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Introduction

« Segmentation of 3D Scan

— Assign object category labels to scan points, e.g. this
point is scanned from building/tree/people etc.




Graphical Model

* Markov random fields (MRF = Markov network)

— Analogous to HMM, but is undirected and allows
higher connectivity and loops

— Generative model

 Max-margin estimation
— Discriminative learning



Associative Markov Networks (AMN)

« Pairwise model, defined by vertex and edge
potentials i (vi) , ®ij(Yi.y;)
— By Hammersley-Clifford Theorem, MRF can be
factored:

Py( ZHO ;) H ®ii (Vi yj)
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— Additional restriction for AMN:

0 (k, k) = A7, where AY; > 1, and ¢;;(k,1) = 1, Vk #1
* Intuitively: reward contlnwty instead of penalized discontinuity



Log-linear Parameters

Potentials are formulated in terms of node and edge
features x; and x;,.

The logarithm of node and edge potentials are
expressed as weighted feature sums.

log p;(k) = wF
log ¢ (k, k) = wk
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wi; and w” are the parameters to be determined.
AMN requires that w” - x;; > 0, which is satisfied by
constraining x,;; > 0and w’ > 0.



Optimization of AMN

Can be exactly solved for binary labels (K = 2) using
min-cut.

NP-hard for K > 2, but can be approximated using alpha-
expansion (Boykov, Veksler & Zabih) within a factor of 2.
— AMN guarantees —log ¢;; (k. k) is regular.

Other optimization methods:

— Loopy belief propagation (LBP)

— Tree re-weighted message passing (TRW)

— Linear program (LP) relaxation



Integer Program Formulation

* Represent an assignment y as a set of K*N indicators
{yi'}, where yi = I(y; = k).

 Thus the log of conditional probability log Py (y | X) is
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* In compact notation (see page 4 for abbreviation details):

log Py (y | X) = wXy — log Zy (X)

— w, y are concatenated weight, assignment vectors respectively.
— X contains node and edge feature vectors with padded zeros.



LP Relaxation of the MAP Problem
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- Quadratic term y;'y} replaced by variable tjf}
— Bound tight at optimal, hence .’ - 111111(3;.5"",:@/?3).
— Therefore ¥ = yrys if yi.yr € {0,1}



Maximum Margin Estimation

The gain of true labeling § over another labeling y is:
log Pw (¥ | x) — log Py (y [ x) = wX(y —y).
Hence the max margin formulation is:
max v st. wX(F-y) =G y); lw|? <1
The uniform per-label loss function
(3.y)=N—-§,vx
Therefore have quadratic program (QP):

1 ‘
min 5HWH2 + C¢

— Problem: exponentially many constraint



Maximum Margin Estimation (cont.)

* Replace exponential-size set of linear constraint

WX(y y) \T T yn yf? S* \V/.Y E y
with an equivalent single non-linear constraint

wXy — N+ &> 13'151; wXy — jfly.n_.

* Thus need to find y with highest potential relative to
parameterization wX — 3.
— The same form as the LP formulation of the MAP problem.

— Can be solved approximately, either by solving LP or using
graph-cut based alpha-expansion (faster in practice).



QP Solution

Substituting the (dual of) MAP LP into the QP, and after
some (possibly hairy) algebraic manipulation:
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QP Solution (cont.)

..and the dual:
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QP Solution (cont.)

« After solving the QP, the primal and dual solutions are
related by:

wh = ZXE e —n
Lo
W, = +ZX3? U?} #ﬂu)

i EE
« Kernels can be used on node parameters. However, the

extra \* term prevents edge parameters from being
kernelized.
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Experimental Results

« Two real-world and one synthetic datasets
— Terrain classification
— Segmentation of articulated objects
— Princeton benchmark
« Compare against multi-class SVM
— On each dataset, AMN and SVM use the same set of features.



Terrain Classification

« Campus map built by mobile robot with scanner
— Four types of terrains: ground, tree, building, and shrubbery
— Use quadratic kernel
— Locally sampled edges for AMN

« Accuracy:
— SVM: 68%, Voted SVM: 73%, and AMN: 93%

SVM Voted-SVM AMN




Segmentation of Articulated Objects

* Puppet dataset
— Four object classes: puppet head, limb, torso, and background
— Uses surface links output by the scanner as MRF edges.

* Results

— AMN: accuracy 94.4%, precision 83.9%, recall 86.8%
— SVM: accuracy 87.16%, precision 93%, recall 18.6%
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b) AMN c) SVM d) AMN with edges ignored



Princeton Benchmark

« Artificially generated scenes
— Two classes: vehicles and background
— Readings of “virtual sensor” corrupted by additive white noise
— Use the same set of features as in the puppet dataset

* Accuracy
— AMN: 93.76%, SVM: 82.23%

AMN

SVM




Conclusion

 MRF-based method for segmentation
— MAP estimate using graph-cut
— Max-margin training using QP

* Future work

— More appropriate kernels
— Spatial model of objects



