
D
iscriminative learning has become a major theme

in recent statistical signal processing and pattern

recognition research including practically all

areas of speech and language processing, [9],

[10], [13], [21], [29], [35], [43], [44], [47], [49]. In

particular, much of the striking progress in large-scale auto-

matic speech recognition over the past few years has been

attributed to the successful development and applications of

discriminative learning [35], [38], [47], [48]. A key to under-

standing the speech process is the dynamic characterization of

its sequential- or variable-length pattern. Two central issues in

the development of discriminative learning methods for

sequential pattern recognition are construction of the objective

function for optimization and actual optimization techniques.

There have been a wide variety of methods reported in the liter-

ature related to both of these issues [9], [18], [21], [29], [35],
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[38], [41], [45], [49], [52], [54],

[58]. However, their relation-

ships have not been adequately

understood. Because of the

practical and theoretical

importance of this problem,

there is a pressing need for a

unified account of the

numerous discriminative

learning techniques in the

literature. This article is

aimed at fulfilling this need

while providing insight into

the discriminative learning

framework for sequential pat-

tern classification and recogni-

tion. We intend to address the

issue of how various discrimina-

tive learning techniques are related

to and distinguished from each other

and what may be a deeper underlying

scheme that can unify various ostensibly

different techniques. Although the unifying

review provided in this article is on a general

class of pattern recognition problems associated

with sequential char-

acteristics, we will focus

most of the discussions on

those related to speech recogni-

tion and to the hidden Markov

model (HMM) [11], [50], [56].

We note that the HMM as well as

the various forms of discrimina-

tive learning have been used in many signal processing-related

areas beyond speech, e.g., in bioinformatics [6], [16], computa-

tional genetics [55], text and image classification/recognition

[33], [62], [65],  video object classification [63], natural lan-

guage processing [8], [10], and telerobotics [64]. It is our hope

that the unifying review and insight provided in this article will

foster more principled and successful applications of discrimi-

native learning in a wide range of signal processing disciplines,

speech processing or otherwise. 

In addition to presenting an extensive account of the basic

ideas behind approaches and methods in discriminative learn-

ing, we also wish to position our treatment of related algorithms

in a wider context of learning and building statistical classifiers

from a more general context of machine learning. Generative

and discriminative approaches are two main paradigms for

designing and learning statistical classifiers/recognizers.

Generative recognizers rely on a learned model of the joint

probability distribution of the observed features and the corre-

sponding class membership. They use this joint-probability

model to perform the decision-making task based on the poste-

rior probability of the class computed by Bayes rule [12], [50],

[66]. In contrast, discriminative classifiers/recognizers directly

employ the class posterior probability (or the related discrimi-

nant function), exemplified by the argument that “one should

solve the (classification/recognition) problem directly and never

solve a more general problem as an intermediate step” [57]. This

recognizer design philosophy is the basis of a wide range of pop-

ular machine learning methods including support vector

machine [57], conditional random field [32], [44], and maxi-

mum entropy Markov models [19], [34], where the “intermedi-

ate step” of estimating the joint distribution has been avoided.

For example, in the recently proposed structured classification

approach [19], [32], [34], [44] in machine learning and speech

recognition, some well-known deficiencies of the HMM are

addressed by applying direct discriminative learning, replacing

the need for a probabilistic generative model by a set of flexibly

selected, overlapping features. Since the conditioning is made

on the feature sequence and these features can be designed with

long-contextual-span properties, the conditional-independence

assumption made in the HMM is conceptually alleviated, pro-

vided that proper features can be constructed. How to design

such features is a challenging research direction, and it becomes

a critical factor for the potential success of the structured dis-

criminative approach, which departs from the generative com-

ponent or joint distribution. On the other hand, local features

can be much more easily designed that are appropriate for the

generative approach, and many effective local features have been

established (e.g., cepstra, filter-

bank outputs, etc. [11], [50] for

speech recognition). Despite the

complexity of estimating joint

distributions when the sole pur-

pose is discrimination, the gen-

erative approach has important

advantages of facilitating knowl-

edge incorporation and conceptually straightforward analyses of

recognizer’s components and their interactions. 

Analyses of the capabilities and limitations associated with

the two general machine-learning paradigms discussed above

lead to a practical pattern recognition framework being pursued

here. That is, we attempt to establish a simplistic joint-distri-

bution or generative model with the complexity lower than

what is required to accurately generate samples from the true

distribution. In order to make such low-complexity generative

models discriminate well, it requires parameter learning meth-

ods that are discriminative in nature to overcome the limita-

tion in the simplistic model structure. This is in contrast to

the generative approach of fitting the intraclass data as con-

ventional maximum likelihood (ML)-based methods intend to

accomplish. This type of practical framework has been applied

to and is guiding much of the recent work in speech recogni-

tion research, where HMMs are used as the low-complexity

joint distribution for the local acoustic feature sequences of

speech and the corresponding underlying linguistic label

sequences (sentences, words, or phones). Popular discrimina-

tive parameter learning techniques for HMMs are 1) maximum

mutual information (MMI) [7], [18], [20], [39], [40], [41], [58],

MMI, MCE, AND MPE/MWE 

ARE THE THREE MOST POPULAR

DISCRIMINATIVE LEARNING CRITERIA IN

SPEECH AND LANGUAGE PROCESSING.
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[61]; 2) minimum classification error (MCE) [1], [9], [23], [28],

[29], [35], [36], [38], [49], [52], [54]; and 3) minimum phone

error (MPE) and closely related minimum word error (MWE)

[13], [45]–[48].

In addition to providing a general overview on the above

classes of techniques, this article has a special focus on three

key areas in discriminative learning. First, it provides a unify-

ing view of the three major discriminative learning objective

functions (MMI, MCE, and MPE/MWE) for classifier parameter

optimization, from which insights to the relationships among

them are derived. We concentrate on a unified objective func-

tion that gives rise to various special cases associated with dif-

ferent levels of performance optimization for pattern

recognition tasks, including performance optimization levels

of super-string unit, string unit, and substring unit. Second,

we describe an efficient approach of parameter estimation in

classifier design that unifies the optimization techniques for

discriminative learning. This approach for parameter estima-

tion in discriminative learning is based on the optimization

framework of growth transformation (GT) (see its detailed

introduction in the section “Optimizing Rational Functions

by GT”). We show that this approach leads to unified parame-

ter estimation formulas and that it is scalable for large pattern

recognition tasks. The third area is the algorithmic properties

of the MCE and MPE/MWE-based learning methods under the

parameter estimation framework of growth transformation

for sequential pattern recognition using HMMs.

DISCRIMINATIVE LEARNING CRITERIA 

OF MMI, MCE, AND MPE/MWE

MMI, MCE, and MPE/MWE are the three most popular discrimi-

native learning criteria in speech and language processing.

Although the discussion of the discriminative classifier design in

this article has a focus on speech and language processing, they

are equally applicable to other similar sequential pattern recog-

nition problems such as handwriting recognition. References

made in this article to words, phones, strings, etc., are for the

purpose of showing that the sequential dynamic pattern recog-

nition problem can be based on different levels of recognition

units. Moreover, the classifier in sequential pattern recognition

can be constructed based on recognizing each pattern (or recog-

nition unit) in isolation. If it can take advantage of the sequen-

tial correlation, the classifier can also be constructed based on

recognizing a string of patterns (or a string of recognition

units), e.g., phrases, word strings, sentences. This flexibility in

classifier design for sequential pattern recognition has been a

fertile field of research, and many approaches have been devel-

oped [22], [29], [47].

To set the stage, we denote by � the set of classifier parame-

ters that needs to be estimated during the classifier design. For

instance, in speech and language processing, a (generative) joint

distribution of observing a data sequence X given the corre-

sponding labeled word sequence S can be written as follows:

p(X, S |�) = p(X |S,�) P(S ). (1)

In this notation, it is assumed that the parameters in the “lan-

guage model” P(S ) are not subject to optimization. Given a set

of training data, we denote by R the total number of training

tokens. We focus on supervised learning, where each training

token consists of an observation data sequence:

Xr = xr,1, . . . , xr,Tr, and its correctly labeled (e.g., word) pat-

tern sequence: Sr = Wr,1, . . . , Wr,Nr, with Wr,i being the ith

word in word sequence Sr. We use a lowercase variable sr to

denote all possible pattern sequences that can be used to label

the rth token, including the correctly labeled sequence Sr and

other sequences. 

MMI

In the MMI-based classifier design, the goal of classifier

parameter estimation is to maximize the mutual informa-

tion I(X, S ) between data X and their corresponding

labels/symbols S.  From the information theory perspective,

mutual information provides a measure of the amount of

information gained, or the amount of uncertainty reduced,

regarding S after seeing X . The MMI criterion is well estab-

lished in information theory. It possesses good theoretical

properties, and it is different from the criterion of ML used

in generative model-based learning. Quantitatively, mutual

information I(X, S ) is defined as

I(X, S ) =
∑

X,S

p(X, S ) log
p(X, S )

p(X)p(S )

=
∑

X,S

p(X, S ) log
p(S |X )

p(S )
= H(S ) − H(S |X ), (2)

where H(S ) = −
∑

S p(S ) log p(S ) is the entropy of S and

H(S |X ) is the conditional entropy given data X : H(S |X ) =

−
∑

X,S p(X, S ) log p(S |X ). When p(S |X) is based on model

�, we have 

H(S |X ) = −
∑

X,S

p(X, S ) log p(S |X,�). (3)

Assume that the parameters in P(S ) (language model) and

hence H(S ) is not subject to optimization. Consequently, maxi-

mizing mutual information of (2) becomes equivalent to mini-

mizing H(S |X ) of (3) on the training data. When the tokens in

the training data are drawn from an independent and identical-

ly-distributed (i.i.d.) distribution, H(S |X ) is given by

H(S |X ) = −
1

R

R∑

r=1

log p(Sr |Xr,�)

= −
1

R

R∑

r=1

log
p(Xr, Sr |�)

p(Xr|�)
.

Therefore, parameter optimization of MMI-based discriminative

learning is to maximize the following objective function:

Authorized licensed use limited to: MICROSOFT. Downloaded on December 21, 2008 at 19:06 from IEEE Xplore.  Restrictions apply.



IEEE SIGNAL PROCESSING MAGAZINE [17] SEPTEMBER 2008

OMMI(�) =

R∑

r =1

log
p(X r, S r |�)

P(X r|�)

=

R∑

r =1

log
p(X r, S r |�)

∑

s r

p(X r, s r |�)
, (4)

where P(sr) is the language model probability of pattern

sequence sr. 

The objective function OMMI of (4) is a sum of logarithms.

For comparisons with other discriminative training criteria in

following sections, we construct the monotonically increasing

function of exponentiation for (4). This gives

ÕMMI(�) = exp[OMMI(�)] =

R∏

r=1

p(Xr, Sr |�)
∑

sr

p(Xr, sr |�)
. (5)

It should be noted that ÕMMI and OMMI have the same set of

maximum points, because maximum points are invariant to

monotonically increasing transforms. For comparisons with

other discriminative training criteria, we rewrite each factor in

(5) as

p(Xr, Sr |�)
∑

sr

p(Xr, sr |�)
= 1 −

∑

sr �=Sr

p(sr |Xr,�)

= 1 −

model based expected loss
︷ ︸︸ ︷
∑

sr

(1 − δ(sr , Sr))
︸ ︷︷ ︸

0 - 1 loss

p(sr |Xr ,�)) . (6)

We define (6) as the model-based expected utility for token

Xr , which equals one minus the model-based expected loss for

that token.

MCE

The MCE-based classifier design is a discriminant-function-based

approach to pattern recognition [1], [28], [29]. The decision rule

of the classifier is treated as comparisons among a set of discrim-

inant functions, and parameter estimation involves minimizing

the expected loss incurred when these decision rules are applied

to the classifier. The loss function in MCE-based discriminative

learning is constructed in such a way that the recognition error

rate of the classifier is embedded in a smooth functional form,

and minimizing the expected loss of the classifier has a direct

relation to classifier error rate reduction. 

The objective (loss) function in MCE-based discriminative

learning can be constructed from likelihood-based generative

models through the following steps. For each training token Xr ,

the set of discriminant functions {gsr
} is given as 

gsr
(Xr;�) = log p(Xr, sr |�) ,

which is the log joint probability of data Xr and the pattern

sequence (string) sr given model �. The decision rule of the

classifier/recognizer is defined as

C(Xr) = s∗
r iff s∗

r = arg max
sr

gsr
(Xr;�) .

In practice, the N most confusable competing strings,

sr,1, . . . , sr,N , against the correct string Sr are considered in

MCE-based discriminative learning, where each of these N-best

strings can be defined inductively by

sr,1 = arg max
sr:sr �=Sr

log p(Xr, sr |�)

sr,i = argmax
sr:sr �=Sr,sr �=sr,1,... ,sr,i−1

log p(Xr, sr |�),

i = 2, . . . , N, (7)

and � is the current model parameter set of the classifier. Then,

a misclassification measure dr(Xr,�) can be defined to approxi-

mate the performance of the decision rule for each training

token Xr , i.e., dr(Xr,�) ≥ 0 implies misclassification and

dr(Xr ,�) < 0 implies correct classification. In particular, such

a misclassification measure can be defined by 

dr(Xr,�) = −gSr
(Xr;�) + GSr

(Xr;�), (8)

where GSr
(Xr;�) is a function that represents the scores from

the incorrect competing strings and gSr
(Xr;�) is the discrimi-

nant function for the correct string Sr.

In the case of one-best string MCE approach (N = 1), only

the most confusable incorrect string sr,1 is considered as the

competitor where GSr
(Xr;�) becomes 

GSr
(Xr;�) = gsr,1

(Xr;�) . (9)

However, for the general case where N > 1, different defini-

tions of GSr
(Xr;�) can be used. One popular definition takes

the following form [29]:

GSr
(Xr;�) = log

{

1

N

N∑

i =1

pη(Xr, sr,i |�)

} 1
η

. (10)

Another popular form of gsr
(Xr;�) and GSr

(Xr;�) (the

latter has similar effects to (10) and was used in [54]) is

⎧

⎨

⎩

gSr
(Xr;�) = log pη(Xr, Sr |�)

GSr
(Xr;�) = log

N∑

i =1

pη(Xr, sr,i |�),
(11)

where η is a scaling factor for joint probability p(Xr, sr |�). In

this article, we adopt GSr
(Xr;�) with the form of (11) and set

η = 1 for mathematical tractability reasons. (The η �= 1 case

will be discussed in “Two Empirical Issues in MCE

Implementation.”)

Given the misclassification measure, the loss function

can be defined for each training token r, and it is usually

defined through a sigmoid function as originally proposed in

[28], [29]: 
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lr(dr(Xr,�)) =
1

1 + e−αdr(Xr,�)
, (12)

where α > 0 is the slope of the sigmoid function, often deter-

mined empirically. As presented in [25, p. 156], we also use

α = 1 for simplifications in the exposition of this article. (More

discussions of α in empirical studies are included in “Two

Empirical Issues in MCE Implementation”). It should be noted

that the loss function of (12) approximates the zero-one classifi-

cation error count in a smooth functional form. 

Given the set of all possible pattern sequences

{sr } = {Sr , sr,1, . . . , sr,N } associated with observation data

Xr, and with η = 1 and α = 1, we substitute (11) into (12) and

rewrite the loss function for the training token Xr as

lr(dr(Xr,�)) =

∑

sr,sr �= Sr

p(Xr, sr |�)

∑

sr,sr �= Sr

p(Xr, sr |�) + p(Xr, Sr |�)

=

∑

sr,sr �= Sr

p(Xr, sr |�)

∑

sr

p(Xr, sr |�)
. (13)

Correspondingly, we can define the utility function as one

minus the loss function, i.e., 

ur(dr(Xr,�)) = 1 − lr(dr(Xr,�)). (14)

The goal in the MCE-based discriminative learning becomes

minimization of the expected loss over the entire training data

LMCE(�) =
1

R

R∑

r=1

lr(dr(Xr,�)). (15)

Obviously, minimizing LMCE (�) in (15) is equivalent to maxi-

mizing the following MCE objective function: 

OMCE(�) = R(1 − LMCE(�))

=

R∑

r=1

ur(dr(Xr,�))

=

R∑

r=1

p(Xr, Sr |�)
∑

sr
p(Xr, sr |�)

. (16)

It is noteworthy that the summation in (16) for combining utili-

ties of all string tokens for MCE forms a sharp contrast to the

MMI case as in (5) where a multiplication of utility functions is

constructed for pooling all string tokens.

MPE/MWE

MPE/MWE is another approach to discriminative learning. It

was originally developed in [45] and [47] and has demonstrated

quite effective performance improvement in speech recogni-

tion. In contrast to MMI and MCE, which are typically aimed at

large segments of pattern sequences (e.g., at string or even

super-string level obtained by concatenating multiple pattern

strings in sequence), MPE aims at the performance optimiza-

tion at the substring pattern level. In speech recognition, a pat-

tern string usually corresponds to a sentence which consists of

a sequence of words, and a substring as a constituent of the

sentence can be words or phones (subwords). 

The MPE objective function that needs to be maximized is

defined as

OMPE(�) =

R∑

r=1

∑

sr
p(Xr, sr |�) A(sr, Sr)

∑

sr
p(Xr, sr |�),

(17)

where A(sr, Sr) is the raw phone (substring) accuracy count in

the sentence string sr (proposed originally in [45] and [47]).

The raw phone accuracy count A(sr, Sr) is defined as the total

phone (substring) count in the reference string Sr minus the

sum of insertion, deletion, and substitution errors of sr com-

puted based on Sr.

The MPE criterion (17) equals the model-based expecta-

tion of the raw phone accuracy count over the entire training

set. This relation can be seen more clearly by rewriting (17) as 

OMPE(�) =

R∑

r=1

∑

sr

P(sr |Xr,�)A(sr, Sr)

where

p(sr |Xr,�) =
p(Xr, sr |�)

p(Xr |�)
=

p(Xr, sr |�)
∑

sr
p(Xr, sr |�)

is the model-based posterior probability.

The concept of raw phone accuracy count A(sr, Sr) in (17)

can be generalized to define raw substring accuracy count. In

particular, raw word accuracy count Aw(sr, Sr) can be defined in

the same fashion as the total word (substring) count in the

reference string Sr minus the sum of insertion, deletion and sub-

stitution errors of sr computed based on Sr. Based on raw word

accuracy count Aw(sr, Sr), we have the equivalent definition of

the MWE criterion

OMWE(�) =

R∑

r=1

∑

sr
p(Xr, sr |�) Aw(sr, Sr)
∑

sr
p(Xr, sr |�)

, (18)

and therefore, in this article, we merge these two approaches

into one MPE/MWE category.

KEY DIFFERENCES

At the single-token level, the MMI criterion uses a model-based

expected utility of (6) while the MCE criterion uses an classifier-

dependent smoothed empirical utility defined by (8), (12), and

(14). The MPE/MWE criterion also uses a model-based expected

utility, but the utility is computed at the substring level, e.g., at

the phone or word level. In this article, we note that for mathe-

matical tractability reasons, a specific misclassification measure

(11) is used for MCE. As a consequence, the smoothed empirical

utility (14) takes the same form as (6) (though they are derived
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from different motivations). This

can be directly seen by substitut-

ing (13) for (14).

At the multiple-token level,

by comparing (5), (16), (17), and

(18), it is clear that MMI training

maximizes a product of model-

based expected utilities of train-

ing tokens, while MCE training

maximizes a summation of smoothed empirical utilities over

all training tokens and MPE/MWE training maximizes a sum-

mation of model-based expected utilities (computed on sub-

string units). The difference between the product and the

summation forms of the utilities differentiates MMI from

MCE/MPE/MWE. This difference causes difficulties in extend-

ing the original GT/extended Baum-Welch (EBW) formulas

proposed for MMI to other criteria [47 p. 92]. In the following

sections, we will show how this difference is reflected in our

unified criterion. 

THE COMMON RATIONAL-FUNCTION FORM FOR

OBJECTIVE FUNCTIONS OF MMI, MCE, AND MPE/MWE

In this section, we show that the objective functions in discrimi-

native learning based on the MMI, MCE, and MPE/MWE criteria

can be mapped to a canonical rational-function form where the

denominator function is constrained to be positive valued. This

canonical rational-function form has the benefit of offering

insights into the relationships among MMI, MCE, and

MPE/MWE-based classifiers. In addition, it facilitates the devel-

opment of a unified classifier parameter optimization frame-

work for applying MMI, MCE, and MPE/MWE objective

functions in sequential pattern recognition tasks. 

RATIONAL-FUNCTION FORM 

FOR THE OBJECTIVE FUNCTION OF MMI

Based on (5), the canonical rational-function form for MMI

objective function can be constructed as 

ÕMMI(�) =
p(X1 . . . XR, S1 . . . SR |�)

∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�)

=

∑

s1...sR
p(X1 . . . XR, s1...sR |�) CMMI(s1 . . . sR)

∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�)

,

(19)

where

CMMI(s1 . . . sR) =

R∏

r=1

δ(sr, Sr) (20)

is a quantity that depends only on the sentence sequence

s1, . . . , sR and δ(sr, Sr) is the Kronecker delta function, i.e., 

δ(sr, Sr) =

{

1 if sr = Sr

0 otherwise.

In (19), the first step uses the

common assumption that differ-

ent training tokens are independ-

ent of each other.

The MMI objective function is

aimed at improving the condi-

tional likelihood on the entire

training data set instead of on

each individual string (token). It

can be viewed as a discriminative performance measure at

the super-string level of all training data s1, . . . , sR, where

CMMI(s1, . . . , sR) can be interpreted as the binary function

(as accuracy count) of the super-string s1, . . . , sR , which

takes value one if the super-string s1, . . . , sR is correct and

zero otherwise. 

RATIONAL-FUNCTION FORM 

FOR THE OBJECTIVE FUNCTION OF MCE

Unlike the MMI case where the rational-function form can be

obtained through a simple exponential transformation, the

objective function of MCE as given in (16) is a sum of rational

functions rather than a rational function in itself (i.e., a ratio

of two polynomials). This creates the problem of making the

objective function of MCE amenable to the parameter opti-

mization framework of GT. Consequently, the objective func-

tion of MCE is usually optimized using the generalized

probabilistic descent (GPD) [9], [28], [29] algorithm or other

gradient-based methods [37], [38]. Despite the popularity and

many successful applications, the gradient descent based

sequential learning using GPD has two main drawbacks. First,

it is a sample-by-sample learning algorithm. Algorithmically,

it is difficult for GPD to parallelize the parameter learning

process, which is critical for large scale tasks. Second, it is not

a monotone learning algorithm and it does not have a mono-

tone learning function to determine the stopping point of the

discriminative learning. Recently, applying other batch-mode

gradient-based optimization methods, including batch and

semibatch probabilistic descent, Quickprop, and resilient

back-propagation (Rprop), to MCE training have been pro-

posed, and improved recognition results are reported [37],

[38]. However, monotone convergence of these methods has

not been established.

In this article, we take a different approach that makes the

objective function for MCE-based discriminative learning direct-

ly suitable for GT-based parameter optimization. The scalability

and monotone convergence learning properties of GT have the

advantage of being fast and stable. In order to realize this advan-

tage, we need to reformulate the MCE objective function and

derive a canonical rational-function form for the objective func-

tion of MCE. The canonical rational-function form of MCE

derived in this process has an additional benefit of unifying the

MCE objective function with MMI and MPE/MWE ones, upon

which their differences and similarities can be studied. 

The derivation of the rational-function form for the objective

function of MCE is as follows:

GT-BASED PARAMETER

OPTIMIZATION REFERS TO A FAMILY

OF BATCH-MODE, ITERATIVE

OPTIMIZATION SCHEMES THAT GROW

THE VALUE OF THE OBJECTIVE

FUNCTION UPON EACH ITERATION.
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OMCE(�) =

R∑

r=1

∑

sr
p(Xr, sr |�)δ(sr, Sr)
∑

sr
p(Xr, sr |�)

(21)

=

∑

s1
p(X1, s1 |�)δ(s1, S1)
∑

s1
p(X1, s1 |�)

︸ ︷︷ ︸

:=O1

+

∑

s2
p(X2, s2 |�)δ(s2, S2)
∑

s2
p(X2, s2 |�)

︸ ︷︷ ︸

:=O2

+

∑

s3
p(X3, s3 |�)δ(s3, S3)
∑

s3
p(X3, s3 |�)

︸ ︷︷ ︸

:=O3

+ · · · +

∑

sR
p(XR, sR |�)δ(sR, SR)
∑

sR
p(XR, sR |�)

︸ ︷︷ ︸

:=OR

=

∑

s1

∑

s2

p(X1, s1|�)p(X2,s2|�)[δ(s1,S1) + δ(s2,S2)]

∑

s1

∑

s2

p(X1, s1|�)p(X2, s2|�)

+ O3 + · · · + OR

=

∑

s1 s2

p(X1, X2, s1, s2 |�)[CMCE(s1 s2)]

∑

s1 s2

p(X1, X2, s1, s2 |�)

+ O3 + · · · + OR

=

∑

s1 s2 s3

p(X1, X2, X3, s1, s2, s3 |�)[CMCE(s1 s2 s3)]

∑

s1 s2 s3

p(X1, X2, X3, s1, s2, s3 |�)

+ O4 + · · · + OR

=

∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�) CMCE(s1 . . . sR)
∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�)

,

(22)

where CMCE(s1 . . . sR) =
∑R

r=1 δ(sr, Sr). CMCE(s1, . . . , sR) can

be interpreted as the string accuracy count for s1, . . . , sR ,

which takes an integer value between zero and R as the number

of correct strings in s1, . . . , sR. The rational-function form (22)

for the MCE objective function will play a pivotal role in our

study of MCE-based discriminative learning.

RATIONAL-FUNCTION FORM 

FOR THE OBJECTIVE FUNCTIONS OF MPE/MWE

Similar to MCE, the MPE/MWE objective function is also a

sum of multiple (instead of a single) rational functions, and

hence it is difficult to derive GT formulas as discussed in [47,

p. 92]. In order to bypass this issue, a method of optimizing

MPE/MWE objective functions based on a heuristic weak-sense

auxiliary function (WSAF) was developed in [45] and [47]. We

reformulate the MPE/MWE objective function to its equivalent,

canonical rational-function form, making the parameter opti-

mization in MPE/MWE-based discriminative learning directly

amendable to the GT-based parameter estimation framework.

It provides a unified parameter estimation framework with

guaranteed monotone convergence properties which are lack-

ing in other alternative methods such as gradient-based and

WSAF-based approaches. 

An important finding is that the same method used to derive

the rational-function form (22) for the MCE objective function

can be applied directly to derive the rational-function form for

MPE/MWE objective functions as defined in (17) and (18). Note

that (17) and (18) are in the same form as (21), except that

δ(sr, Sr) is replaced by A(sr, Sr) or Aw(sr, Sr). The same deriva-

tion steps for the objective function of MCE can be applied here

and rational-function forms for MPE/MWE are given as follows:

OMPE(�) =

∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�)CMPE(s1 . . . sR)
∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�)

,

(23)

where

CMPE(s1 . . . sR) =

R∑

r=1

A(sr, Sr) ,

and 

OMWE(�) =

∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�)CMWE(s1 . . . sR)
∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�)

,

(24)

where

CMWE(s1 . . . sR) =

R∑

r=1

Aw(sr, Sr) .

CMPE(s1, . . . , sR) or CMWE(s1, . . . , sR) can be interpreted as

the raw phone or word (substring unit) accuracy count within

the super string s1, . . . , sR. Its upper-limit value is the total

number of phones or words in the full training data (i.e., the

correct super-string S1, . . . , SR). However, the actual value can

become negative, e.g., if there are too many insertion errors.

Correspondingly, OMPE(�) and OMWE(�) can be interpreted as

the model-based average raw phone or word accuracy count of

the full training data set, respectively.

DISCUSSIONS

The main result in this section is that all three discrimina-

tive learning objective functions, MMI, MCE, and MPE/MWE,

can be formulated in a unified canonical rational-function

form as follows:

O(�) =

∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�) · CDT(s1 . . . sR)
∑

s1...sR
p(X1 . . . XR, s1 . . . sR |�)

,

(25)

where the summation over s = s1 . . . sR in (25) denotes all pos-

sible labeled sequences (both correct and incorrect ones) for all

R training tokens. As it will be further elaborated, this huge

number of possible strings can be drastically reduced in practi-

cal implementations. 
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In (25), X1 . . . XR

denotes the collection

of all observation data

sequences (strings) in

all R training tokens,

which we also call a

super string after con-

catenating them into

one single string. p�

(X1 . . . XR, )(s1 . . . sR)

is the joint distribu-

tion of  the super-

string data X1 . . . XR

and its possible label

sequence s1 . . . sR .

MMI, MCE, and MPE/

MWE are differenti-

ated in (25) through

the criterion-dependent weighting factors CMMI(s1 . . . sR),

CMCE(s1 . . . sR), and CMPE(s1 . . . sR), respectively. An impor-

tant property is that: CDT(s1 . . . sR) is dependent only on the

labeled sequence s1 . . . sR , and it is independent of the

parameter set � to be optimized.

The rational-function formulation (25) for MMI, MCE,

and MPE/MWE objective functions serves two main purpos-

es. First, it unifies the objective functions for MMI, MCE,

and MPE/MWE in a canonical rational-function form upon

which the relations among different discriminative learning

criteria can be studied and their properties be compared.

This provides insights into the various approaches in dis-

criminative learning. Second, the unified objective function

(25) overcomes the main obstacle for applying the GT-based

parameter optimization framework in discriminative learn-

ing. It leads to a scalable and common parameter estimation

framework for discriminative learning, which is highly effi-

cient and has well-founded algorithmic convergence proper-

ties. All these properties have been among the major

concerns in the past when applying discriminative learning

to sequential pattern recognition.

As presented in this section, the key difference in the

rational-function form of MMI, MCE, and MPE/MWE criteria is

the weighting factor in the numerator of (25), where

CDT(s1 . . . sR) as a generic weighting factor depends on what

discriminative training (DT) criterion is being applied. For

example, for MMI 

CDT(s1 . . . sR) =

R∏

r=1

δ(sr, Sr) ,

and for MPE

CDT(s1 . . . sR) =

R∑

r=1

A(sr, Sr) .

In the case of MCE with general N-best competitors where

N > 1

CDT(s1 . . . sR) =

R∑

r=1

δ(sr, Sr) ,

and for one-best MCE (N = 1), sr belongs to only the subset

{Sr, sr,1}. From the canonical rational-function form (25), direct

comparisons can be made on the objective functions of MMI,

MCE, and MPE/MWE. Table 1 tabulates the relation among

these discriminative objective functions. As discussed in [47],

MPE/MWE has an important difference from MCE and MMI in

that the weighting given by the MPE/MWE criterion to an incor-

rect string (sentence token) depends on the number of wrong

substrings (e.g., wrong phones or words) within the string. MCE

and MMI make a binary distinction based on whether the entire

sentence string is correct or not, which may not be a good fit if

the goal is to reduce the substring errors (e.g., word errors in

speech recognition). This distinction can be clearly seen by

comparing the sum of the binary function

CDT(s1 . . . sR) =

R∑

r=1

δ(sr, Sr)

for MCE and the sum of nonbinary functions

CDT(s1 . . . sR) =

R∑

r=1

A(sr, Sr)

for MPE/MWE. This key difference gives rise to the distinction of

the substring level versus the string level recognition perform-

ance optimization in MPE/MWE and MCE. Further, the product

instead of summation form of the binary function associated

with MMI, i.e.,

CDT(s1 . . . sR) =

R∏

r=1

δ(sr, Sr)

makes it clear that MMI achieves performance optimization at

the super-string level, e.g., the joint product of Kronecker

OBJECTIVE FUNCTIONS CDT (sr) CDT (s1 . . . sR) LABEL SEQUENCE SET USED IN DT 

MCE (N-BEST) δ(sr, Sr)
R∑

r=1

CDT (sr) {Sr, sr,1, . . . , sr,N}

MCE (ONE-BEST) δ(sr, Sr)
R∑

r=1

CDT (sr) {Sr, sr,1}

MPE A(sr, Sr)
R∑

r=1

CDT (sr) ALL POSSIBLE LABEL SEQUENCES 

MWE Aw(sr, Sr)
R∑

r=1

CDT (sr) ALL POSSIBLE LABEL SEQUENCES 

MMI δ(sr, Sr)
R∏

r=1

CDT (sr) ALL POSSIBLE LABEL SEQUENCES

[TABLE 1]  CDT (s1 . . . sR) IN THE UNIFIED RATIONAL-FUNCTION FORM FOR MMI, MCE, AND MPE/MWE
OBJECTIVE FUNCTIONS. THE SET OF “COMPETING TOKEN CANDIDATES” DISTINGUISHES 
N-BEST AND ONE-BEST VERSIONS OF THE MCE. NOTE THAT THE OVERALL CDT (s1 . . . sR)

IS CONSTRUCTED FROM ITS CONSTITUENTS CDT (sr)’S IN INDIVIDUAL STRING TOKENS BY 
EITHER SUMMATION (FOR MCE, MPE/MWE) OR PRODUCT (FOR MMI).
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delta functions becomes zero if any sentence token is incor-

rect. Therefore, all summation terms in the numerator of (25)

are zero except for the one corresponding to the correct

label/transcription sequence. This criterion is apparently less

desirable than MCE or MPE/MWE, as has been observed exten-

sively in speech recognition experiments [35], [45]–[47].

Another insight from the unified form of objective function

(25) is that in the special case of having only one sentence

token (i.e., R = 1) in the training data and when the sentence

contains only one phone, then all three MMI, MCE, and

MPE/MWE criteria become identical. This is obvious because in

this case CDT(s1 . . . sR) becomes identical. The difference sur-

faces only when the training set consists of multiple sentence

tokens. With multiple training tokens, the difference lies main-

ly in the �-independent weighing factor CDT(s1 . . . sR) (as well

as in the set of competitor strings) while the general rational-

function form (25) for the three criteria remains unchanged.

Although we intend to derive the GT-based parameter opti-

mization framework for the three types of objective functions of

MMI, MCE, and MPE/MWE in sequential pattern recognition, it

should be noted that the unified objective function (25) can pro-

vide a critical foundation to derive other parameter optimization

methods in discriminative learning. For example, recently

Jebara [26], [27] proposed a parameter optimization method for

rational functions as an alternative to the GT method. This

method is based on the reverse Jensen inequality, upon which

an elegant solution for HMMs with exponential-family densities

is constructed [26]. 

OPTIMIZING RATIONAL FUNCTIONS BY GT

GT-based parameter optimization refers to a family of batch-

mode, iterative optimization schemes that “grow” the value of

the objective function upon each iteration. That is, the new set

of model parameter � is estimated from the current model

parameter set �′ through a transformation � = T(�′) with

the property that the target objective function “grows” in its

value O(�) > O(�′) unless � = �′. One particular algorithm

of this type of optimization techniques is EBW algorithm when

HMM parameters are estimated. The GT/EBW algorithm was

initially developed for the homogeneous polynomial by Baum

and his colleagues [3], [4]. It was later extended to optimizing

nonhomogeneous rational functions as reported in [18]. The

EBW algorithm became popular for its successful application in

MMI-based discriminative training of discrete HMMs [18]. It

was later extended and applied to MMI-based discriminative

training of continuous-density HMMs (CDHMMs) [2], [20],

[41], [59], [61]. 

The importance of the GT/EBW algorithm lies in its mon-

otone convergence properties, its algorithmic effectiveness

and scalability for parallel execution, and its closed-form

parameter updating formulas for large-scale optimization

problems. The unified parameter optimization framework of

GT also alleviates the need for other heuristics, e.g., tuning

the parameter-dependent learning rate as in some other

methods [29], [52].

Let G(�) and H(�) be two real-valued functions on the

parameter set �, and the denominator function H(�) is posi-

tive valued. The goal of GT-based parameter optimization is to

find an optimal � that maximizes the objective function O(�)

which is a rational-function of the following form:

O(�) =
G(�)

H(�)
. (26)

For example, O(�) can be one of the rational-functions of (19),

(22), (23) and (24) for the MMI, MCE, and MPE/MWE objective

functions, respectively, or the general rational-function (25). In

the general case of (25), we have

G(�) =
∑

s

p(X, s |�) C(s), and

H(�) =
∑

s

p(X, s |�), (27)

where we use short-hand notation s = s1 . . . sR to denote the

labeled sequences of all R training tokens/sentences, and

X = X1 . . . XR, to denote the observation data sequences for all

R training tokens.

PRIMARY AUXILIARY FUNCTION

As originally proposed in [18], for the objective function (26),

the GT-based optimization algorithm will construct an auxiliary

function of the following form:

F(�;�′) = G(�) − O(�′)H(�) + D, (28)

where D is a quantity independent of the parameter set, and � is

the model parameter set to be estimated by applying GT to another

model parameter set �′. The GT algorithm starts from the (initial)

parameter set �′ (e.g., obtained using ML training). Then, it

updates the parameter set from �′ to � by maximizing the auxil-

iary function F(�;�′), and the process iterates until convergence

is reached. Maximizing the auxiliary function F(�;�′) can often

be more feasible than directly maximizing the original rational-

function O(�). The important property of GT-based parameter

optimization is that as long as D is a quantity not relevant to the

parameter set �, an increase of F(�;�′) guarantees an increase

of O(�). This can be seen clearly from the following derivation.

Substituting � = �′ into (27), we have

F (�′;�′) = G(�′) − O(�′)H(�′)
︸ ︷︷ ︸

= 0

+ D = D .

Hence,

F (�;�′) − F(�′;�′) = F(�;�′) − D

= G(�) − O(�′)H(�)

= H(�)

(
G(�)

H(�)
− O(�′)

)

= H(�)(O(�) − O(�′)).
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Since H(�) is positive, we have O(�) − O(�′) > 0 on the

right-hand side, as long as F(�;�′) − F(�′;�′) > 0 is on the

left-hand side.

SECONDARY AUXILIARY FUNCTION

However, F(�;�′) may still be too difficult to optimize direct-

ly, and a secondary auxiliary function can be constructed and

optimized based on the previous auxiliary function F(�;�′).

As proposed in [20], this secondary auxiliary function in GT-

based parameter estimation can have the following form: 

V(�;�′) =
∑

s

∑

q

∑

χ

f(χ, q, s,�′) log f(χ, q, s,�), (29)

where f(χ, q, s,�) is a positive valued function which is

constructed with discrete arguments of χ, q, s and which

is related to the primary auxiliary function F(�;�′)

according to

F(�;�′) =
∑

s

∑

q

∑

χ

f(χ, q, s,�). (30)

Examples of the arguments χ, q, s are the discrete acoustic

observation, the HMM state sequence, and the label sequence,

respectively, in a discrete-HMM-based sequential classifier.

By applying the Jensen’s inequality to the concave log func-

tion, it is easy to prove (proof omitted here) that an increase in

the auxiliary function V(�;�′) guarantees an increase in

log F(�;�′). Since logarithm is a monotonically increasing

function, this implies an increase of F(�;�′) and hence an

increase of the original objective function O(�).

DISCRIMINATIVE LEARNING 

FOR DISCRETE HMMS BASED ON THE GT FRAMEWORK

The GT/EBW-based discriminative learning for discrete HMMs

needs to estimate the model parameters � = {{ai, j}, {bi(k)}}

consisting of the state transition and emitting probabilities.

We derive the parameter optimization formula that “grows”

the generic discriminative objective function O(�) in the

form of (25) which covers MMI, MCE, and MPE/MWE as spe-

cial cases. The discriminative function O(�) is difficult to

optimize directly. However, since it is a rational function, it is

amenable to the GT/EBW-based parameter estimation frame-

work. We can construct the auxiliary function F and then con-

struct the secondary auxiliary function V based on F. We

describe how to optimize V(�;�′), leading to the GT-based

parameter estimation formulas for all three types of discrimi-

native criteria: MMI, MCE, and MPE/MWE. This approach is

applicable to any other discriminative criteria as long as the

objective functions can be represented in a rational-function

form of (25).

For the discrete HMM, the observation space is quantized by

some discrete codebook. In this case, X = X1 . . . XR is a con-

catenation of all training tokens, and each training token Xr

consists of a sequence of discrete indices obtained by mapping

the time sequence of observations for rth token to a discrete

index sequence with each element xr,t ∈ [1, 2, . . . , K ], where

K is the size of the codebook index set and xr,t is the index of

the cell that the observation of the tth frame in rth token is

quantized to.

CONSTRUCTING THE PRIMARY 

AUXILIARY FUNCTION F (�;�′)

Substituting (27) into (28), we obtain the following auxiliary

function: 

F (�;�′) =
∑

s

p(X, s |�)C(s) − O(�′)
∑

s

p(X, s |�) + D

=
∑

s

p(X, s |�)[C(s) − O(�′)] + D

=
∑

s

∑

q

p(X, q, s |�)[C(s) − O(�′)] + D, (31)

where q is an HMM state sequence, and s = s1 . . . sR is the

“super” label sequence for all R training tokens (including cor-

rect or incorrect sentences). The main terms in the auxiliary

function F (�;�′) above can be interpreted as the average

deviation of the accuracy count.

CONSTRUCTING THE SECONDARY

AUXILIARY FUNCTION V (�;�′)

Since p(s) depends on the language model and is irrelevant for

optimizing �, we have p(X, q, s |�) = p(s, ) · p(X, q |s,�), and 

F (�;�′) =
∑

s

∑

q

[C(s) − O(�′)]p(s)p(X, q |s,�) + D

=
∑

s

∑

q

∑

χ

[Ŵ(�′) + d(s)]p(χ, q |s,�), (32)

where 

Ŵ(�′) = δ(χ, X )p(s)[C(s) − O(�′)] (33)

and

D =
∑

s

d(s)

is a quantity independent of parameter set �. In (33), δ(χ, X )

is the Kronecker delta function, where χ represents the entire

discrete data space where X belongs. Using ideas in [20], the

summation over this data space is introduced here for satisfy-

ing the requirement in (28) and (32) that constant D be

parameter independent. That is, in (32)

∑

s

∑

q

∑

χ

d(s)p(χ, q |s,�) =
∑

s

d(s) = D

is a �-independent constant. While the full sum is �-independ-

ent, each constituent d(s)p(χ, q |s,�) is a �-dependent quantity
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in order to account for the pos-

sibility that the corresponding

term Ŵ(�′)p(χ, q |s,�) may be

negative. We elaborate this

point below.

To construct the secondary

auxiliary function for (29) based

on function (32), we first identify

from (32) that

f(χ, q, s,�) = [Ŵ(�′) + d(s)]p(χ, q |s,�)

according to (30). To ensure that f(χ, q, s,�) above is positive,

d(s) should be selected to be sufficiently large so that

Ŵ(�′) + d(s) > 0 (note p(χ, q |s,�) in (32) is nonnegative).

Then, using (29), we have

V(�;�′) =
∑

q

∑

s

∑

χ

[Ŵ(�′) + d(s)]p(χ, q |s,�′)

× log

⎧

⎪
⎨

⎪
⎩

[Ŵ(�′) + d(s)]
︸ ︷︷ ︸

optimization-independent

p(χ, q |s,�)

⎫

⎪
⎬

⎪
⎭

=
∑

q

∑

s

∑

χ

[Ŵ(�′) + d(s)] p(χ, q |s,�′)

× log p(χ, q |s,�) + Const.

=
∑

q

∑

s

p(X,q, s |�′)(C(s) − O(�′)) log p(X,q |s,�)

+
∑

q

∑

s

∑

χ

d(s)p(χ, q |s,�′)

× log p(χ, q |s,�) + Const. (34)

The auxiliary function (34) is easier to optimize than (32),

because the new logarithm log p(X, q |s,�) introduced in (34)

[which is absent in (32)] can lead to significant simplification of

V(�;�′) which we outline below.

SIMPLIFYING THE SECONDARY 

AUXILIARY FUNCTION V (�;�′)

We first ignore optimization-independent constant in (34),

and divide V(�;�′) by another optimization-independent

quantity, p(X |�′), in order to convert the joint probability

p(X, q, s |�′) to the posterior probability p(q, s |X,�′) =

p(s |X,�′)p(q |X, s,�′). We then obtain an equivalent auxil-

iary function of

U(�;�′) =
∑

q

∑

s

p(s |X,�′)p(q |X, s,�′)

× (C(s) − O(�′)) log p(X, q |s,�)

+
∑

q

∑

s

∑

χ

d ′(s)p(χ, q |s,�′) log p(χ, q |s,�),

(35)

where

d ′(s) = d(s)/p(X |�′) . (36)

Since X depends only on

the HMM state sequence q, we

have p(X, q |s,�) = p(q |s,�)·

p(X |q,�). Therefore, U(�;�′)

can be further decomposed to

four terms as follows:

U(�;�′) =

term−I
︷ ︸︸ ︷
∑

q

∑

s

p(s |X,�′)p(q |X, s,�′)(C(s) − O(�′)) log p(X |q,�)

+
∑

q

∑

s

∑

χ

d ′(s)p(χ, q |s,�′) log p(χ |q,�)

︸ ︷︷ ︸

term−II

+

term−III
︷ ︸︸ ︷
∑

q

∑

s

p(s |X,�′)p(q |X, s,�′)(C(s) − O(�′)) log p(q |s,�)

+
∑

q

∑

s

∑

χ

d ′(s)p(χ, q |s,�′) log p(q |s,�)

︸ ︷︷ ︸

term−IV

. (37)

In this case, X = X1 . . . XR , aggregates all training data

with R independent sentence tokens. For each token

Xr = xr,1, . . . , xr,Tr, the observation vector xr,t is independent

of each other and it depends only on the HMM state at time t.

Hence, log p(X |q,�) can be decomposed, enabling simplifica-

tion of both term-I and term-II in (37). To simplify term-III

and term-IV in (37), we decompose log p(q |s,�) based on the

property of the first-order HMM that state at time t depends

only on state at time t−1. We now elaborate on the simplifica-

tion of each of these four terms.

For term-I, we first define

γi,r,sr
(t) =

∑

q,qr,t =i

p(q |X, s,�′)

= p(qr,t = i |X, s,�′)

= p(qr,t = i |Xr, sr,�
′). (38)

The last equality comes from the fact that sentence tokens

in the training set are independent of each other. γi,r,sr
(t) is

the occupation probability of state i at time t , given the label

sequence sr and observation sequence Xr , which can be

obtained through an efficient forward-backward algorithm

[50]. Using the definition of (38) and assuming the HMM state

index is from 1 to I, we have

TWO CENTRAL ISSUES IN THE

DEVELOPMENT OF DISCRIMINATIVE

LEARNING METHODS FOR SEQUENTIAL

PATTERN RECOGNITION ARE

CONSTRUCTION OF THE OBJECTIVE

FUNCTION FOR OPTIMIZATION AND

ACTUAL OPTIMIZATION TECHNIQUES.
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term-I =
∑

s

p(s |X,�′)(C(s) − O(�′))

×
∑

q

p(q |X, s,�′)

R∑

r=1

Tr∑

t=1

log p(xr,t |qr,t,�)

=
∑

s

p(s |X,�′)(C(s) − O(�′))

×

R∑

r=1

Tr∑

t=1

I∑

i =1

∑

q,qr,t =i

p(q |X, s,�′)

× log p(xr,t |qr,t = i,�)

=
∑

s

p(s |X,�′)(C(s) − O(�′))

×

R∑

r=1

Tr∑

t=1

I∑

i =1

γi,r,sr
(t) log p(xr,t |qr,t = i,�). (39)

The simplification process for the second term in (37) is can be

found in [24], which gives the final result of 

term-II =

R∑

r=1

Tr∑

t=1

I∑

i =1

d(r, t, i )
∑

χr,t

p(χr,t |qr,t = i;�′)

× log p(χr,t |qr,t = i;�), (40)

where

d(r, t, i ) =
∑

s

d ′(s)p(qr,t = i |s,�′) . (41)

To simplify term-III in (37), we first define

ξi, j,r,sr
(t) =

∑

q:qr,t−1 =i,qr,t = j

p(q |X, s,�′)

= p(qr,t−1 = i, qr,t = j|X, s,�′)

= p(qr,t−1 = i, qr,t = j|Xr, sr,�
′), (42)

which is the posterior probability of staying at state i at time

t − 1 and staying at state j at time t, given the labeled

sequence sr and the observation sequence Xr. This posterior

probability can be computed using an efficient forward-back-

ward algorithm [50]. Further, p(q |s,�) can be decomposed

as follows:

p(q |s,�) =

R∏

r=1

p(qr,1, . . . , qr,Tr
|sr,�) =

R∏

r=1

Tr∏

t=1

aqr,t−1,qr,t .

This leads to the following results (see technical detail in

[24]):

term-III =
∑

s

p(s |X,�′)(C(s) − O(�′))

×

R∑

r=1

Tr∑

t=1

I∑

i =1

I∑

j=1

ξi, j,r,sr
(t) log ai, j (43)

and

term-IV =

R∑

r=1

Tr∑

t=1

I∑

i =1

d(r, t − 1, i )
I∑

j=1

a ′
i, j log ai, j (44)

where a ′
i, j = p(qr,t = j|qr,t−1 = i, s,�′) is the transition prob-

ability from the previous GT iteration.

Substituting (39), (40), (43) and (44) into (37), and denoting

the emitting probability by bi(xr,t) = p(xr,t |qr,t = i,�) and

b ′
i (xr,t) = p(xr,t |qr,t = i,�′), we obtain the decomposed and

simplified objective function

U(�;�′) = U1(�;�′) + U2(�;�′), (45)

where

U1(�;�′) =

R∑

r=1

Tr∑

t=1

I∑

i =1

∑

s

p(s |X,�′)(C(s) − O(�′))

× γi,r,sr
(t) log bi(xr,t) +

R∑

r=1

Tr∑

t=1

I∑

i =1

d(r, t, i)

×
∑

χr,t

b ′
i (χr,t) log bi (χr,t) (46)

U2(�;�′) =

R∑

r=1

Tr∑

t=1

I∑

i =1

I∑

j=1

∑

s

p(s |X,�′)(C(s) − O(�′))

× ξi, j,r,sr
(t) log ai, j +

R∑

r=1

Tr∑

t=1

I∑

i =1

d(r, t−1, i )

×

I∑

j=1

a ′
i, j log ai, j. (47)

In (45), U1(�;�′) is relevant only to optimizing the emitting

probability bi(k), and U2(�;�′) is relevant only to optimizing

the transition probability ai, j.

ESTABLISHING GT BY OPTIMIZING 

THE AUXILIARY FUNCTION U (�;�′)

In order to optimize the discrete distribution bi(k) =

p(xr,t = k |qr,t = i,�), k = 1, 2, . . . , K , where the constraint
∑K

k=1 bi(k) = 1 is imposed, we apply the Lagrange multiplier

method by constructing

W1(�;�′) = U1(�;�′) +

I∑

i =1

λi

(
K∑

k=1

bi(k) − 1

)

. (48)

Setting ∂W1(�;�′)/∂λi = 0 and ∂W1(�;�′)/∂bi(k) = 0,

k = 1, . . . , K, we have the following K + 1 equations
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K∑

k=1

bi(k) − 1 = 0

0 = λibi(k ) +

R∑

r = 1

Tr∑

t = 1
s.t. xr , t = k

×

�γ (i,r,t)
︷ ︸︸ ︷
∑

s

p(s |X,�′)(C(s) − O(�′))γi,r,sr
(t)

+

R∑

r=1

Tr∑

t=1

d(r, t, i )b ′
i (k) , k = 1, . . . , K ,

where bi(k ) is multiplied on both sides. Solving for bi(k ), we

obtain the re-estimation formula shown in (49) (shown at the

bottom of the page). We now define

Di =

R∑

r=1

Tr∑

t=1

d(r, t, i) (50)

�γ (i, r, t) =
∑

s

p(s |X,�′)(C(s) − O(�′))γi,r,sr
(t) (51)

and rewrite (49) as

bi(k ) =

R∑

r=1

Tr∑

t=1
s.t. xr,t =k

�γ (i, r, t) + b ′
i (k )Di

R∑

r=1

Tr∑

t=1

�γ (i, r, t) + Di

. (52)

In order to optimize transition probability ai, j , with con-

straint 
∑I

j=1 ai, j = 1, we apply the Lagrange multiplier method

by constructing 

W2(�;�′) = U2(�;�′) +

I∑

i =1

λi

⎛

⎝

I∑

j=1

ai, j − 1

⎞

⎠. (53)

Setting ∂W2(�;�′)/∂λi = 0 and ∂W2(�;�′)/∂ai, j = 0,

j = 1, . . . , I, we have the following I + 1 equations:

I∑

j=1

ai, j − 1 = 0

0 = λiai, j +

R∑

r=1

Tr∑

t=1

�ξ(i, j,r,t)
︷ ︸︸ ︷
∑

s

p(s |X,�′)(C(s) − O(�′))ξi, j,r,sr
(t)

+

R∑

r=1

Tr∑

t=1

d(r, t − 1, i )a ′
i, j , j = 1, . . . , I .

Note that 
∑I

j=1 ξi, j,r,sr
(t) = γi,r,sr

(t). By solving ai, j, we obtain

the re-estimation formula shown in (54) (shown at the bottom

of the page) with a standard procedure (used for deriving the

EM estimate of transition probabilities [11]). Now we define 

D̃i =

R∑

r=1

Tr∑

t=1

d(r, t − 1, i) (55)

�ξ(i, j, r, t) =
∑

s

p(s |X,�′)(C(s) − O(�′))ξi, j,r,sr
(t) (56)

and together with (51), we rewrite (54) as

ai, j =

R∑

r=1

Tr∑

t=1

�ξ(i, j, r, t) + a ′
i, j D̃i

R∑

r=1

Tr∑

t=1

�γ (i, r, t) + D̃i

. (57)

The parameter re-estimation formulas (52) and (57) are unified

across MMI, MCE, and MPE/MWE. What distinguishes among

MMI, MCE, and MPE/MWE is the different weighing term

�γ (i, r, t) in (51) and �ξ(i, j, r, t) in (56) due to the different

C(s) contained in the unified objective function. Details for

computing �γ (i, r, t) for MMI, and MCE, and MPE/MWE are

included in “Computing �γ (i, r, t)in the GT Formulas.” 

SETTING CONSTANT Di

Values of constant Di in (52) and D̃i in (60) determine the stabil-

ity and convergence speed of the above GT/EBW algorithm.

From (50), (41), and (36), we have

IEEE SIGNAL PROCESSING MAGAZINE [26] SEPTEMBER 2008

bi(k) =

R∑

r=1

Tr∑

t=1
s.t. xr,t=k

∑

s
p(s |X,�′)(C(s) − O(�′))γi,r,sr

(t) + b ′
i (k)

R∑

r=1

Tr∑

t=1

d(r, t, i)

R∑

r=1

Tr∑

t=1

∑

s
p(s |X,�′)(C(s) − O(�′))γi,r,sr

(t) +
R∑

r=1

Tr∑

t=1

d(r, t, i)

(49)

ai, j =

R∑

r=1

Tr∑

t=1

∑

s
p(s |X,�′)(C(s) − O(�′))ξi, j,r,sr

(t) + a ′
i, j

R∑

r=1

Tr∑

t=1

d(r, t − 1, i )

R∑

r=1

Tr∑

t=1

∑

s
p(s |X,�′)(C(s) − O(�′))γi,r,sr

(t) +
R∑

r=1

Tr∑

t=1

d(r, t − 1, i )

(54)
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Di =

R∑

r=1

Tr∑

t=1

d(r, t, i)

=

R∑

r=1

Tr∑

t=1

∑

s

d ′(s)p(qr,t = i |s,�′)

=
1

p(X |�′)

R∑

r=1

Tr∑

t=1

∑

s

d(s)p(qr,t = i |s,�′). (58)

The theoretical basis for setting Di to ensure that (52) and

(57) are growth transformations is the requirement described in

(32) that d(s) of (58) be sufficiently large so that

Ŵ(�′) + d(s) > 0. From (33),

Ŵ(�′) = δ(χ, X )p(s)[C(s) − O(�′)]

=

{

p(s)[C(s) − O(�′)] if χ = X

0 otherwise.

Therefore, d(s) > max{0,−p(s)[C(s) − O(�′)]}. This gives

Di >
1

p(X |�′)

R∑

r=1

Tr∑

t=1

∑

s

max{0, p(s)[O(�′)

− C(s)]}p(qr,t = i |s,�′). (59)

Similarly, we can derive that 

D̃i >
1

p(X |�′)

R∑

r=1

Tr∑

t=1

∑

s

max{0, p(s)[O(�′)

− C(s)]} p(qr,t−1 = i |s,�′). (60)

In practice, Di and D̃i given by (59) and (60) have often been

found to be over conservative and unnecessarily large, causing

slower convergence than those obtained through some empiri-

cal methods. We will not discuss such heuristics in this review,

but would like to point out that this is still an interesting

research problem and to refer the readers to the studies and dis-

cussions in [18], [41], [42], [47], [54], [59] and [61].

DISCRIMINATIVE LEARNING 

FOR CDHMMS

For CDHMMs, the observation space is not quantized. In this

case, X = X1 . . . XR , is a concatenation of all training tokens,

and each training token Xr consists of a sequence of continu-

ous random variables. The formulation (25) applies to discrim-

inative learning for CDHMMs. In particular, χ in previous

equations (29) and (30) is a continuous variable and hence the

summation over domain χ is changed to integration over χ .

That is, (29) is modified to

V(�;�′) =
∑

s

∑

q

∫

χ

f(χ, q, s,�′) log f(χ, q, s,�)dχ, (61)

where the integrand f(χ, q, s,�) is defined by

F(�;�′) =
∑

s

∑

q

∫

χ

f(χ, q, s,�)dχ. (62)

Correspondingly, 

F(�;�′) =
∑

s

∑

q

[C(s) − O(�′)] p(s)p(X, q |s,�) + D

=
∑

s

∑

q

∫

χ

[Ŵ(�′) + d(s)] p(χ, q |s,�)dχ, (63)

where 

f(χ, q, s,�) = [Ŵ(�′) + d(s)]p(χ, q |s,�) (64)

and

Ŵ(�′) = δ(χ, X )p(s)[C(s) − O(�′)] (65)

with δ(χ, X ) in (65) being the Dirac delta function. Jensen’s

inequality no longer applies to the secondary auxiliary function,

due to the Dirac delta function. However, in the section “Setting

Constant Di for CDHMM,” we will show that (61) is still a valid

auxiliary function. After a similar derivation as in the preceding

section, it can be shown that the transition probability estima-

tion formula (57) stays the same as the discrete HMM case. But

for the emitting probability, (46) is changed to

U1(�;�′) =

R∑

r=1

Tr∑

t=1

I∑

i =1

∑

s

p(s |X,�′)(C(s) − O(�′))

× γi,r,sr
(t) log bi(xr,t) +

R∑

r=1

Tr∑

t=1

I∑

i =1

d(r, t, i )

×

∫

χr,t

b ′
i (χr,t) log bi(χr,t) dχr,t. (66)

GT-BASED PARAMETER ESTIMATION 

FOR GAUSSIAN DENSITY CDHMM

We first derive the GT-based parameter estimation formulas

for the CDHMM with Gaussian distributions and then gener-

alize them to the case of mixture-Gaussian distributions in

the subsequent subsection. For the CDHMM with Gaussian

distributions, the observation probability density function

bi(xr,t) in (66) becomes a Gaussian distribution taking the fol-

lowing form:

bi(xr,t) ∝
1

|
i |
1/2

exp

[

−
1

2
(xr,t − μi)

T
−1
i (xr,t − μi)

]

,

(67)

where (μi, 
i), i = 1, 2, . . . , I are the mean vector and covari-

ance matrix of the Gaussian component at state i.
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To solve for μi and 
i, based on (66), we set 

∂U1(�;�′)

∂μi
= 0; and

∂U1(�;�′)

∂
i
= 0.

This gives

0 =

R∑

r=1

Tr∑

t=1

�γ (i,r,t)
︷ ︸︸ ︷
∑

s

p(s |X,�′)(C(s) − O(�′))γi,r,sr
(t)

× 
−1
i (xr,t − μi) +

R∑

r=1

Tr∑

t=1

d(r, t, i)
−1
i

×

∫

χr,t

b ′
i (χr,t)(χr,t − μi)dχr,t (68)

0 =

R∑

r=1

Tr∑

t=1

�γ (i,r,t)
︷ ︸︸ ︷
∑

s

p(s |X,�′)(C(s) − O(�′)) γi,r,sr
(t)

×
[


−1
i − 
−1

i (xr,t − μi)(xr,t − μi)
T 
−1

i

]

+

R∑

r=1

Tr∑

t=1

d(r, t, i)

∫

χr,t

b ′
i (χr,t)

×
[


−1
i − 
−1

i (χr,t − μi)(χr,t − μi)
T 
−1

i

]

dχr,t.

(69)

For a Gaussian distribution b ′
i (χr,t) = p(χr,t |qr,t = i;�′), we

have 
∫

χr,t

b ′
i (χr,t)dχr,t = 1,

∫

χr,t

χr,t · b ′
i (χr,t) dχr,t = μ ′

i ,

∫

χr,t

(χr,t − μ ′
i )(χr,t − μ ′

i )
T · b ′

i (χr,t)dχr,t = 
 ′
i .

Hence integrals in (68) and (69) have closed-form results.

Next, we left-multiply both sides of (68) by 
i, and left- and

right-multiply both sides of (69) by 
i. Finally, solving μi and


i gives the GT formulas of (70) and (71) (shown at the bot-

tom of the page), where �γ (i, r, t) is defined in (51) and Di

defined in (50).

Just as in the discrete HMM case, (70) and (71) are based on

the generic discriminative objective function O(�) in the form

of (25), which covers MMI, MCE, and MPE/MWE as special

cases. This leads to unified, GT-based parameter estimation

formulas for MMI, MCE, and MPE/MWE as well as for any

other discriminative objective functions that can be mapped

into the rational-function form (25). Moreover, �γ (i, r, t) in

(70) and (71) is defined in the same way as (51) in the discrete-

HMM case—differing only in C(s) for MMI, MCE, and

MPE/MWE, respectively, as will be illustrated further in

“Computing �γ (i, r, t) in the GT Formulas.” 

SETTING CONSTANT Di FOR CDHMM

Based on Jensen’s inequality, the theoretical basis for setting an

appropriate constant Di to ensure that (70) and (71) are growth

transformation is the requirement specified in (32), where d(s)

in (58) needs to be sufficiently large to ensure that for any string

s and any observation sequence χ, Ŵ(�′) + d(s) > 0, where

Ŵ(�′) = δ(χ, X )p(s)[C(s) − O(�′)] is defined in (33).

However, for CDHMM, δ(χ, X ) is the Dirac delta function,

which is a distribution with its density function value unbounded

at the center point, i.e., δ(χ, X ) = +∞ when χ = X. Therefore,

for a string s such that C(s) − O(�′) < 0, Ŵ(�′) |χ=X = −∞.

Under this condition, it is impossible to find a bounded d(s)

that ensures Ŵ(�′) + d(s) > 0 and hence Jensen’s inequality

may not apply. Note that this problem does not occur in the

discrete HMM case, because in that case δ(χ, X ) is a

Kronecker delta function taking only a finite value of either

zero or one.

The above-mentioned difficulty for CDHMMs can be over-

come and the same derivation can still be used, if it can be

shown that there exists a sufficiently large but still bounded

constant D so that V(�;�′) of (61), with the integrand defined

by (64), is still a valid auxiliary function of F(�;�′); i.e., an

increase of the value of V(�;�′) can guarantee an increase of

the value of F(�;�′). Such a proof was developed in the recent

work of [2] for GT-based MMI training for CDHMMs, and it

holds for our common rational-function discriminative train-

ing criterion as well. Therefore, a bounded Di exists according

to (58) (see technical detail in [24]).

Although a sufficiently large Di guarantees monotone con-

vergence of the GT-based iterative estimation formulas, i.e.,

(52), (57) for the discrete HMM and (70), (71) for the CDHMM,
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μi =

R∑

r=1

Tr∑

t=1

�γ (i, r, t)xt + Diμ
′
i

R∑

r=1

Tr∑

t=1

�γ (i, r, t) + Di

, (70)


i =

R∑

r=1

Tr∑

t=1

[

�γ (i, r, t)(xt − μi)(xt − μi)
T
]

+ Di

′
i + Di(μi − μ′

i)(μi − μ′
i)

T

R∑

r=1

Tr∑

t=1

�γ (i, r, t) + Di

(71)
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the value of Di from the monotone convergence proof is a very

loose upper bound and it can be too large for a reasonable con-

vergence speed. In practice, Di is often empirically set to achieve

compromised training performance.

The empirical setting of Di has been extensively studied from

the day when EBW was proposed. In early days, only one global

constant D was used for all parameters [18], [41]. Later research

discovered on the empirical basis that for CDHMM, a useful

lower bound on (nonglobal) Di is the value satisfying the con-

straint that newly estimated variances remain positive [42]. In

[59] and [60], this constraint was further explored, leading to

some quadratic inequalities upon which the lower bound of Di

can be solved. Most recently, in [54], constant Di was further

bounded by an extra condition that the denominators in re-esti-

mation formulas remain nonsingular.

In [61], the use of Gaussian-specific Di was reported to give

further improved convergence speed. For MMI, the Gaussian-

specific constant Di was set empirically to be the maximum of i)

two times of the value necessary to ensure positive variances,

i.e., 2 · Dmin , and ii) a global constant E multiplied by the

denominator occupancy; e.g., E · γ den
i . Specifically, for MMI in

the work of [61], 

γ den
i =

R∑

r=1

Tr∑

t=1

γ den
i,r (t) =

R∑

r=1

Tr∑

t=1

∑

sr

p(sr |Xr,�
′)γi,r,sr

(t) .

However, the �Ŵ(i, r, t) in the unified reestimation formulas

(52), (57), (70), and (71) is different from the classical form

in [61] by a constant factor and therefore the setting of Di

should be adjusted accordingly. This issue is discussed in

details in “Computing �Ŵ(i, r, t) in the GT Formulas.” For

MPE reported in [45]–[47], the empirical setting of Di was

the same as MMI, i.e., Di = max{2 · Dmin, E · γ den
i } except

that the computation of the denominator occupancy became

γ den
i =

∑R
r=1

∑Tr

t=1 max(0,−�γ (i, r, t)) . In addition, these

new parameters were further smoothed with the ML estimate

of parameters (which was called I-smoothing).

For MCE, the empirical setting of γ den
i as 

R∑

r=1

Tr∑

t=1

p(Sr |Xr,�
′)

∑

sr

p(sr |Xr,�
′)γi,r,sr

(t)

was developed in the recent work of [23] and [66]. It was based

on the consideration that MCE and MMI are equivalent in the

special case of having only one utterance in the training set.

This setting was experimentally verified with strong recognition

results as reported in [23] and [66]. Further discussions and

comparisons of different settings of empirical Di can be found in

[18], [23], [41], [42], [47], [54], [60] and [61].

PARAMETER ESTIMATION 

FOR GAUSSIAN MIXTURE CDHMM

The model parameter estimation formulas for a Gaussian-mixture

HMM are similar to those for a Gaussian HMM discussed earlier.

For a Gaussian-mixture HMM, the continuous observation density

function bi(xr,t) for state i has the following form:

bi(xr,t) =

L∑

l =1

wi,lN(xr,t |μi,l, 
i,l), (72)

where bi(xr,t) is a mixture of L Gaussian components,

N(xr,t |μi,l, 
i,l) is the lth Gaussian mixture component that

takes the same form as (67), wi,l is a positive weight of the lth

Gaussian component, and 
∑

l =1,... ,L wi,l = 1. Compared with

a Gaussian HMM, there is an additional hidden component, the

Gaussian component index sequence l. The hidden sequence l

can be accommodated in (61) by the same way that we

exploited to treat the hidden state sequence q. Then after sim-

ilar derivation steps, we can obtain the parameter estimation

formulas (73) and (74) (shown at the bottom of the page),

where Di,l and �γ (i, l, r, t) are defined in a similar way to (50)

and (51), i.e.,

Di,l =

R∑

r=1

Tr∑

t=1

d(r, t, i, l ), (75)

�γ (i, l, r, t) =
∑

s

p(s |X,�′)(C(s) − O(�′))γi,l,r,sr
(t), (76)

and γi,l,r,sr
(t) = p(qr,t = i, l |Xr, sr,�

′) is the occupation

probability of Gaussian mixture component l of state i, at

time t in the rth utterance. Accordingly, the empirical setting

of Di,l takes similar forms as discussed in the previous sec-

tion, except that �γ (i, l, r, t) and γi,l,r,sr
(t) will be used

instead. Estimation of the mixture component weights wi,l is

similar to the discrete HMM estimation case and will not be

described here.

μi,l =

R∑

r=1

Tr∑

t=1

,�γ (i, l, r, t)xt + Di,lμ
′
i,l

R∑

r=1

Tr∑

t=1

�γ (i, l, r, t) + Di,l

, (73)


i,l =

R∑

r=1

Tr∑

t=1

[

�γ (i, l, r, t)(xt − μi,l)(xt − μi,l)
T
]

+ Di,l

′
i,l

+ Di,l(μi,l − μ ′
i,l

)(μi,l − μ ′
i,l

)T

R∑

r=1

Tr∑

t=1

�γ (i, l, r, t) + Di,l

(74)
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RELATED WORK AND DISCUSSIONS

RELATION TO OTHER APPROACHES

In recent articles [35] and [54], an approach was proposed to

unify a number of discriminative learning methods including

MMI, MPE, and MPE/MWE (the earlier article [54] did not

include MPE/MWE). Functional similarities and differences

among MMI, MCE, and MPE/MWE criteria were noted and dis-

cussed in [35], [54]. In this article, the proposed framework

takes an additional step of unifying these criteria in a canonical

rational-function form (25), and GT-based discriminative learn-

ing is applied to this rational-function that includes MMI, MCE,

and MPE/MWE criteria as special cases. This is significant from

two perspectives. First, it provides a more precise and direct

insight into the fundamental relations among MMI, MCE, and

MPE/MWE criteria at the objective function level based on the

common rational-function form (25). Second, it enables a uni-

fied GT-based parameter optimization framework that applies to

MMI, MCE, MPE/MWE, and other discriminative criteria, as

long as their objective functions can be represented by (25).

The proposed framework in [35] was based on the objective

function of the following form (rewritten using the mathemati-

cal notations adopted in this article for easy comparisons):

O(�) =
1

R

R∑

r=1

f

⎛

⎜
⎝

1

η
log

∑

sr

pη(Xr, sr |�)CDT(sr)

∑

sr ∈Mr

pη(Xr, sr |�)

⎞

⎟
⎠ , (77)

where CDT(sr) takes the same value as in Table 1. The choices of

the smoothing function f(z), the competing word sequences

Mr, and the weight value η in (77) are provided in Table 2 for the

different types of DT criteria. In Table 2, q is the slope of a sig-

moid smoothing function.

Equation (77) indicates that different discriminative criteria

can have a similar form of kernel and differ by the criterion-

dependent smoothing function f(z) that modulates the kernel,

where the objective function is a sum of smoothing functions.

Equation (77) is a generic description of the objective functions

of MMI, MCE, and MPE/MWE. However, it is not in a general

form of a rational function (defined as a ratio of two polynomial

functions) due to the presence of the nonlinear function f(z).

The important distinction of product versus summation of util-

ity functions among these criteria is not explicitly addressed. In

the approach presented in this article, we address this issue

directly and show that the objective functions from MMI, MCE,

and MPE/MWE criteria can have a definitive rational-function

form (25), and for each discriminative criterion, the objective

function differs only by a model-independent quantity

CDT (s1 . . . sR). 

Furthermore, as shown in Table 2, since f(z) is a nonlinear

function for the MPE/MWE and MCE criteria, the original GT

solution [18], while directly applicable to MMI with f(z) being

an identity function and z being the logarithm of a rational

function (since sum of log becomes log of product), is not

directly applicable to the objective functions of the MPE/MWE

and MCE criteria (since the sum stays when f(z) is nonlinear).

In order to circumvent this difficulty, the theorem described in

[30] is applied. In [30], the original objective function is

approximated by a Taylor series expansion. Then, via a similar

approach to that of [18], the GT-based parameter optimization

may be applied to the partial sum of the Taylor series expan-

sion, which is a polynomial with a finite degree. This forms the

theoretical basis of the earlier GT-based methods for MCE and

MPE/MWE [35], [54]. However, the positive growth of the par-

tial sum depends on the degree of that partial sum (see more

detailed discussions on this point in [18]), and it vanishes

when the degree goes to infinity. It may vanish even faster

than the error of Taylor series approximation does. Therefore,

it has not been definitively shown that the re-estimation for-

mula ensures true growth of the value of the objective func-

tion with iteration.

In contrast, the unified rational-function approach described

in this article departs from the work of [35] and [54]. It is free

from the Taylor series approximation and it shows that the

objective functions for the MMI, MCE, and MPE/MWE criteria

have a common definitive rational-function form (25).

Therefore, the GT-based parameter optimization framework can

be directly applied to (25) in a constructive way. The approach

taken in this article is based on the work in [2] and [20] rather

than on the work of [3] and [18].  Moreover, the unified repre-

sentation of the discriminative objective functions developed in

this article opens a way to apply other rational-function based

optimization methods (e.g., the method based on the reverse

Jensen inequality [26]) to MMI, MCE, and MPE/MWE-based

classifier design. Using the structure of the rational function, we

expect that all desirable algorithmic properties of the parameter

optimization procedures presented in this article can be estab-

lished and justified.

RELATION TO GRADIENT-BASED OPTIMIZATION

The relation between the GT/EBW methods and gradient-based

methods has been studied in the literature (e.g., [2], [53], [54]). In

addition to the crit-

ical difference in

the convergence

properties, the

learning speed of

G T / E B W - b a s e d

updating formula

(70) is comparable to

a quadratic Newton

CRITERIA SMOOTHING FUNCTION f(z ) ALTERNATIVE WORD SEQUENCES Mr η

MCE (N-BEST) −1/[1 + exp(2qz )] {sr} EXCLUDING Sr ≥1
MCE (ONE-BEST) −1/[1 + exp(2qz )] {sr,1} N/A
MPE/MWE exp(z ) ALL POSSIBLE LABEL SEQUENCE {sr} 1
MMI z ALL POSSIBLE LABEL SEQUENCE {sr} 1

[TABLE 2]  CHOICES OF THE SMOOTHING FUNCTION f(z ), ALTERNATIVE WORD SEQUENCES Mr ,
AND EXPONENT WEIGHT η IN (77) FOR VARIOUS TYPES OF DT CRITERIA. 
THIS IS MODIFIED FROM THE ORIGINAL TABLE IN [54].
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update; i.e., it can be formulated as

a gradient ascent with the step size

that approximates inverse Hessian

H of the objective function. Let us

take the mean vector estimation as

an example for the objective func-

tion of the form (25) in the case of

CDHMM. The gradient of O(�)

w.r.t. μi can be shown to be

∇μi
O(�) |�=�′ = 
′−1

i

R∑

r=1

Tr∑

t=1

�γ (i, r, t)(xt − μ ′
i ). (78)

On the other hand, we can rewrite the GT formula of (70)

into the following equivalent form:

μi = μ′
i +

1

R∑

r=1

Tr∑

t=1

�γ (i, r, t) + Di

×

R∑

r=1

Tr∑

t=1

�γ (i, r, t)(xt − μ′
i)

= μ′
i +

1

R∑

r=1

Tr∑

t=1

�γ (i, r, t) + Di


′
i · ∇μi

O(�) |�=�′ .

(79)

Consider the quadratic Newton update, where the Hessian

Hi for μi can be approximated by the following equation after

dropping the dependency of μi with �γ (i, r, t):

Hi = ∇2
μi

O(�) |�=�′ ≈ −
′−1
i

R∑

r=1

Tr∑

t=1

�γ (i, r, t).

Therefore, the updating formula of GT in (70) can be further

rewritten to

μi ≈ μ′
i

R∑

r=1

Tr∑

t=1

�γ (i, r, t)

R∑

r=1

Tr∑

t=1

�γ (i, r, t) + Di

H −1
i

︸ ︷︷ ︸

εi

∇μi
O(�) |�=�′ , (80)

which approximates the quadratic Newton update

μi = μ′
i − α · H−1

i ∇μi
O(�) |�=�′ and usually gives a faster

learning speed than the simple gradient-based search. 

Other popular and effective gradient-based methods exist for

optimizing discriminative training criteria [15], [21], [31], [37],

[38]. For instance, Quickprop [17] is a batch-mode, second-

order optimization method that approximates Newton’s opti-

mization, with the help of heuristics to determine the proper

update step size. Rprop [51] is another batch-mode optimization

method, which performs dynamic scaling of the update step size

for each parameter based on different kinds of heuristics. In

[38], a comprehensive study of gradient-based optimization

methods for MCE training,

including batch and semibatch

probabilistic descent (PD),

Quickprop, and Rprop, is given

for large vocabulary speech

recognition tasks. It was shown

that the MCE criterion can be

optimized by using these gradi-

ent-based methods, and improved

recognition accuracies were

reported. Furthermore, there exist other gradient-based meth-

ods such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) and

conjugate gradient search [5], [14]. Although both of these

methods are more complicated to implement for large scale dis-

criminative training tasks, they are superior to other gradient-

descent techniques in terms of the convergence properties.

Readers are referred to [5] and [52] for further discussions. 

In contrast to the popular gradient-based methods dis-

cussed above, we can view a class of optimization methods

with a re-estimation style, including expectation-maximiza-

tion (EM) algorithm and EBW algorithm, as GT-based meth-

ods in a broad sense. The GT-based methods are designed for

the objective functions with special, rational-functional

forms, and the GT algorithm can ensure rigorous monotone

growth of the value of the objective functions iteratively.

From this perspective, on the one hand, GT-based methods

are less general than gradient-based ones. On the other hand,

they give desirable monotone convergence in training.

Further, although GT-based parameter re-estimation formu-

las may be rewritten into gradient-based forms, the step sizes

are specifically derived so that monotone convergence is

guaranteed. This critical property differentiates them from

general gradient-based methods.

The advanced gradient-based methods discussed above,

such as batch and semibatch PD, Quickprop, Rprop, BFGS,

and conjugate gradient, are alternatives to the GT/EBW-

method for optimizing discriminative training criteria.

Although theoretically the GT/EBW method has the desirable

monotone convergence property, empirical setting of D is

used in practice to speed up training with the trade-off for

monotone convergence. This makes rigorous comparisons

between GT/EBW-based and advanced gradient-based meth-

ods difficult. In the literature, experimental results of both

types of methods have been reported on various speech

recognition tasks [21], [23], [31], [54], [42]. 

Algorithmic convergence of parameter estimation is a cen-

tral issue for classifier design using discriminative training cri-

teria. Search for more powerful discriminative criteria and

optimization methods in classifier design remains an area of

active and ongoing research. It is our hope that the unified

rational-function based objective function representation

reviewed in this paper can provide additional structural formu-

lation and can motivate the development of new learning algo-

rithms to improve the discriminative power of sequential

pattern classifiers and recognizers.

THE DERIVED RATIONAL-FUNCTION

FORM FOR MMI, MCE, AND

MPE/MWE ALLOWS THE GT/EBW-

BASED PARAMETER OPTIMIZATION

FRAMEWORK TO BE

APPLIED DIRECTLY IN

DISCRIMINATIVE LEARNING.
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SUMMARY

In this article, we studied the objective functions of MMI,

MCE, and MPE/MWE for discriminative learning in sequential

pattern recognition. We presented an approach that unifies the

objective functions of MMI, MCE, and MPE/MWE in a common

rational-function form of (25). The exact structure of the

rational-function form for each discriminative criterion was

derived and studied. While the rational-function form of MMI

has been known in the past, we provided the theoretical proof

that the similar rational-function form exists for the objective

functions of MCE and MPE/MWE. Moreover, we showed that

the rational function forms for objective functions of MMI,

MCE, and MPE/MWE differ in the constant weighting factors

CDT (s1 . . . sR) and these weighting factors depend only on the

In (51), computing �γ (i, r, t ) involves summation over all pos-

sible super-string label sequences s = s1 . . . sR. The number of

training tokens (sentence strings), R, is usually very large.

Hence, the summation over s needs to be decomposed and

simplified. To proceed, we use the notations of s′ = s1 . . . sr−1,

s′′ = sr+1 . . . sR , X ′ = X1 . . . Xr−1 , and X ′′ = Xr+1 . . . XR . Then,

from (51), we have,

�γ (i, r, t)=
∑

sr

p(sr|Xr,�
′)

×

[

∑

s′

∑

s′′

p(s′, s′′|X ′, X ′′;�′)(C(s′, sr, s′′)−O(�′))

]

︸ ︷︷ ︸

�

× γi,r,sr
(t), (81)

where factor � is the average deviation of the accuracy count

for the given string sr. The remaining steps in simplifying the

computation of �γ (i, r, t ) will be separate for MMI and

MCE/MPE/MWE because the parameter-independent accuracy

count function C(s) for them takes the product and summa-

tion form, respectively (as shown in Table 1). 

Product form of C(s) (for MMI)

For MMI, we have

C(s) = C(s1, . . . , sR) =

R∏

r =1

C(sr) =

R∏

r =1

δ(sr, Sr)

in a product form. Using C(s ′, sr, s ′′) = C(sr) · C(s ′, s ′′), we sim-

plify factor � in (81) to 

� = C(sr) ·
∑

s ′

∑

s ′′

p(s ′, s ′′ |X ′, X ′′; �′)C(s ′, s ′′) − O(�′)

= O(�′)

⎛

⎝

C(sr) ·
∑

s ′

∑

s ′′

p(s ′, s ′′ |X ′, X ′′; �′)C(s ′, s ′′)

O(�′)
− 1

⎞

⎠ .

(82)

The idea behind the above steps is to make use of the product

form of the C(s) function for canceling out common factors in

both O(�′) and C(s) functions. To proceed, we now factorize

O(�′) as follows:

O(�′) =

[
∑

sr

p(sr, Xr |�′)C(sr)

][
∑

s′

∑

s′′

p(s ′, s′′, X ′, X ′′|�)C(s′, s′′)

]

[p(Xr|�′)] [p(X ′, X ′′ |�′)]

=p(Sr |Xr,�
′) ·

∑

s ′

∑

s ′′

p(s ′, s ′′ |X ′, X ′′;�′)C(s ′, s ′′),

where the last step uses C(sr) = δ(sr, Sr). Substituting this to

(82) then gives the simplification of

� = O(�′)

(
C(sr)

p(Sr |Xr,�′)
− 1

)

. (83)

Substituting (83) to (81) and using C(sr) = δ(sr, Sr) again, we

obtain

�γ (i, r, t) = O(�′)

[

γi,r,Sr
(t ) −

∑

sr

p(sr |Xr,�
′)γi,r,sr

(t )

]

. (84)

In the re-estimation formulas (70) and (71), if we divide both

the numerator and denominator by O(�′), �γ (i, r, t ) in (84)

can take a simplified form of

�γ̃ (i, r, t ) =

[

γi,r,Sr
(t ) −

∑

sr

p(sr |Xr,�
′)γi,r,sr

(t)

]

= γ num
i,r (t ) − γ den

i,r (t ). (85)

The corresponding constant Di in the re-estimation formulas

(70) and (71) then becomes

D̃i = Di/O(�′). (86)

Substituting the above into (70) and (71), we have the

GT/EBW formulas for MMI, shown in (87) and (88) at the bot-

tom of the next page. This gives the classical GT/EBW-based

MMI re-estimation formulas described in [41] and [61].

Equation (84) or (85) gives an N-best string based solution

to computing �γ (i, r, t ). This is illustrated by the string-level

summation over sr (i.e., the label sequence for token r,

including both correct and incorrect strings). For N -best

string-level discriminative training, the summation over sr in

(84) or (85) amounts to going through all N -best string

hypotheses and is computationally inexpensive when N is

relatively small (e.g., N in the order of thousands as typical

for most N -best experiments). 

When a lattice instead of an explicit N-best list is provided

for competing hypotheses in discriminative training, in theory,

(84) or (85) can be applied just as for the N-best string based

solution already discussed. This is because a lattice is nothing

more than a compact representation of N best strings.

However, since N in this equivalent “N -best list” would be

huge (in the order of billions or more [66]), more efficient

techniques for dealing with the summation over sr in comput-

ing (84) or (85) will be needed. Readers are referred to [24] for

details of such computation.

COMPUTING �γ (i, r, t ) IN THE GT FORMULAS
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labeled sequence s1 . . . sR, and are independent of the parame-

ter set � to be optimized.

The derived rational-function form for MMI, MCE, and

MPE/MWE allows the GT/EBW-based parameter optimization

framework to be applied directly in discriminative learning. In

the past, lack of the appropriate rational-function form was a

difficulty for MCE and MPE/MWE, because without this form,

the GT/EBW-based parameter optimization framework cannot

be directly applied. Based on the unified rational-function form,

in a tutorial style, we derived the GT/EBW-based parameter opti-

mization formulas for both discrete HMMs and CDHMMs in dis-

criminative learning using MMI, MCE, and MPE/MWE criteria.

The unifying review provided in this article has been based

upon a large number of earlier contributions that have been

Summation Form of C(s) (MCE and MPE/MWE)

Different from MMI, for MCE and MPE/MWE, we have

C(s) = C(s1, . . . , sR) =

R∑

r=1

C(sr),

or

C(s ′, sr, s ′′) = C(sr) + C(s ′, s ′′).

That is, the C function is in a summation instead of a product

form. This changes the simplification steps for factor � of (81)

as follows:

� =
∑

s ′

∑

s ′′

p�′(s ′, s ′′ |X ′, X ′′)C(sr)

+
∑

s ′

∑

s ′′

p(s ′, s ′′ |X ′, X ′′; �′)C(s ′, s ′′) − O(�′)

= C(sr) +
∑

s ′

∑

s ′′

p(s ′, s ′′ |X ′, X ′′;�′)C(s ′, s ′′) − O(�′). (89)

The idea behind the above steps is to make use of the summa-

tion form of the C (s) function for subtracting out the common

terms in the O(�′) function. To achieve this, we decompose

O(�′), based on its original nonrational form, e.g., (21) or (17)

and (18), as follows:

O(�′) =

∑

sr

p(Xr, sr |�′) C(sr)

∑

sr

p(Xr, sr |�′)
+

R∑

i =1,i �=r

∑

si

p(Xi, si |�
′) C(si)

∑

si

p(Xi, si |�′)

=

∑

sr

p(Xr, sr |�′) C(sr)

∑

sr

p(Xr, sr |�′)
+

∑

s ′,s ′′

p(s ′, s ′′ |X ′, X ′′ |�′)C(s ′, s ′′).

The second term above cancels out the same term in (89), lead-

ing to the simplification of

� = C(sr) −

∑

sr

p(sr, Xr |�′)C(sr)

∑

sr

p(sr, Xr |�′)
. (90)

Now, substituting (90) back to (81), we obtain 

�γ (i, r, t ) =
∑

sr

p(sr |Xr,�
′)

⎛

⎜
⎝C(sr) −

∑

sr

p(Xr, sr |�′)C(sr)

∑

sr

p(Xr, sr |�′)

⎞

⎟
⎠

× γi,r,sr
(t ). (91)

For MCE that has C(sr) = δ(sr, Sr), the previous equation can

be further simplified as:

�γ (i, r, t ) =p(Sr |Xr,�
′)

×

[

γi,r,Sr
(t ) −

∑

sr

p(sr |Xr,�
′)γi,r,sr

(t)

]

. (92)

Again, if a lattice instead of an N-best list is provided for

discriminative learning, a huge number of terms in the

summation over sr in (19) would be encountered. In order

to keep the computation manageable, efficient computa-

tion of (91) based on the lattice is needed, which we

describe in [24]. 

μi =

R∑

r=1

Tr∑

t=1

[

γ num
i,r (t) − γ den

i,r (t)
]

xt + D̃iμ
′
i

R∑

r=1

Tr∑

t=1

[

γ num
i,r (t) − γ den

i,r (t)
]

+ D̃i

, (87)


i =

R∑

r=1

Tr∑

t=1

[

γ num
i,r (t) − γ den

i,r (t)
]

(xt − μi)(xt − μi)
T + D̃i


′
i + D̃i(μi − μ′

i)(μi − μ′
i)

T

R∑

r=1

Tr∑

t=1

[

γ num
i,r (t) − γ den

i,r (t)
]

+ D̃i

(88)
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cited and discussed throughout

the article. Here we provide a

brief summary of such back-

ground work. The GT tech-

nique was originally introduced

in [3] and [4] for ML estimation

of discrete HMMs and it was

extended in [18] to handle MMI

estimation of the same type of

HMMs. The dissertation of [41] extended the work of [18] from

discrete HMMs to Gaussian CDHMMs in a small-scale speech

recognition task. Extension to large-scale speech recognition

tasks was accomplished in the work of [59] and [60]. The dis-

sertation of [47] further improved the MMI criterion to that of

MPE/MWE. In a parallel vein, the work of [20] provided an

alternative approach to that of [41], with an attempt to more

rigorously provide a CDHMM model re-estimation formula

that gives positive growth of the

MMI objective function. A cru-

cial error of this attempt was

corrected in [2] for establishing

an existence proof of such posi-

tive growth. In yet another par-

allel vein in the development of

discriminative learning, the

rudimentary form of MCE

emerged in [1], which was fully developed in [28] and [29]

showing how it could be applied to speech recognition. The

work of [22] and [23] further showed that using the formula-

tion of [20] instead of that of [41], GT can also be applied to

MCE. Recently, the work of [37] and [38] demonstrated that

MCE can scale to large-scale speech recognition. Further, that

nonsequential gradient method can be successfully used for

MCE learning of CDHMMs was demonstrated in [52]. More

IN CONTRAST TO MMI AND MCE,

WHICH ARE TYPICALLY AIMED AT

LARGE SEGMENTS OF PATTERN

SEQUENCES, MPE AIMS AT THE

PERFORMANCE OPTIMIZATION AT

THE SUBSTRING PATTERN LEVEL.

Here we discuss two empirical issues in MCE implementation

that were raised in the section “Discriminative Learning

Criteria of MMI, MCE, and MPE/MWE.” First, in (11), if we use

the exponent scale factor η �= 1, we can obtain the following

result corresponding to (13):

lr(dr(Xr,�)) =

∑

sr ,sr �=Sr

p η(Xr, sr |�)

∑

sr

p η(Xr, sr |�)
.

The corresponding result to (16) then becomes

OMCE(�) =

R∑

r=1

p η(Xr, Sr |�)
∑

sr

p η(Xr, sr |�)
,

which can be reformulated into a rational-function using the

same steps as in the section “Rational-Function Form for the

Objective Function of MCE”

OMCE(�) =

∑

s1...sR

p η(X1 . . . XR, s1 . . . sR |�) CMCE(s1 . . . sR)

∑

s1...sR

p η(X1 . . . XR, s1 . . . sR |�)
. (93)

The remaining derivations in the sections “Discriminative

Learning for Discrete HMMs based on the GT Framework” and

“Discriminative Learning for CDHMMs” will no longer follow

strictly for the more general and practical case of (93).

However (as our experiments reported in [22]), in the MCE

implementation, we modify (91) for computing �γ (i, r, t ) in

the following way in order to include the effects of the expo-

nent scale factor: 

�γ (i, r, t ) =
∑

sr

p̃(sr |Xr,�
′)

×

(

C(sr) −
∑

sr

p̃(Xr |sr,�
′)C(sr)

)

γi,r,sr
(t ), (94)

where p̃(sr |Xr,�
′) is the generalized posterior probability of

sr, which can be computed as

p̃(sr |Xr,�
′) =

p η(Xr, sr |�′)
∑

sr

p η(Xr, sr |�′)
. (95)

The second empirical MCE implementation issue con-

cerns the use of α �= 1 in (12). For one-best MCE, α acts as

η, or we equivalently set η = α and α = 1. Then we can

compute �γ (i, r, t ) according to (94). For N-best MCE

(N > 1), given the discriminant function defined in (11)

and the sigmoid function defined in (12), we have the fol-

lowing result [which corresponds to (13)]:

lr(dr(Xr,�)) =

(

∑

sr ,sr �=Sr

p η(Xr, sr |�)

)α

p η·α(Xr, Sr |�) +

(

∑

sr ,sr �=Sr

p η(Xr, sr |�)

)α . (96)

Now, α is applied outside of the summation of scaled joint

probabilities over all competing strings, making the rigorous

computation intractable. In our practical MCE implementation,

we instead use 
∑

sr ,sr �=Sr
p η·α(Xr, sr |�) to approximate

(

∑

sr ,sr �=Sr

p η(Xr, sr |�)

)α

.

This approximation (which is exact when η approaches infinity)

makes it equivalent to setting the new η as α · η, and setting

new α = 1. We can again compute �γ (i, r, t ) according to

(94). It should be noted that, with this approximation, the

computation for the lattice-based MCE does not require

removing the correct word string Sr from the lattice. This con-

trasts with the solution in [35] and [54], where the removal

was necessary without using the approximation, making it

more difficult to implement in practice. 

The above two empirical solutions have been implemented

successfully in our speech recognition system, yielding strong

practical results (published in [23] and [66]) that validate the

solutions.

TWO EMPIRICAL ISSUES IN MCE IMPLEMENTATION
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recently, the work in [35], [53], and [54] showed that MPE,

MCE, and MMI are related by a generic, nonrational-function

description of the objective function. Finally, in the current

article, we show that all MMI, MCE, and MPE/MWE can be rig-

orously formulated as a rational function enabling rigorous

GT-style optimization.

This article is motivated by the striking success of the MMI,

MCE, and MPE/MWE-based discriminative criteria in speech

recognition. Yet in the past, there was a lack of common under-

standing of the interrelation among these techniques, despite

the relatively long history of MMI (since 1983 [39]), MCE (since

1967 [1]), and MPE/MWE (since 2002 [45]). Due to the complex-

ity of these techniques and the lack of a common underlying

theoretical theme and structure, disparate discriminative learn-

ing procedures were developed and parameter optimization has

become a major issue. The main goal of this article is to provide

an underlying foundation for MMI, MCE, and MPE/MWE at the

objective function level to facilitate the development of new

parameter optimization techniques and to incorporate other

pattern recognition concepts, e.g., discriminative margins [66],

into the current discriminative learning paradigm. 
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