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Abstract

Fashion is a major segment in e-commerce with
growing importance and a steadily increasing number of
products. Since manual annotation of apparel items is
very tedious, the product databases need to be organized
automatically, e.g. by image classification. Common
image classification approaches are based on features
engineered for general purposes which perform poorly
on specific images of apparel. We therefore propose
to learn discriminative features based on a small set
of annotated images. We experimentally evaluate our
method on a dataset with 30,000 images containing ap-
parel items, and compare it to other engineered and
learned sets of features. The classification accuracy of
our features is significantly superior to designed HOG
and SIFT features (43.7% and 16.1% relative improve-
ment, respectively). Our method allows for fast feature
extraction and training, is easy to implement and, un-
like deep convolutional networks, does not require pow-
erful dedicated hardware.

1 Introduction

The world-wide e-commerce market for fashion is
growing bigger and bigger. Online sales of fashion
products are increasing faster than of any other prod-
uct segment. Total e-commerce sales in the US are ex-
pected to surpass $50B in 2014 at 15% anual growth1.

The product offering of big retailers such as Zappos,
Nordstrom, Amazon and Zalando is increasing dramat-
ically. Amazon US has currently more than 500k fash-
ion products in stock and on average 12k new products
every weekday 2. In order to provide the customer with
a great user experierence all these new items need to be
categorized and augmented with metadata like prod-
uct category (dress, pants, etc.), attributes (material,
color, etc.) and sub-product categories (pumps, lace-
up heels, wedges, etc.). This then enables the customer
to conveniently browse the product database in an or-
ganized manner and retrieve the relevant information
easily. To organize a product database in this way,
products can be manually categorized and annotated
with meta-data, but such endeavour becomes time-
consuming and impractical as the database grows. As
a result of the very high level of product innovation and
competition in the apparel market, categories are sub-
divided in subcategories, new categories emerge, etc.
However, since manual re-categorization of products
is excessively tedious, better sources of information to
cope with such a dynamic setting are required. One
such source are the product images, which are often
readily available or can be quickly and cheaply ac-

1eMarketer 2014
2Amazon Associates
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Figure 1: Categorization of apparel items using image clas-
sification.

quired. Instead of manual annotation, the meta-data
is extracted automatically from the images.

Among various approaches to extract the informa-
tion from images, automatic image classification has
shown promising results, and performs well even on
large-scale datasets with millions of images and hun-
dreds of classes [1]. Given a set of image categories and
an annotated training dataset, a classification model is
learned to predict the category of an image unseen dur-
ing the training of the model. If we need to embed a
new fashion product into the existing database ontol-
ogy, we can predict its precise category by its image.
When the product ontology changes, we only need to
re-annotate a training set, which is only a small portion
of the total data, re-train the classification model and
apply it on all the images to re-categorize the prod-
ucts. The accuracy of classification models highly de-
pends on features used to represent the images [10].
The image is usually described with features at dif-
ferent levels of detail. Low-level features are used to
describe small patches, while mid-level ones capture
larger image regions. Manually engineered low-level
features based on gradients such as histogram of ori-
ented gradients (HOG [3]) or scale-invariant feature
transform (SIFT [4]) proved to be robust to light-
ing changes and successfully capture shape cues [2].
This allows to cluster the patches into a vocabulary
of so-called visual words. Histograms over different
regions are concatenated together to form a pyramid
histogram of visual words (PHOG [5]) as a final rep-
resentation. Vocabulary can be built in unsupervised
manner by k-means [5], hierarchical k-means [6] or by
iteratively mining discriminative patches [8]. However,
when a computational overhead is acceptable, vocabu-
laries can also be learned per class in a supervised man-
ner [9]. These approaches thus employ pre-designed,
general low-level features, but learn a specific mid-level
representation suited for a particular application.

The discriminative low-level and mid-level features
can also be learned jointly by training convolu-
tional neural network operating on raw pixel values



Figure 2: Starting at the raw pixels values, features are learned hierarchically. A linear classifier is then learned on top of
the highest-level feature map.

(CNN [10]). While CNNs achieve extraordinary re-
sults [1], training is computationally intensive, hard to
parallelize, slow and needs specialized hardware.

Due to the importance of the market for online shop-
ping of dressed clothing, various methods have been re-
cently proposed to tackle the problem of classification
of apparel images [11, 12, 13, 14, 15]. Most of them
work with images taken in unconstrained environments
and try to classify the apparel [11, 13], retrieve related
images in the database [12] or infer how much a person
displays a certain style [14].

Since retailers and shops exchange images taken in
constrained conditions, tackling many of the problems
associated with a street environment, such as pose es-
timation [13], induces an unnecessary computational
overhead. In contrast, methods like [15] and ours focus
on centered, cropped and pre-processed images with
uniform background, which are the rule in a business-
to-business setting.
Our contribution. The aforementioned methods
for classification of apparel images are based on pre-
designed low-level features. In contrast, we propose to
learn not only the mid-level features, but also the low-
level ones. Pre-designed low-level features are engi-
neered for a general purpose, and thus cannot capture
the particular discriminative subtleties between the ap-
parel categories. As we show in our experiments pre-
sented in Sec. 3, classification accuracy increases when
learing low-level features which are custom-tailored
for our specific task. Since apparel databases change
rapidly, the re-training of the features needs to be ef-
ficient. Therefore we can not afford to take weeks to
train a CNN [10]. Instead, we propose to learn features
at different levels, where outputs from one level are in-
puts for the next one, in a single pass. At each level, we
learn discriminative patches using an efficient k-means
clustering approach, starting with the first level that
operates on raw pixel values. While the authors of [6]
train low- and mid-level features with k-means in an
unsupervised manner, we show how k-means cluster-
ing can be supervised to achieve better accuracy. On a
database of 30k images, we train our hierarchical sys-
tem (two layers) in less than 2 hours. The accuracy
relatively increases by 16.1% when using our low-level
features instead of the pre-designed ones.

2 Our Method
Our goal is to learn a set of features for classification

of images containing apparel items into a discrete set of
pre-defined categories. More specifically, we present a
framework to learn those features both in an unsuper-
vised and supervised setting. The features are learned
at multiple layers with increasing level of abstraction
which is inspired by the architecture of convolutional

neural networks [10] and the work of Coates and Ng [6]
based on hierarchical k-means clustering.
Initial representation. The features at the lowest
level are obtained over the patches of size s0 × s0

densely extracted from the given image. A patch is
then represented by a concatenation of its grayscale

pixel values x ∈ Rs0·s0 . We normalize each patch in-
dividually to account for differences in brightness and
contrast by substracting the mean of its pixel values
and dividing by the standard deviation:

x′d =
xd −mean(x)√
stddev(x)2 + ε

, (1)

where mean(.) and stddev(.) are mean and standard
deviation over (x1, . . . , xs0·s0), respectively, ε is a con-
stant to remedy numerical instabilities caused by uni-

form patches (we set ε = 10), and x′ ∈ Rs0·s0 the
normalized representation of a patch. The initial rep-
resentation of a patch at level l = 0 is then given by
x0 = x′.
Higher-level representation. In the following, we
explain how to produce a representation at a higher
level of abstraction l+ 1 given the features at the level
l of a patch of size sl × sl. While the initial repre-
sentation consisted of only a single, grayscale channel,
the higher-level features contain multiple, f l channels.
The patch is thus represented as a concatenation of its

channel values xl ∈ Rsl·sl·f l

. Provided the codebook

Cl =
{
clw ∈ Rsl·sl·f l

}
, we first assign a patch xl to its

nearest codeword w∗

w∗ = arg min
k∈{1,...,|Cl|}

dist(clw, x
l), (2)

where dist(.) is a distance function explained below.
The feature map at the level l+ 1 is then obtained by
storing a 1 at the w∗-th dimension at the spatial center
of patch xl, and zero otherwise. Thus f l+1 = |Cl|,
i.e. the number of channels at the level l+ 1 coincides
with the number of clusters on level l. To allow some
spatial variations and thereby increase robustness of
the features we apply max-pooling [7], i.e. a max filter
of size λl × λl is applied to each channel separately,
and all channels are then downsampled. Note that
assigning a patch to the nearest codeword has linear
time complexity in |Cl|. Small values of |Cl| already
yield satisfactory classification accuracy for practical
applications, as we show in Sec. 3, and thus the nearest-
centroid search is very efficient.
Codebook generation. We generate our codebook
Cl based on the patches {xli} densely extracted from
the training images based on the features at level l.
Following the approach described in [6], we cluster the
patches using the k-means algorithm. Since standard
k-means algorithm often produces correlated clusters,
we apply ZCA whitening transform [6] to de-correlate



Table 1: Our method outperforms the hand-engineered features, e.g. 10% higher accuracy compared to SIFT.

bags underwear coats jewellery blouses watches hats belts tops pants skirts jumpers jumpsuit dresses glasses avg.
HOG 57.6 20.4 42.4 35.8 48.4 92.0 69.6 70.8 5.6 81.8 32.6 33.0 46.6 18.8 95.6 50.1
SIFT 83.2 39.4 55.4 46.2 35.0 91.4 70.2 79.4 21.2 89.8 58.0 50.6 59.0 56.8 94.8 62.0

Ours, unsupervised 78.4 50.6 67.0 61.4 37.8 94.4 77.8 83.6 49.0 90.2 72.4 50.4 72.2 73.0 92.6 70.1
Ours, supervised 81.8 53.8 68.8 63.8 42.8 95.6 81.2 88.4 48.8 90.8 74.2 49.6 73.4 72.2 94.2 72.0
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Figure 3: Increasing the codebook
size leads to an increase in classifica-
tion accuracy.
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layers decreases the performances af-
ter the second layer.
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Figure 5: Accuracy increases with
supervision. The total number of
clusters is fixed to |C2|=400.

the data prior to clustering, which results in more or-
thogonal cluster centroids and improves the classifica-
tion performance:

V DV T = Σl, x′′li = V
√

(D + εzca · I)−1V Txli. (3)

V and D are the eigenvectors and diagonalized eigen-
values of Σl, respectively, εzca is a small constant fixed
to 0.1 and I is the identity matrix. The cluster cen-
troids clw ∈ Cl are finally computed based on trans-
formed features x′′li instead of xli. Similarly, the dis-
tance of a patch represented by xl to a centroid clw is
computed as L2-distance to the transformed features:

dist(clw, x
l) = ‖clw − x′′l‖2. (4)

Supervised feature learning. We can leverage class
information of an image to learn better features and
further improve the classification accuracy. Instead
of learning the codebook Cl by clustering all training
patches together, we can learn a separate codebook
Clκ for each class κ individually, and then merge the
class codebooks into a single, larger codebook. The
union over all the class codebooks ∪κClκ would result
in a large number of clusters of which many are not
discriminative. Therefore, we use only the subset of
these clusters as the final codebook. To pick the most
discriminative clusters from a class codebook Clκ we
first randomly extract a certain number of patches {xli}
from a separate, validation set of images. Then, we
assign these patches to the respective nearest cluster
centroid in Clκ. For a cluster clw ∈ Clκ, we compute the
fraction of patches assigned to this cluster which are
coming from the images of class κ, and use that fraction
as a criterion of discriminability. To avoid artefacts
clusters with fewer than τ patches are discarded. We
select then top N most discriminative clusters of each
class codebook Clκ, which yields our final codebook.

3 Experiments
We perform experiments on our apparel dataset to

assess the performance of our features and compare
to pre-engineered features. We show that our unsu-
pervised discriminative features achieve 70.1% aver-
age accuracy, compared to 62% by the best-performing
pre-engineered features. When we introduce label in-
formation in the training of the features at the second
layer performance further increases to 72%.
Dataset. The dataset is collected from various fashion
e-commerce shops and manually labelled. The major-
ity of the images show the apparel item in front of

a clean white background (see Fig. 1). The dataset
contains 15 different apparel types (bags, underwear,
coats, jewellery, blouses, watches, hats, belts, tops,
pants, skirts, jumpers, jumpsuit, dresses, glasses) and
counts 30, 000 images with 2, 000 images per category.
Experimental setup. The dataset is split into 3
parts: for each category we take 1, 300 images for train-
ing, 200 for validation and 500 for testing. We pad
each image with white space to make it square and
then rescale it to 128 × 128 pixels. For our method
we fix the patch sizes at different layers for all exper-
iments to s0 = 7, s1 = 3, and s2 = s3 = 2, respectively.
Max-pooling is performed with λl=2 between the lay-
ers and with λl = 6 after the last layer. Clusters with
fewer than τ=10 assigned patches were discarded. We
observe that slight changes in these parameters do not
significantly alter the accuracy. We feed the features
concatenated over the whole image at the last layer
to one-vs-all linear SVM classifiers for classification.
The SVM parameters are optimized on the validation
set and fixed throughout all experiments (C = 0.025).
We use average accuracy as performance measure and
evaluate the methods on the test set.
Parameters. First, we use no supervision and show
how the performance of our features depends on the
size of the codebook. We vary |C1| and measure per-
formance when a single layer is used for classification.
Then, we fix |C1|= 50 and vary |C2|, while using the
second layer as the classifier input. Increasing the num-
ber of clusters in both the first and second layer in-
creases performance, cf. Fig. 3. As the runtime of
the nearest-cluster-mean search increases with larger
codebooks, the codebook size is a tradeoff between ac-
curacy and running time. For further experiments, we
set |C1| = 50 at the first layer and |C2,3,4| = 400 at
other layers.

Next we evaluate the impact of the number of layers.
Introducing the second layer leads to an increase in 9
points in average accuracy by learning richer features.
However, adding more layers decreases the classifica-
tion accuracy as each cluster lacks training data and
and covers too many different visual concepts. That, in
turn, makes classification harder, cf. Fig. 4. Nonethe-
less, we hypothesize that increasing both the amount of
training data and the number of clusters in the deeper
layers might stabilize or even increase performance, as
indicated by Coates and Ng [6].



Figure 6: 50 cluster means of codebook in layer 1.
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Figure 7: Confusion matrix. Some classes like blouses and
tops are more easily confused than others.

bags belts coats jumpsuit jumpers underwear

blouses
jumpers

dresses
coats

dresses
tops

glasses
belts

pants
underwear

underwear
pants

Figure 8: The exemplar misclassifications reveal that even
for humans correct categorization would be difficult.

We now show how supervision increases average ac-
curacy. In the first layer supervised clustering does im-
prove the performance which is, however, in line with
the fact that the patterns in the first layer are not very
class specific. To measure the impact of supervision,
we train two sets of clusters for the second layer. The
first set is trained in an unsupervised manner, while
the other one is trained with supervision. We use the
union over them as codebook, and fix the total number
of clusters to |C2|= 400. To quantify the supervision,
we vary the fraction of supervised clusters. The classi-
fication benefits already from as little as 20% supervi-
sion, and with total supervision the accuracy improves
from 70.1% to 72%. Hence, the class information is
crucial for learning application-specific features.

Our feature extraction takes 0.1s for the first layer
and 0.5s for 2 layers (single-threaded, unoptimized
Matlab code).
Comparison to other methods. We compare our
features learned with and without supervision against
the two other pre-engineered features: SIFT [4] and
HOG [3]. We densely extract both of these features
over patches of size 16, and create a codebook of 1000
visual words for each of them over the training data.
Finally, a histogram of visual words is computed and
used as image representation, which we then compare
to our representation. Note that our codebook size
is smaller, consisting of only 400 visual words, which
makes a fair comparison. The results are summarized
in Table 1. The average classification accuracy based
on hand-crafted HOG and SIFT features achieve aver-
age accuracies of 50.1% and 62.0%, respectively, while

Unsupervised

Jumpers

Pants
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Glasses

Figure 9: Unsupervised learned codewords in layer 2 show
generic shape features while codewords learned under su-
pervision capture very class specific properties.

our method without supervision outperforms them and
achieves 70.1%. When we introduce label informa-
tion in the second layer performance further improves
to 72%. Classification of fine-grained classes bene-
fits particularly from our supervised features, e.g. for
blouses leading to a relative improvement of 13.2%.
Thus learning discrimantive features for apparel clas-
sification results in a relative improvement compared
to HOG and SIFT by 43.7% and 16.1%, respectively.
Qualitative results. Our cluster means in the first
layer capture edges at many different directions as well
as background and other simple patterns (cf. Fig. 6)
with strong visual similarity to the features learned by
CNNs [10]. While the first layer learns simple shapes,
the second layes learns in comparison more complex
and composite shapes and textures, cf. Fig. 9. No-
tably, the class-specific clusters capture the character-
istical class elements particularly well: e.g., a part of
the glasses, a ring or the crotch of pants.

In Fig. 8 we illustrate test images and the classifi-
cation when our learned features are used. Mind that
some of the correctly classified cases are hard to cate-
gorize even as a human. The misclassified images re-
veal that it is hard to distinguish between coats, tops
and dresses. The confusion matrix in Fig. 7 shows
that certain categories are particularly hard to distin-
guish from each other, i.e. blouses and tops as well
as jumpers and coats are frequently mixed up by our
method. In contrast most of the other classes can be
classified very well.

4 Conclusion
In the light of the fast growth and high level of inno-

vation in fashion e-commerce, automated apparel clas-
sification becomes crucial. In this work we proposed a
hierarchical discriminative feature learning framework
for apparel classification. We show that learning ap-
parel specific features results in better average accu-
racy and outperforms hand-engineered features, while
supervision further boosts the performance. In future
work, we plan to refine the clusters iteratively across
the layers to improve discriminativeness of the code-
book. We believe that our method could highly benefit
from feature encoding, i.e. Fisher encoding [17].
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