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Discriminative Learning of 

Local Image Descriptors 
Matthew Brown, Member, IEEE, Gang Hua, Member, IEEE and Simon Winder, Member, IEEE 

Abstract— In this paper we explore methods for learning 
local image descriptors from training data. We describe a set 
of building blocks for constructing descriptors which can be 
combined together and jointly optimized so as to minimize the 
error of a nearest-neighbour classifier. We consider both linear 
and non-linear transforms with dimensionality reduction, and 
make use of discriminant learning techniques such as Linear 
Discriminant Analysis (LDA) and Powell minimization to solve 
for the parameters. Using these techniques we obtain descriptors 
that exceed state-of-the-art performance with low dimensional-
ity. In addition to new experiments and recommendations for 
descriptor learning, we are also making available a new and 
realistic ground truth dataset based on multi-view stereo data. 

Index Terms— image descriptors, local features, discriminative 
learning, SIFT 

L
I. INTRODUCTION 

OCAL feature matching has rapidly emerged to become 

the dominant paradigm for recognition and registration in 

computer vision. In traditional vision tasks such as panoramic 

stitching [1], [2] and structure from motion [3], [4], it has largely 

replaced direct methods due to its speed, robustness, and the 

ability to work without initialization. 

It is also used in many recognition problems. Vector quantizing 

feature descriptors to finite vocabularies and using the analogue 

of “visual words” has enabled visual recognition to scale into 

the millions of images [5], [6]. Also the statistical properties of 

local features and visual words have been exploited by many 

researchers for object class recognition problems [7], [8], [9]. 

However, despite the proliferation of learning techniques that 

are being employed for higher level visual tasks, the majority 

of researchers still rely upon a small selection of hand coded 

feature transforms for the lower level processing. A good survey 

of some of the more common techniques can be found in [10], 

[11]. Some exceptions to this rule and good examples of low-level 

feature learning include the work of Lepetit and Fua [12], Shotton 

et al [13] and Babenko [14]. Lepetit and Fua [12] showed that 

randomized trees based on simple pixel differences could be an 

effective low level operation. This idea was extended by Shotton 

et al [13], who demonstrated a compelling scheme for object 

class recognition. Babenko et al. [14] showed that boosting could 

be applied to learn point based feature matching representations 

from a large training dataset. Another example of learning low 

level image operations is the Berkeley edge detector [15], which, 

rather than being optimized for recognition performance per se, 

is designed to mimic human edge labellings. 
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Progress in image feature matching improved rapidly following 

Schmid and Mohr’s work on indexing using grey-value invariants 

[16]. This represented a step forward over previous approaches to 

invariant recognition that had largely been based on geometrical 

entities such as edges and contours [17]. Another landmark paper 

in the area was the work of Lowe [18], [19] who demonstrated 

the importance of scale invariance and a non-linear, edge-based 

descriptor transformation inspired by the ideas of Hubel and 

Wiesel [20]. Since then small improvements have resulted, mainly 

due to improved spatial pooling arrangements that are more 

closely linked to the errors present in the interest point detection 

process [11], [21], [22]. 

One criticism of the local image descriptor designs described 

above has been the high dimensionality of descriptors (e.g., 128 

dimensions for SIFT). Dimensionality reduction techniques can 

help here, and have also been used to design features as well. 

A first attempt was PCA-SIFT [23], which used the principal 

components of gradient patches to form local descriptors. Whilst 

this provides some benefits in reducing noise in the descriptors, a 

better approach is to find projections that actively discriminate 

between classes [24], instead of just modelling the total data 

variance. Such techniques have been extensively studied in the 

face recognition literature [25], [26], [27]. 

Our work attempts to improve on the state of the art in local de-

scriptor matching by learning optimal low-level image operations 

using a large and realistic training dataset. In contrast to previous 

approaches that have used only planar transformations [11] or 

jittered patches [12] we use actual 3D correspondences obtained 

via a stereo depth map. This allows us to design descriptors that 

are optimized for the non-planar transformations and illumination 

changes that result from viewing a truly 3D scene. We note that 

Moreels and Perona have also proposed a technique for evaluating 

3D feature matches based on trifocal constraints [28]. Our work 

extends this approach by giving us the ability to generate new 

correspondences at arbitrary locations and also to reason about 

visibility. 

To generate correspondences, we leverage recent improvements 

in multi-view stereo matching [29], [30]. In contrast to previous 

approaches [31], this allows us to generate correspondences 

for arbitrary interest points and to model true interest point 

noise. We explore two methodologies for feature learning. The 

first uses parametric models inspired by previous successful 

feature designs, and Powell minimization [32] to solve for the 

parameters. The second uses non-parametric dimensionality re-

duction techniques common in the face recognition literature. 

Our training and test datasets containing approximately 2.5 ×
106 labelled image patches are being made available online at 

http://www.cs.ubc.ca/∼mbrown/patchdata/patchdata.html. 

A. Contributions 

The main contributions of this work are as follows: 

http:matthew.brown@epfl.ch
http:ganghua@gmail.com
mailto:swinder@microsoft.com
http://www.cs.ubc.ca/�mbrown/patchdata/patchdata.html
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1) We present a new ground-truth dataset for descriptor learn-

ing, making use of multi-view stereo from large 3D recon-

structions. This allows us to optimize descriptors for real 

interest point detections. We will be making this dataset 

available to the community. 

2) We extend previous work in parametric and non-parametric 

descriptor learning, and provide recommendations for future 

designs. 

3) We conduct several new experiments, including reducing 

dynamic range to minimize the number of bits used by our 

feature descriptors (important for scalability) and optimiz-

ing descriptors for different types of interest point (e.g., 

Harris and DOG). 

II. GROUND TRUTH DATASET 

To generate ground truth data for our descriptor matching 

problems, we make use of recent advances in multi-view image 

recognition and correspondence. Recent improvements in wide-

baseline matching and structure from motion have made it possi-

ble to find matches and compute cameras for datasets containing 

thousands of images, with greatly varying pose and illumination 

conditions [33], [34]. Furthermore, advances in multi-view stereo 

have made it possible to reconstruct dense surface models for 

such images despite the greatly varying imaging conditions [29], 

[30]. 

We view these 3D reconstructions as a possible source of train-

ing data for object recognition problems. Previous work [31] used 

re-projections of 3D point clouds to establish correspondences 

between images, adding synthetic jitter to emulate the noise 

introduced in the interest point detection process. This approach, 

whilst being straightforward to implement, has the disadvantage 

of allowing training data to be collected only at discrete locations, 

and fails to model true interest point noise. 

In this work, we use dense surface models obtained via stereo 

matching to establish correspondences between images. Note 

that because of the epipolar and multi-view constraints, stereo 

matching is a much easier problem than unconstrained 2D feature 

matching. We can thus generate correspondences via local stereo 

matching and multi-view consistency constraints that will be very 

challenging for wide baseline feature matching methods to match. 

We can also learn descriptors that are optimized for actual (and 

arbitrary) interest point detections, finding corresponding points 

by transferring their positions via the depth maps. 

We make use of camera calibration information and dense 

multi-view stereo data for three datasets containing over 1000 

images provided by [34] and [30]. In a similar spirit to [31], we 

extract patches around each interest point and store them in a large 

dataset on disk for efficient processing and learning. We detect 

Difference of Gaussian (DOG) interest points with associated 

position, scale and orientation in the manner of [19] (we also 

experiment with multi-scale Harris corners in Section VI-E). This 

results in around 1000 interest points per image. 

For each interest point detected, we compute the position, 

scale and orientation of the local region when mapped into each 

neighbouring image. These parameters are solved for by a least-

squares procedure. We do this by creating a uniform, dense point 

sampling (once per pixel) within the feature footprint in the first 

image. These points are then transferred via the depth map into the 

second image. In general the sampled points will not undergo an 

exact similarity transform, due to depth variations and perspective 

effects, so we estimate the best translation, rotation and scale 

between the corresponding image regions by least squares. 

First, we check to see if the interest point is visible in the 

neighbouring image using the visibility maps supplied by [30] (a 

visibility map is defined over each neighbouring image, and each 

pixel has the label 1 if the corresponding point in the reference 

image is visible, and 0 otherwise). We then declare interest points 

that are detected within 5 pixels of position, 0.25 octaves of scale 

and π/8 radians in angle to be “matches”. Those falling outside 

2× these ranges are defined to be “non-matches”. Interest point 

detections that are in between these ranges are deemed to be 

ambiguous and not used in learning or testing. We chose fairly 

small ranges for position, orientation and scale tolerance to suit 

our intended applications in automatic stitching and structure from 

motion. However, for category recognition problems one might 

choose larger ranges that should result in more position invariance 

but less discriminative representations. See Figures 1 and 2 for 

examples of correspondences and image patches generated by this 

process. 

III. DESCRIPTOR ALGORITHM 

In previous work [31] we have noted that many existing 

descriptors described in the literature, while appearing quite 

different, can be constructed using a common modular framework 

consisting of processing stages similar to Figure 3. At each stage, 

different candidate block algorithms (described below) may be 

swapped in and out to produce a new overall descriptor. In 

addition, some candidates have free parameters that we can adjust 

in order to maximize the performance of the descriptor as a whole. 

Certain of these algorithmic combinations give rise to published 

descriptors but many are untested. Using this structure allows us 

to examine the contribution of each building block in detail and 

obtain a better covering of the space of possible algorithms. 

Our approach to learning descriptors is therefore to put to-

gether a combination of building blocks and then optimize the 

parameters of these blocks using learning to obtain the best 

match/no-match classification performance. This contrasts with 

prior attempts to hand tune descriptor parameters and helps to 

put each algorithm on the same footing so that we can obtain 

and compare best performances. 

Figure 3 shows the overall learning framework for building 

robust local image descriptors. The input is a set of image patches, 

which may be extracted from the neighbourhood of any interest 

point detector. The processing stages consist of the following: 

G-block Gaussian smoothing is applied to the input patch. 

T-blocks We perform a range of non-linear transformations 

to the smoothed patch. These include operations such as 

angle-quantized gradients and rectified steerable filters, 

and typically resemble the “simple-cell” stage in human 

visual processing. 

S-blocks/E-blocks We perform spatial pooling of the 

above filter responses. S-blocks use parametrized pool-

ing regions, E-blocks are non-parametric. This stage 

resembles the “complex-cell” operations in visual pro-

cessing. 

N-blocks We normalize the output patch to account for 

photometric variations. This stage may optionally be 

followed by another E-block, to reduce the number of 

dimensions at the output. 
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Fig. 1. Generating ground truth correspondences. To generate the ground truth image correspondences needed as input to our algorithms, we use multi-view 
stereo data provided by Goesele et al [30]. Interest points are detected in the reference image, and transferred to each neighbouring image via the depth map. 
If the projected point is visible, we look for interest points within a specified range of position, orientation and scale, and declare these to be matches. Points 
lying outside of twice this range are declared to be non-matches. This is the basic input to our learning algorithms. Left to right: reference image, neighbour 
image, reference matches, neighbour matches, depth map, visibility map. 

In general, the T-block stage extracts useful features from the data 

like edge or local frequency information, and the S-block stage 

pools these features locally to make the representation insensitive 

to positional shift. These stages are similar to the simple/complex 

cells in the human visual cortex[36]. It’s important that the T-

block stage introduces some non-linearity, otherwise the smooth-

ing step amounts to simply blurring the image. Also, the N-

block normalization is critical as many factors such as lighting, 

reflectance and camera response have a large effect on the actual 

pixel values. 

These processing stages have been combined into 3 different 

pipelines, as shown in the figure. Each stage has trainable 

parameters, which are learnt using our ground truth dataset of 

match/non-match pairs. In the remainder of this section, we will 

take a more detailed look at the parametrization of each of these 

building blocks. 

A. Pre-smoothing (G-block) 

We smooth the image pixels using a Gaussian kernel of 

standard deviation σs as a pre-processing stage to allow the 

descriptor to adapt to an appropriate scale relative to the interest 

point scale. This stage is optional and can be included in the 

T-block processing (below) if desired. 

B. Transformation (T-block) 

The transformation block maps the smoothed input patch onto 

a grid with one length k vector with positive elements per 

output sample. In this paper, the output grid was given the same 

resolution as the input patch, i.e., 64×64. Various forms of linear 

or non-linear transformations or classifiers are possible and have 

been described previously [31]. In this paper we restrict our choice 

to the following T-blocks which were found to perform well: 

[T1] We evaluate the gradient vector at each sample and 

recover its magnitude m and orientation θ. We then quantize the 

orientation to k directions and construct a vector of length k such 

that m is linearly allocated to the two circularly adjacent vector 

elements i and i + 1 representing θi < θ < θi+1 according to the 

proximity to these quantization centres. All other elements are 

zero. This process is equivalent to the orientation binning used in 

SIFT and GLOH[11]. For the T1a-variant we use k = 4 directions 

and for the T1b-variant we use k = 8 directions. 

[T2] We evaluate the gradient vector at each sample and rectify 

its x and y components to produce a vector of length 4 for the 

T2a-variant: {|∇x|−∇x; |∇x|+∇x; |∇y|−∇y ; |∇y|+∇y }. This 

provides a natural sine-weighted quantization of orientation into 

4 directions. Alternatively for T2b, we extend this to 8 directions 

by concatenating an additional length 4 vector using ∇45 which 

is the gradient vector rotated through 45◦ . 

[T3] We apply steerable filters at each sample location using n 

orientations and compute the responses from quadrature pairs [37] 

with rectification to give a length k = 4n vector in a similar way 

to the gradient computation described above so that the positive 

and negative parts of the quadrature filter responses are placed in 

different vector elements. We tried two kinds of steerable filters: 

those based on a second derivatives provide broader scale and 

orientation tuning while fourth order filters give narrow scale and 

orientation tuning that can discriminate multiple orientations at 

each location in the input patch. These filters were implemented 

using the example coefficients given in [37]. The variants were 
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Fig. 2. Patch correspondences from the Liberty dataset. Top rows: reference image and depth map (left column), generated point correspondences (other 
columns). Note the wide variation in viewpoints and scales. Bottom rows: patches extracted from this dataset. Patches are considered to be “matching” if the 
detected interest points are within 5 pixels in position, 0.25 octaves of scale and π/8 radians in angle. 

Fig. 3. Schematic showing the learning algorithms explored for building local image descriptors. Three overall pipelines have been explored: (1) uses 
parametric parameter optimization, (‘S’ blocks) using Powell Minimization as in [31]; (2) uses optimal linear projections (‘E’ blocks), found via LDA as 
in [35]; and a third approach (3) combines a stage of (1) followed by the linear projection step in (2). 



T3g: 2nd order, 4 orientations; T3h: 4th order 4 orientations; T3i: 

2nd order, 8 orientations; and T3j: 4th order, 8 orientations. 

[T4] We compute two isotropic Difference of Gaussians (DOG) 

responses with different centre scales at each location by con-

volving the already smoothed patch with three new Gaussians 

(one additional larger centre and two surrounds). The two linear 

DOG filter outputs are then used to generate a length 4 vector 

by rectifying their responses into positive and negative parts as 

described above for gradient vectors. We set the ratio between the 

centre and surround space constants to 1.4. The pre-smoothing 

stage sets the size of the first DOG centre and so we use one 

additional parameter to set the relative size of the second DOG 

centre. 

S1: SIFT grid with S2:  GLOH polar grid S3: 3x3 grid with S4: 17 polar samples 

bilinear weights with bilinear radial Gaussian weights with Gaussian weights 
and angular weights 

Fig. 4. Examples of the different spatial summation blocks. For S3 and S4, 
the positions of the samples and the sizes of the Gaussian summation zones 
were parametrized in a symmetric manner. 

C. Spatial Pooling (S-block) 

Many descriptor algorithms incorporate some form of his-

togramming. In our pooling stage we spatially accumulate 

weighted vectors from the previous stage to give N linearly 

summed vectors of length k and these are concatenated to form 

a descriptor of kN dimensions where N ∈ {3, 9, 16, 17, 25}. We 

now describe the different spatial arrangements of pooling and 

the different forms of weighting: 

[S1] We used a square grid of pooling centres (see Figure 4), 

with the overall footprint size of this grid being a parameter. The 

vectors from the previous stage were summed together spatially 

by bilinearly weighting them according to their distance from the 

pooling centres as in the SIFT descriptor [19] so that the width of 

the bilinear function is dictated by the output sample spacing. We 

use sub-pixel interpolation throughout as this allows continuous 

control over the size of the descriptor grid. Note that all these 

summation operations are performed independently for each of 

the k vector elements. 

[S2] We used the spatial histogramming scheme of the GLOH 

descriptor introduced by Mikolajczyk and Schmid [11]. This uses 

a polar arrangement of summing regions as shown in Figure 4. 

We used three variants of this arrangement with 3, 9 and 17 

regions, depending on the number of angular segments in the 

outer two rings (zero, 4, or 8). The radii of the centres of the 

middle and outer regions and the outer edge of the outer region 

were parameters that were available for learning. Input vectors 

are bilinearly weighted in polar coordinates so that each vector 

contributes to multiple regions. As a last step, each of the final 

vectors from the N pooling regions is normalized by the area of 

its summation region. 

[S3] We used normalized Gaussian weighting functions to sum 

input vectors over local pooling regions arranged on a 3×3, 4×4 

or 5×5 grid. The sizes of each Gaussian and the positions of the 

grid samples were parameters that could be learned. Figure 4 
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displays the symmetric 3 3 arrangement with two position ×
parameters and three Gaussian widths. 

[S4] We tried the same approach as S3 but instead used a polar 

arrangement of Gaussian pooling regions with 17 or 25 sample 

centres. Parameters were used to specify the ring radii and the size 

of the Gaussian kernel associated with all samples in each ring 

(Figure 4). The rotational phase angle of the spatial positioning of 

middle ring samples was also a parameter that could be learned. 

This configuration was introduced in [31] and named the DAISY 

descriptor by [38]. 

D. Embedding (E-block) 

Embedding methods are prevalent in the face recognition 

literature [24], [25], and have been used by some authors for 

building local image descriptors [23], [35], [39]. Discriminative 

linear embedding can identify more robust image descriptors, 

whilst simultaneously reducing the number of dimensions. We 

summarize the different embedding methods we have used for 

E-blocks below (see also the objective functions in Section V). 

[E1] We perform principal component analysis (PCA) on the 

input vectors. This is a non-discriminative technique and is used 

mostly for comparison purposes. 

[E2] We find projections that minimize the ratio of in-class 

variance for match pairs to the variance of all match pairs. This 

is similar to Locality Preserving Projections (LPP) [25]. 

[E4] We find projections that minimize the ratio of variance 

between matched and non-matched pairs. This is similar to Local 

Discriminative Embedding [26]. 

[E6] We find projections that minimize the ratio of in-class 

variance for match pairs to the total data variance. We call 

this generalized local discriminative embedding (GLDE). If the 

number of classes is large, this objective function will be similar 

to [E2] and [E4] [35]. 

[E3], [E5] and [E7] are the same as [E2], [E4] and [E6] with 

the addition of orthogonality constraints which ensure that each 

of the projection directions are mutually orthogonal [40], [27], 

[41]. 

E. Post Normalization (N-block) 

We use normalization to remove the descriptor dependency on 

image contrast and to introduce robustness. 

For parametric descriptors, we employ the SIFT style nor-

malization approach which involves range clipping descriptor 

elements. Our slightly modified algorithm consists of four steps: 

(1) Normalize to a unit vector, (2) clip all the elements of 

the vector that are above a threshold κ by computing vi 
′ = 

min(vi, κ), (3) re-normalize to a unit vector, and (4) repeat from 

step 2 until convergence or a maximum number of iterations 

has been reached. This procedure has the effect of reducing the 

dynamic range of the descriptor and creating a robust function 

for matching. The threshold κ was available for learning. 

In the case of the non-parametric descriptors of Figure 3(2), 

we normalize the descriptor to a unit vector. 

IV. LEARNING PARAMETRIC DESCRIPTORS 

This section corresponds to Pipeline 1 in figure 3. The input 

to the modular descriptor is a 64 × 64 image patch and the final 

output is a descriptor vector of D = kN numbers where k is the 
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T-block dimension and N is the number of S-block summation 

regions. 

We evaluate descriptor performance and carry out learning 

using our ground-truth data sets consisting of match and non-

match pairs. For each pair we compute the Euclidean distance 

between descriptor vectors and form two histograms of this value 

for all true matching and non-matching cases in the data set. 

A good descriptor minimizes the amount of overlap of these 

histograms. We integrate the two histograms to obtain an ROC 

curve which plots correctly detected matches as a fraction of all 

true matches against incorrectly detected matches as a fraction 

of all true non-matches. We compute the area under the ROC 

curve as a final score for descriptor performance and aim to 

maximize this value. Other choices for quality measures are 

possible depending on the application but we choose ROC area 

as a robust and fairly generic measure. In terms of reporting our 

results on the test set, however, we choose to indicate performance 

in terms of the percentage of false matches present when 95% of 

all correct matches are detected. 

We jointly optimized parameter values of G, T, S, and N-blocks 

by using Powell’s multidimensional direction set method [32] to 

maximize the ROC area. We initialized the optimization with 

reasonable choices of parameters. 

Each ROC area measure was evaluated using one run over the 

training data set. After each run we updated the parameters and 

repeated the evaluation until the change in ROC area was small. 

In order to avoid over-fitting we used a careful parametrization of 

the descriptors using as few parameters as possible (typically 5–11 

depending on descriptor type). Once we had determined optimal 

parameters, we re-ran the evaluation over our testing data set to 

obtain the final ROC curves and error rates. 

V. LEARNING NON-PARAMETRIC DESCRIPTORS 

This section corresponds to Pipeline 2 in figure 3. In this 

section, we attempt to learn the spatial pooling component of 

the descriptor pipeline without committing to any particular 

parametrization. To do this, we make use of linear embedding 

techniques as described in Section III-D. Instead of using nu-

merical gradient descent methods such as Powell minimization to 

optimize parametrized descriptors, the embedding methods solve 

directly for a set of optimal linear projections. The projected 

output vector in this embedding space becomes the final image 

descriptor. Although Pipeline 2 also involves parameters for 

T and N-blocks, these are learned independently using Powell 

Minimization as described above. We leave the joint optimization 

of these parameters for future work. 

The input to the embedding learning algorithms is a set of 

match/non-match labelled image pairs that have been processed 

by different processing units (T-blocks), i.e., 

S = {xi = T (pi),xj = T (pj ), lij }. (1) 

In Equation 1, pk is an input image patch, T ( ) represents a ·
composite set of different image processing units presented in 

Section III, xk is the output vector of T ( ), and lij takes binary ·
value to indicate if patch pi and pj are match (lij = 1) or non-

match (lij = 0). We now present the mathematical formulation 

of the different embedding learning algorithms. 

A. Objective functions of different embedding methods. 

Our E2 block attempts to maximize the ratio of the projected 

variance of all xi in the match patch pair set to that of the 

difference vectors xi − xj . Letting w be the projection vector, 

we can write this mathematically as follows: 

“ ”2 
P T 

lij =1 w xi 
J1(w) = 

P

` ´2 
. (2) 

wT (xi − xj )lij =1 

The intuition for this objective function is that in projection space, 

we try to minimize the distance between the match pairs while 

at the same time keeping the overall projected variance of all 

vectors in the match pair set as big as possible. This is similar to 

the Laplacian eigen-map adopted in previous works such as the 

locality preserving projections [25]. 

Alternatively, motivated by local discriminative embed-

ding [26], the E4 block optimizes the following objective func-

tion: 
“ ”2 

P 

lij =0 
T (xi − xj )w 

J2(w) = 
P

` 

. (3) 
wT (xi − xj ) 

´2 

lij =1 

By maximizing J2(w), we are seeking the embedding space under 

which the distances between match pairs are minimized and the 

distances between non-match pairs are maximized. 

A third objective function (E6 blocks) unifies the above two 

objective functions under certain conditions [35]: 

“ ”2 
P T 

xi∈S w xi 
J3(w) = 

P

` ´2 
. (4) 

lij =1 wT (xi − xj ) 

All three objective functions J1, J2, and J3 can be written in 

matrix form as 

Ji(w) = 
w T Aiw 

. (5) 
wT Bw 

where 

X X 

A1 = ( lij )xix 
T 

(6) i 

S j 
X 

A2 = (xi − xj )(xi − xj )
T 

(7) 

lij =0 
X 

A3 = xix 
T
i (8) 

xi∈S 
X 

B = (xi − xj )(xi − xj )
T . (9) 

lij =1 

In the following, for ease of presentation, we use A to represent 

any of A1, A2 and A3. Setting the derivative of our objective 

function (Equation 5) to zero gives 

∂J 
=

2Aw(w T Bw) − 2(w T Aw)Bw 
= 0 (10) 

∂w (wT Bw)2 

which implies that the optimal w is given by the solution to a 

generalized eigenvalue problem 

Aw = λBw (11) 

where λ = w T Aw/w T Bw. Equation 11 is solved using standard 

techniques, and the first K generalized eigenvectors are chosen 

to form the embedding space. 
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E3, E5 and E7 blocks place orthogonality constraints on the 

corresponding E2, E4 and E6 blocks, respectively. The mathe-

matical formulation is quite straightforward: Suppose we have 

already obtained k− 1 orthogonal projections for the embedding, 

i.e., 

Wk = [w1,w2, . . . , wk−1], (12) 

to pursue the kth vector, we solve the following optimization 

problem: 

w T Aw 
arg maxw (13) 

wT Bw 

s.t. w 
T 
w1 = 0 (14) 

w 
T 
w2 = 0 (15) 

. . . (16) 

w 
T 
wk−1 = 0. (17) 

By formulating the Lagrangian, it can be shown that the solution 

to this problem can be found by solving the following eigenvalue 

problem [27], [41]: 

ˆ −1 −1 T −1
Mw = ((I − B WkQ Wk )B A)w = λw, (18) k 

where 

Qk = Wk
T 
B

−1
Wk. (19) 

The optimal wk is then the eigenvector associated with the largest 

eigenvalue in Equation 18. We omit the details of the derivation 

of the solution here but refer readers to [27], [41]. 

B. Power regularization 

A common problem with the linear discriminative formulation 

in Equation 5 is the issue of over-fitting. This occurs because 

projections w which are essentially noise can appear discrimina-

tive in the absence of sufficient data. This issue is exacerbated 

by the high dimensional input vectors used in our experiments 

(typically several hundred to several thousands of dimensions). 

To mitigate the problem, we adopt a power regularization cost 

function to force the discriminative projections to lie in the signal 

subspace. To do this, we first perform eigenvalue decomposition 

for the B matrix in Equation 5, i.e., B = UΛUT . Here Λ is 

a diagonal matrix with Λii = λi being the ith eigenvalue of B 

and λ1 ≥ λ2 ≥ ... ≥ λn. We then regularize Λ by clipping its 

diagonal elements against a minimal value λr , where 

′ λi = max(λi, λr). (20) 

P 

We choose r such that i≥r λi accounts for a portion α of the 

total power, i.e., 
Pn λi 

r = min s.t. P 

i=k ≤ α. (21) 
k 

n
i=1 λi 

Figure 5 shows the top 10 projections learnt from a set of 

match/non-match image patches with different power regulariza-

tion rate α. The only pre-processing applied to these patches 

was bias-gain normalization. As we can clearly observe, as α 

decreases from 0.2 to 0 (top to bottom), the projections become 

increasingly noisy. 

Fig. 5. The first 10 projections learned from normalized image patches 
in a match/non-match image patch set using J2(w) with different power 
regularization rate [35]. From top to bottom, α takes the value of 0.2, 0.1, 
0.02 and 0, respectively. Notice that the projections become progressively 
noisier as the power regularization is reduced. 

VI. EXPERIMENTS 

We performed experiments using the parametric and non-

parametric descriptor formulations described above, using our 

new test dataset. The following results all apply to Difference 

of Gaussian (DOG) interest points. For experiments using Harris 

corners, see Section VI-E. In each case we have compared to 

Lowe’s original implementation of SIFT. Since SIFT performs 

descriptor sampling at a certain scale relative to the Difference 

of Gaussian peak, we have optimized over this scaling parameter 

to ensure that a fair comparison is made (see Figure 6). 

For the results presented in this paper, we used three test 

sets (Yosemite, Notre Dame, and Liberty) which were obtained 

by extracting scale and orientation normalized 64 64 patches ×
around DOG interest points as described in Section II. Typically 

four training and test set combinations were used: Yosemite– 

Notre Dame, Yosemite–Liberty, Notre Dame–Yosemite, and Notre 

Dame–Liberty, where the first of the pair is the training set. In 

addition a “synthetic” training set was obtained which incorpo-

rated artificial geometric jitter as described in [31]. Training sets 

typically contained from 10,000 to 500,000 patch pairs depending 

on the application while test sets always contained 100,000 pairs. 

The training and test sets contained 50% match pairs, and 50% 

non-match pairs. During training and testing, we recomputed all 

match/non-match descriptor distances as the descriptor transfor-

mation varied, sweeping a threshold on the descriptor distance to 

generate an ROC curve. Note that using predefined match/non-

match pairs eliminates the need to recompute nearest neighbours 

in the 100,000 element test set, which would be computationally 

very demanding. In addition to presenting ROC curves, we give 

many results in terms of the 95% error rate which is the percent 

of incorrect matches obtained when 95% of the true matches are 

found (Section IV). 

A. Parametric Descriptors 

We obtained very good results using combinations of the para-

metric descriptor blocks of Section III, exceeding the performance 

of SIFT by around 1/3 in terms of 95% error rates. We chose to 

focus specifically on four combinations that were shown to have 

merit in [31]. These included a combination of angle quantized 

gradients (T1) or steerable filters (T3) with log-polar (S2) or 

Gaussian (S4) summation regions. Other combinations with T2, 

T4, S1, S3 performed less well. Example ROC curves are shown 

in Figure 7 and 8, and all error rates are given in Table I (all tables 

show the 95% error rate with the optimal number of dimensions 

given in parentheses). 
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Fig. 6. Results for Lowe-SIFT descriptors: (a) shows the solution for the optimal SIFT descriptor footprint using the Liberty dataset. Note that the performance 
is quite sensitive to this parameter, so it must be set carefully. (b) shows ROC curves when using this optimal patch scaling and the Yosemite dataset for 
testing. We also tried using PCA and GLDE on the SIFT descriptors (shown in the other curves). GLDE gave only small improvement in performance (1% 
error at 95% true positives) to Lowe’s algorithm, but substantially reduced the number of dimensions from 128 to 19. PCA also gives a large dimensionality 
reduction for only a small drop in performance. 

0.86

 36
 0.84

 34  0.82

 32  0.8

log2 scale Incorrect Match Fraction 

S3-9 (3x3) S3-16 (4x4) S3-25 (5x5) S4-17 S4-25 

Fig. 9. Optimal summation regions are foveated and this is despite 
initialization with a rectangular arrangement in the case of S3. 

On three of the four datasets, the best performance was 

achieved by the T3h-S4-25 combination, which is a combination 

of steerable filters with 25 Gaussian summation regions arranged 

in concentric rings. We found that when optimized over our 

training dataset, these summation regions tended to converge to a 

foveated shape, with larger and more widely space summation 

regions further from the centre (see Figure 9). This structure 

is reminiscent of the geometric blur work of [22], and similar 

arrangements were independently suggested and named DAISY 

descriptors by [38]. Rectangular arrays of summation regions 

were found to have lower performance and their results are not 

included here. 

Note that the performance of these parametric descriptors is 

uniformly strong in comparison to SIFT, but the downside of this 

method is that the number of dimensions is very large (typically 

several hundred). 

B. Non-Parametric Descriptors 

The ROC curves for training on Yosemite and testing on Notre 

Dame using Non-Parametric descriptors are shown in Figure 10. 

To summarize the remaining results, we have created tables 

showing the 95% error rates only. 

Table II shows the best results for each T-block using the 

scheme of Figure 3(2) over all subspace methods that we tried 

(PCA, LDE, LPP, GLDE and orthogonal variants). Also shown 

are results for applying subspace methods to raw bias-gain 

normalized pixel patches and gain normalized gradients. We see 

that the T3 (steerable filter) block performs the best, followed 

by T1 (angle-quantized gradients) and T2 (rectified gradients). In 

half of the cases the combination of T3 and E-block learning beat 

SIFT. Table III shows the best results for each E-block over all T-

block filters. LPP is the clear winner when trained on Yosemite. 

For Notre Dame the case is not so clear, and no one method 

performs consistently well. The best results for each subspace 

method are almost always using T3. 

To investigate sensitivity to training data, we tested on the 

Liberty set using training on both Notre Dame and Yosemite. 

For the non-parametric descriptor learning it seems that the 

Yosemite dataset was best for training, whereas for the parametric 

descriptors the performance was comparable (within 1-2%) for 

both datasets. In general the results from the E-block learning 

are less strong and more variable than the parametric S-block 

techniques. Certain combinations, such as T3/LPP were able to 

generate SIFT beating performance (e.g. 19.29% vs 26.10% on 

the Yosemite/Notre Dame test case), but many other combinations 

did not. The principal advantage of these techniques is that di-

mensionality reduction is simultaneously achieved, so the number 

of dimensions is typically low (e.g. 32 dimensions in the case of 

T3/LPP). 

C. Dimension reduced parametric descriptors 

Parametric descriptor learning yielded excellent performance 

with high dimensionality, whereas the non-parametric learning 

gave us a very small number of dimensions but with a slightly 

inferior performance. Thus it seems natural to combine these 

approaches. We did this by running a stage of non-parametric 

dimensionality reduction after a stage of parametric learning. This 

corresponds to Pipeline 3 in Figure 3. Note that we did not attempt 

to jointly optimize for the embedding and parametric descriptors, 

although this could be a good direction for future work. The 

results are shown in Figure 11 and Table IV. This approach gave 

us the overall best results, with typically 1-2% less error than 

parametric S-blocks alone, and far fewer dimensions (∼30-40). 

Although LDA gave much better results than PCA when applied 

to raw pixel data [35], running PCA on the outputs of S-block 

learning gave equal or better results to LDA. It may be that LDA is 

slightly overfitting in cases where a discriminative representation 

has already been found. For half the datasets, the best results were 
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Fig. 7. ROC curves for parametrized descriptors. Training on Notre Dame Fig. 8. ROC curves for parametrized descriptors. Training on Notre Dame 
and testing on Yosemite. and testing on Liberty. 

Train Test T1c-S2-17 T3h-S4-25 T3h-S2-17 T3j-S2-17 SIFT 

Yosemite 

Yosemite 

Notre Dame 

Notre Dame 

Notre Dame 

Liberty 

Yosemite 

Liberty 

17.90(272) 

23.00(272) 

18.30(272) 

22.76(272) 

14.43(400) 

20.48(400) 

16.35(400) 

21.85(400) 

15.44(272) 

22.00(272) 

16.56(272) 

22.05(272) 

15.87(544) 

22.28(544) 

15.91(544) 

21.98(544) 

26.10(128) 

35.09(128) 

28.50(128) 

35.09(128) 

Synthetic Liberty 29.50(272) 24.25(400) 25.74(272) 32.36(544) 35.09(128) 

TABLE I 

PARAMETRIC DESCRIPTOR RESULTS. 95% ERROR RATES ARE SHOWN, WITH THE NUMBER OF DIMENSIONS IN PARENTHESIS. 

normalized normalized 

Training Set Test Set pixels gradients T1 T2 T3 T4 SIFT 

Yosemite Notre Dame 37.17(14) 32.09(15) 25.68(24) 27.78(33) 19.29(32) 35.37(28) 26.10(128) 

Yosemite Liberty 56.33(14) 51.63(15) 38.55(24) 41.10(20) 31.10(32) 47.74(28) 35.09(128) 

Notre Dame Yosemite 43.37(27) 38.36(19) 33.59(21) 33.99(40) 31.27(19) 42.39(27) 28.50(128) 

Notre Dame Liberty 55.70(27) 52.62(17) 41.37(24) 43.80(15) 36.54(19) 50.63(27) 35.09(128) 

Synthetic Notre Dame 37.85(15) 39.15(24) 24.47(32) 24.47(32) 22.94(30) 34.41(28) 26.10(128) 

TABLE II 

BEST T-BLOCK RESULTS OVER ALL SUBSPACE METHODS. 

Training Test PCA GLDE GOLDE LDE OLDE LPP OLPP SIFT 

Yosemite 

Yosemite 

Notre D. 

Notre D. 

Notre D. 

Liberty 

Yosemite 

Liberty 

40.36(29) 

53.20(29) 

45.43(61) 

51.63(97) 

24.20(28) 

35.76(28) 

32.53(45) 

41.66(45) 

26.24(31) 

43.35(31) 

34.61(25) 

40.75(18) 

24.65(31) 

34.97(31) 

31.27(19) 

36.54(19) 

25.01(27) 

40.15(27) 

33.38(20) 

39.95(20) 

19.29(32) 

31.10(32) 

33.19(46) 

42.68(46) 

23.71(31) 

39.46(31) 

35.04(17) 

41.46(17) 

26.10(128) 

35.09(128) 

28.50(128) 

35.09(128) 

Synthetic Notre D. 43.78(66) 24.04(29) 26.25(29) 24.86(26) 26.10(33) 22.94(30) 26.05(34) 26.10(128) 

TABLE III 

BEST SUBSPACE METHOD OVER ALL T-BLOCKS. 

obtained using PCA on T3h-S4-25 (rectified steerable filters with 

DAISY-like Gaussian summation regions) and for the other half, 

the best results were from T3j-S2-17 plus PCA (rectified steerable 

filters and log-polar GLOH-like summation regions). The best 

results here gave less than half the error rate of SIFT, using about 

1/4 of the number of dimensions. See “best of the best” table V. 

To aid in the dissemination of these results, we have cre-

ated a document detailing parameter settings for the most 

successful DAISY configurations, as well as details of the 

recognition performance/computation time tradeoffs. This can 

be found on the same website as our patch datasets: 

http://www.cs.ubc.ca/∼mbrown/patchdata/tutorial.pdf. 

We also used this approach to perform dimensionality reduction 

on SIFT itself, the results are shown in Figure 6(b). We were able 

to reduce the number of dimensions significantly (to around 20), 

but the matching performance of the LDA reduced SIFT descrip-

tors was only slightly better than the original SIFT descriptors 

(∼1% error). 

D. Comparisons with Synthetic Interest Point Noise 

Previous work [31], [12] used synthetic jitter applied to image 

patches in lieu of the position errors introduced in interest point 

http://www.cs.ubc.ca/�mbrown/patchdata/tutorial.pdf
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(a) T1, 4 orientations (b) T2, 4 orientations
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Fig. 10. Testing of linear discriminant descriptors trained on Yosemite and tested on Notre Dame. The optimal number of dimensions and the associated 
95% error rate is given in parentheses. NSSD: Normalized sum squared difference computed on the output of the T-block directly without embedding. 

Training Test PCA GLDE GOLDE LDE OLDE LPP OLPP SIFT 

Yosemite 

Yosemite 

Notre D. 

Notre D. 

Notre D. 11.98(29) 19.12(39) 

Liberty 18.27(29) 26.92(32) 

Yosemite 13.55(36) 25.25(87) 

Liberty 16.85(36) 30.38(28) 

13.64(49) 

19.88(49) 

15.67(67) 

20.01(53) 

18.03(60) 

25.20(60) 

21.78(35) 

26.48(45) 

12.48(71) 

18.70(71) 

15.04(99) 

19.80(49) 

16.77(52) 

25.39(32) 

22.30(48) 

26.78(48) 

14.07(36) 26.10(128) 

20.33(36) 35.09(128) 

15.56(86) 28.50(128) 

19.47(48) 35.09(128) 

TABLE IV 

BEST SUBSPACE METHODS FOR COMPOSITE DESCRIPTORS. 
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Train Test Parametric Non-parametric Composite SIFT 

Yosemite 

Yosemite 

Notre Dame 

Notre Dame 

Notre Dame 

Liberty 

Yosemite 

Liberty 

14.43(400) 

20.48(400) 

15.91(544) 

21.85(400) 

19.29(32) 

31.10(32) 

31.27(19) 

36.54(19) 

11.98(29) 

18.27(29) 

13.55(36) 

16.85(36) 

26.10(128) 

35.09(128) 

28.50(128) 

35.09(128) 

TABLE V 

“BEST OF THE BEST” RESULTS. 

detection. In order to evaluate the effectiveness of this strategy, 

we tested a number of descriptors that were trained on a dataset 35 
with synthetic noise applied ([31]). 

15
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Fig. 13. Change in error rates as the normalization clipping threshold is varied 

for parametric descriptors. The threshold was set to r/ 
√ 

D where r is the 
ratio and D is the descriptor dimensionality. Unit: unit length normalization 
without clipping. 

G. Minimizing Bits 

For certain applications, such as scalable recognition, it is im-

portant that descriptors are represented as efficiently as possible. 

A natural question is: “what is the minimum number of bits 

required for accurate feature descriptors?”. To address this ques-

tion we tested the recognition performance of our parametrized 

descriptors as the number of bits per dimension was reduced from 

8 to 1. The results are shown in Figure 14 for the parametric 

descriptors. Surprisingly, there seems to be very little benefit to 

using any more than 2 or 3 bits of dynamic range per dimension, 

which suggests that it should be possible to create local image 

descriptors with a very small memory footprint indeed. In one 

case (T1c-S2-17), the performance actually degraded slightly as 

more bits were added. It could be that in this case quantization 

caused a small noise reduction effect. Note that this effect was 

small ( 1% in error rate), and not shown for the other descriptors, 

where the major change in performance came from 1 to 2 bits per 

dimension, which gave around 16% change in error rate. Whilst 

it would also be possible to quantize bits for dimension reduced 

(embedded) descriptors, a variable number of bits per dimension 

would be required as the variance on each dimension can differ 

substantially across the descriptor. 

VII. LIMITATIONS 

Here we address some limitations of the current method and 

suggest ideas for future work. 

A. Repetitive image structure 

One caveat with our learning approach scheme is that distinct 

3D locations are defined to be different classes, when in the 

For results, see the last rows of tables I, II and III. Here, 

“synthetic” means that synthetic scale, rotation and position jitter 

noise was applied to the patches, although the actual patch data 

was sampled from real images as in [31]. For the parametric 

descriptors, there is a clear gain of 5-10% from training using the 

new non-synthetic dataset. For the LDA based methods smaller 

gains are noticeable. 

E. Learning Descriptors for Harris Corners 

Using our multi-view stereo ground truth data we can easily 

create optimal descriptors for any choice of interest point. To 

demonstrate this, we also created a dataset of patches centred 

on multi-scale Harris corner points (see Figure 12). The left 

column shows the projections learnt from Harris corners and the 

right column from DOG interest points, for normalized image 

patches. The projections learnt from the two different types of 

interest points share several similarities in appearance. They 

are all centre focused, and look like Gaussian derivatives [16] 

combined with geometric blur [22]. We also found that the order 

of the performance of the descriptors learnt from the different 

embedding methods are similar to each other across the two data-

sets. 

F. Effects of Normalization 

As demonstrated in [35], the post-normalization step is very 

important for the performance of the non-parametric descriptors 

learnt from synthetically jittered data-set. We observe a similar 

phenomenon in our new experiments with the new data. 

The higher performance of the parametric descriptors when 

compared to the non-parametric descriptors is in some part 

attributable to the use of SIFT-style clipping normalization ver-

sus simple unit-length normalization for these. Since parametric 

descriptors maintain a direct relation between image-space and 

descriptor coefficients compared with coefficients after PCA re-

duction, SIFT-style clipping, by introducing a robustness function, 

can mitigate differences due to spatial occlusions and shadowing 

which affect one part of the descriptor and not another. For 

this reason applying SIFT-style normalization prior to dimension 

reduction seems appropriate. 

Figure 13 shows the effect of changing the threshold of clipping 

for SIFT normalization. Error rates are significantly improved 

when the clipping threshold are equal to around 1.6/
√

D when 

tested on a wide range of parametric descriptors with different 

dimensionality. This graph shows the drastic reduction in error 

rate compared with simple unit normalization.
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Fig. 14. Results of limiting the number of bits in each descriptor dimension. 
Not many more than 2 bits are required per dimension to retain a good error 
rate. 

real world, they can often have the same visual appearance. 

One common example would be repeated architectural structures, 

such as windows or doors. Such repetitions typically cause false 

positives in our matching schemes (see Figure 15). For the Notre 

Dame dataset, false positives occur due to translational repetition 

(e.g. the stone figures) as well as rotational repetitions (e.g. the 

rose window). 

B. Multi-view Stereo Data 

Although there have been great improvements in stereo in 

recent years [30], using multi-view stereo to train local image de-

scriptors has its limitations. Noise in the stereo reconstruction will 

inevitably propagate through to the set of image correspondences, 

but probably a bigger issue is that certain image correspondences, 

i.e., in regions where stereo fails, will not be present at all. One 

way around this problem would be to use imagery registered to 

LIDAR scans as in [42]. 

VIII. CONCLUSIONS 

We have described a scheme for learning discriminative, low-

dimensional image descriptors from realistic training data. These 

techniques have state-of-the-art performance in all our test sce-

narios. The techniques described in this paper have been used to 

design local feature descriptors for a robust structure from mo-

tion application called Photosynth1 and an automatic panoramic 

stitcher named ICE2 (Image Compositing Editor). 

Recommendations 

To summarize our work, we suggest a few recommendations 

for practitioners in this area: 

• Learn parameters from training data Successful descrip-

tor designs typically have many parameter choices that are 

difficult to optimize by hand. We recommend using realistic 

training datasets to optimize these parameters. 

• Use foveated summation regions Pooling regions that 

become larger away from the interest point are generally 

found to have good performance. See [38] for an efficient 

implementation approach. 

1http://www.photosynth.com 
2http://research.microsoft.com/ivm/ice.html 

• Use non-linear filter responses Some form of non-linear 

filtering before spatial pooling is essential for the best 

performance. Steerable filters work well if the phase is kept. 

Rectified or angle-quantized gradients are also a good and 

simple choice. 

• Use LDA for discriminative dimension reductions LDA 

can be used to find discriminative, low dimensional descrip-

tors without imposing a choice of parameters. However, if a 

discriminative representation has already been found, PCA 

can work well for reducing the number of dimensions. 

• Normalization Thresholding normalization often provides a 

large boost in performance. If dimension reduction is used, 

normalization should come before the dimension reduction 

block. 
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Fig. 11. ROC curves for composite descriptors trained on Yosemite and testing on Notre Dame. 

Fig. 12. Comparison of projections on patches centred on Harris corner points (left column), and DOG points (right column), respectively. From top to the 
bottom, we present projections learnt using the embedding blocks of E2, E3, E4, E5, E6, E7 and E1, respectively. 

Fig. 15. Some of the false positive, false negative, true positive and true negative image patch pairs when testing on the new Notre Dame dataset using 
E-blocks learnt from the new Yosemite dataset. We used a combination of T3 (steerable filters) and E2 (LPP) in this experiment. Each row shows 6 pairs of 
image patches and the two image patches in each pair are shown in the same column. Note that the two images in the false positive pairs are indeed obtained 
from different 3D points but their appearances look surprisingly similar. 
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