full power of kernel meth-
ods for phoneme recognition by experimenting with additional fea-
tures and kernels for our task.
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