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Abstract. We address the problem of understanding an indoor scene
from a single image in terms of recovering the layouts of the faces (floor,
ceiling, walls) and furniture. A major challenge of this task arises from
the fact that most indoor scenes are cluttered by furniture and decora-
tions, whose appearances vary drastically across scenes, and can hardly
be modeled (or even hand-labeled) consistently. In this paper we tackle
this problem by introducing latent variables to account for clutters, so
that the observed image is jointly explained by the face and clutter lay-
outs. Model parameters are learned in the maximum margin formulation,
which is constrained by extra prior energy terms that define the role of
the latent variables. Our approach enables taking into account and in-
ferring indoor clutter layouts without hand-labeling of the clutters in the
training set. Yet it outperforms the state-of-the-art method of Hedau et
al. [4] that requires clutter labels.

1 Introduction

In this paper, we focus on holistic understanding of indoor scenes in terms of
recovering the layouts of the major faces (floor, ceiling, walls) and furniture
(Fig. 1). The resulting representation could be useful as a strong geometric
constraint in a variety of tasks such as object detection and motion planning.
Our work is in spirit of recent work on holistic scene understanding, but focuses
on indoor scenes.

For parameterizing the global geometry of an indoor scene, we adopt the
approach of Hedau et al. [4], which models a room as a box. Specifically, given
the inferred three vanishing points, we can generate a parametric family of boxes
characterizing the layouts of the floor, ceiling and walls. The problem can be
formulated as picking the box that best fits the image.

However, a major challenge arises from the fact that most indoor scenes are
cluttered by a lot of furniture and decorations. They often obscure the geometric
structure of the scene, and also occlude boundaries between walls and the floor.
Appearances and layouts of clutters can vary drastically across different indoor
scenes, so it is extremely difficult (if not impossible) to model them consistently.
Moreover, hand-labeling of the furniture and decorations for training can be an
extremely time-consuming (e.g., delineating a chair by hand) and ambiguous
task. For example, should windows and the rug be labeled as clutter?
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Fig. 1. Example results of recovering the “box” (1st row) and clutter layouts (2nd
row) for indoor scenes. In the training images we only need to label the “box” but not
clutters.

To tackle this problem, we introduce latent variables to represent the layouts
of clutters. They are treated as latent in that the clutter is not hand-labeled in
the training set. Instead, they participate in the model via a rich set of joint
features, which tries to explain the observed image by the synergy of the box
and the clutter layouts. As we introduce the latent variables we bear in mind
that they should account for the clutter such as chairs, desks, sofa etc. How-
ever, the algorithm has no access to any supervision information on the latent
variables. Given limited training data, it is hopeless to expect the learning pro-
cess to figure out the concept of clutter by itself. We tackle this problem by
introducing prior energy terms that capture our knowledge on what the clut-

ter should be, and the learning algorithm tries to explain the image by the box
and clutter layouts constrained by these prior beliefs. Our approach is attractive
that it effectively incorporates complex and structured prior knowledge into a
discriminative learning process with little human effort.

We evaluated our approach on the same dataset as used in [4]. Without hand-
labeled clutters we achieve the average pixel error rate of 20.1%, in comparison to
26.5% in [4] without hand-labeled clutters, and 21.2% with hand-labeled clutters.
This improvement can be attributed to three main contributions of our work (1)
we introduce latent variables to account for the clutter layouts in a principled
manner without hand-labeling them in the training set; (2) we design a rich set
of joint features to capture the compatibility between image and the box-clutter
layouts; (3) we perform more efficient and accurate inference by making use of
the parameterization of the “box” space. The contribution of all of these aspects
are validated in our experiments.

1.1 Related Work

Our method is closely related to a recent work of Hedau et al [4]. We adopted
their idea of modeling the indoor scene geometry by generating “boxes” from
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the vanishing points, and using struct-SVM to pick the best box. However, they
used supervised classification of surface labels [6] to identify clutters (furniture),
and used the trained surface label classifier to iteratively refine the box layout
estimation. Specifically, they use the estimated box layout to add features to
supervised surface label classification, and use the classification result to lower
the weights of “clutter” image regions in estimating the box layout. Thus their
method requires the user to carefully delineate the clutters in the training set. In
contrast, our latent variable formulation does not require any label of clutters,
yet still accounts for them in a principled manner during learning and inference.
We also design a richer set of joint feature as well as a more efficient inference
method, both of which help boost our performance.

Incorporating image context to aid certain vision tasks and to achieve holistic
scene understanding have been receiving increasing concern and efforts recently
[3,5,6]. Our paper is another work in this direction that focuses on indoor scenes,
which demonstrate some unique aspects of due to the geometric and appearance
constraints of the room.

Latent variables has been exploited in the computer vision literature in various
tasks such as object detection, recognition and segmentation. They can be used
to represent visual concepts such as occlusion [11], object parts [2], and image-
specific color models [9]. Introducing latent variables into struct-SVM was shown
to be effective in several applications [12]. It is also an interesting aspect in our
work that latent variables are used in direct correspondence with a concrete
visual concept (clutters in the room), and we can visualize the inference result
on latent variables via recovered furniture and decorations in the room.

2 Model

We begin by introducing notations to formalize our problem. We use x to denote
the input variable, which is an image of an indoor scene; y to denote the output
variable, which is the “box” characterizing the major faces (floor, walls, ceiling)
of the room; and h to denote the latent variables, which specify the clutter
layouts of the scene.

For representing the face layouts variable y we adopt the idea of [4]. Most
indoor scenes are characterized by three dominant vanishing points. Given the
position of these points, we can generate a parametric family of “boxes”. Specif-
ically, taking a similar approach as in [4] we first detect long lines in the image,
then find three dominant groups of lines corresponding to three vanishing points.
In this paper we omit the details of these preprocessing steps, which can be found
in [4] and [8]. As shown in Fig. 2, we compute the average orientation of the lines
corresponding to each vanishing point, and name the vanishing point correspond-
ing to mostly horizontal lines as vp0; the one corresponding to mostly vertical
lines as vp1; and the other one as vp2.

A candidate “box” specifying the face layouts of the scene can be gener-
ated by sending two rays from vp0, two rays from vp1, and connecting the four
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Fig. 2. Lower-Left: We have 3 groups of lines (shown in R, G, B) corresponding to
the 3 vanishing points respectively. There are also “outlier” lines (shown in yellow)
which do not belong to any group. Upper-Left: A candidate “box” specifying the
boundaries between the ceiling, walls and floor is generated. Right: Candidate boxes
(in yellow frames) generated in this way and the hand-labeled ground truth box layout
(in green frame).

intersections with vp2. We use real parameters {yi}
4
i=1 to specify the position1

of the four rays sent from vp0 and vp1. Thus the position of the vanishing points
and the value of {yi}

4
i=1 completely determine a box hypothesis assigning each

pixel a face label, which has five possible values {ceiling, left-wall, right-wall,
front-wall, floor}. Note that some of the face labels could be absent; for example
one might only observe right-wall, front-wall and floor in an image. In that
case, some value of yi would give rise to a ray that does not intersect with the
extent of the image. Therefore we can represent the output variable y by only
4 dimensions {yi}

4
i=1 thanks to the strong geometric constraint of the vanishing

points2. One can also think of y as the face labels for all pixels. We also define a
base distribution p0(y) over the output space estimated by fitting a multivariate
Gaussian with diagonal covariance via maximum likelihood to the label boxes
in the training set. The base distribution is used in our inference method.

To compactly represent the clutter layout variable h, we first compute an
over-segmentation of the image using mean-shift [1]. Each image is segmented
into a number (typically less than a hundred) of regions, and for each region we
assign it to either clutter or non-clutter. Thus the latent variable h is a binary

1 There could be different design choices for parameterizing the “position” of a ray
sent from a vanishing point. We use the position of its intersection with the image
central line (use vertical and horizontal central line for vp

0
and vp

1
respectively).

2 Note that y resides in a confined domain. For example, given the prior knowledge
that the camera cannot be above the ceiling or beneath the floor, the two rays sent
by vp

0
must be on different sides of vp

2
. Similar constraints also apply to vp

1
.
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vector with the same dimensionality as the number of regions in the image that
resulted from the over-segmentation.

We now define the energy function Ew that relates the image, the box and
the clutter layouts:

Ew(x, y, h) = 〈w,Ψ(x, y, h)〉 − E0(x, y, h) . (1)

Ψ is a joint feature mapping that contains a rich set of features measuring the
compatibility between the observed image and the box-clutter layouts, taking
into account image cues from various aspects including color, texture, perspective
consistency, and overall layout. w contains the weights for the features that needs
to be learned. E0 is an energy term that captures our prior knowledge on the
role of the latent variables. Specifically, it measures the appearance consistency
of the major faces (floor and walls) when the clutters are taken out, and also
takes into account the overall clutterness of each face. Intuitively, it defines the
latent variables (clutter) to be things that appears inconsistently in each of the

major faces. Details about Ψ and E0 are introduced in Section 3.3.
The problem of recovering the face and clutter layouts can be formulated as:

(ȳ, h̄) = arg max
(y,h)

Ew(x, y, h) . (2)

3 Learning and Inference

3.1 Learning

Given the training set {(xi, yi)}
m
i=1 with hand-labeled box layouts, we learn

the parameters w discriminatively by adapting the large margin formulation of
struct-SVM [10,12],

min
w,ξ

1

2
‖w‖2 +

C

m

m∑

i=1

ξi , s.t. ∀i, ξi ≥ 0 and (3)

∀i, y �= yi, max
hi

Ew(xi, yi, hi) − max
h

Ew(xi, y, h) ≥ 1 −
ξi

∆(y, yi)
, (4)

where ∆(y, yi) is the loss function that measures the difference between the can-
didate output y and the ground truth yi. We use pixel error rate (the percentage
of pixels that are labeled differently by the two box layouts) as the loss function.

As E0 encodes the prior knowledge, it is fixed to constrain the learning process
of model parameters w. Without the slack variables ξi the constraints (4) essen-
tially state that, for each training image i, any candidate box layout ŷ cannot
better explain the image than the ground truth layout yi. Maximizing the com-
patibility function over the latent variables gives the clutter layouts that best
explain the image and box layouts under the current model parameters. Since
the model can never fully explain the intrinsic complexity of real-world images,
we have to slacken the constraints by the slack variables, which are scaled by the
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loss function ∆(ŷ, yi) indicating that hypothesis deviates more from the ground
truth violating the constraint would incur a larger penalty.

The learning problem is difficult because the number of constraints in (4) is
infinite. Even if we discretize the parameter space of y in some way, the total
number of constraints is still huge. And each constraint involves an embedded
inference problem for the latent variables. Generally this is tackled by gradually
adding most violated constraints to the optimization problem [7,10], which in-
volves an essential step of loss augmented inference that tries to find the output
variable ŷ for which the constraint is most violated given the current parameters
w. In our problem, it corresponds to following inference problem:

(ŷ, ĥ) = arg max
y,h

(1 + Ew(xi, y, h) − Ew(xi, yi, hi)) · ∆(y, yi) , (5)

where the latent variables hi should take the value that best explains the ground
truth box layout under current model parameters:

hi = argmax
h

Ew(xi, yi, h) . (6)

The overall learning algorithm (follows from [10]) is shown in Algorithm 1. In
the rest of this section, we will elaborate on the inference problems of (5) and
(6), as well as the details of Ψ and E0.

Algorithm 1. Overall Learning Procedure

1: Input: {(xi, yi)}
m
i=1, C, ǫfinal

2: Output: w

3: Cons ← ∅
4: ǫ ← ǫ0
5: repeat
6: for i = 1 to m do
7: find (ŷ, ĥ) by solving (5) using Algorithm 2

8: if the constraint in (4) corresponding to (ŷ, ĥ) is violated more than ǫ then
9: add the constraint to Cons

10: end if
11: end for
12: update w by solving the QP given Cons
13: for i = 1 to m do
14: update hi by solving (6)
15: end for
16: if # new constraints in last iteration is less than threshold then
17: ǫ ← ǫ/2
18: end if
19: until ǫ < ǫfinal and # new constraints in last iteration is less than threshold

3.2 Approximate Inference

Because the joint feature mapping Ψ and prior energy E0 are defined in a rather
complex way in order to take into account various kinds of image cues, the
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inference problems (2), (5) and (6) cannot be solved analytically. In [4] there was
no latent variable h, and the space of y is still tractable for simple discretization,
so the constraints for struct-SVM can be pre-computed for each training image
before the main learning procedure. However in our problem we are confronting
the combinatorial complexity of y and h, which makes it impossible to pre-
compute all constraints.

For inferring h given y, we use iterated conditional modes (ICM) [13]. Namely,
we iteratively visit all segments, and flip a segment (between clutter and non-

clutter) if it increase the objective value, and we stop the process if no segment
is flipped in last iteration. To avoid local optima we start from multiple random
initializations. For inferring both y and h, we use stochastic hill climbing for y,
and the algorithm is shown in Algorithm 2.

The test-time inference procedure (2) is handle similarly as the loss augmented
inference (5) but with a different objective. We can use a looser convergence
criterion for (5) to speed up the process as it has to be performed multiple times
in learning. The overall inference process is shown in Algorithm 2.

Algorithm 2. Stochastic Hill-Climbing for Inference

1: Input: w, x

2: Output: ȳ, h̄

3: for a number of random seeds do
4: sample ȳ from p0(y)
5: h̄ ← arg maxh Ew (x, ȳ, h) by ICM
6: repeat
7: repeat
8: perturb a parameter of y as long as it increases the objective
9: until convergence

10: h̄ ← arg maxh Ew (x, ȳ, h) by ICM
11: until convergence
12: end for

In experiments we also compare to another inference method that does not
make use of the continuous parameterization of y. Specifically we independently
generate a large number of candidate boxes from p0(y), infer the latent variable
for each of them, and pick the one with the largest objective value. This is similar
to the inference method used in [4], in which they independently evaluate all
hypothesis boxes generated from a uniform discretization of the output space.

3.3 Priors and Features

For making use of color and texture information, we assign a 21 dimensional
appearance vector to each pixel, including HSV values (3), RGB values (3),
Gaussian filter in 3 scales on all 3 Lab color channels (9), Sobel filter in 2
directions and 2 scales (4), and Laplacian filter in 2 scales (2). Each dimension
is normalized for each image to have zero mean and unit variance.
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The prior energy-term E0 consists of 2 parts,

E0(x, y, h) = αaEa(x, y, h) + αcEc(y, h) . (7)

The first term Ea summarizes the appearance variance of each major face ex-
cluding all clutter segments, which essentially encodes the prior belief that the
major faces should have a relatively consistent appearance after the clutters are
taken out. Specifically Ea is computed as the variance of the appearance value
within a major face excluding clutter, summed over all the 21 dimensions of ap-
pearance values and 5 major faces. The second term Ec penalizes clutterness of
the scene to avoid taking out almost everything and leaving a tiny uniform piece
that is very consistency in appearance. Specifically, for each face we compute
exp(βs), where s is the area percentage of clutter in that face and β is a con-
stant factor. This value is then averaged over the 5 faces weighted by their areas.
The reason for adopting the exponential form is that it demonstrates superlinear
penalty as the percentage of clutter increases. The relative weights between these
2 terms as well as the constant factor β were determined by cross-validation on
the training set and then fixed in the learning process.

The features in Ψ come from various aspects of image cues as summarized
below (228 features in total).

1. Face Boundaries: Ideally the boundaries between the 5 major faces should
either be explained by a long line or occluded by some furniture. Therefore
we introduce 2 features for each of the 8 boundaries3, computed by the
percentage of its length that is (1) in a clutter segment and (2) approximately
overlapping with a line. So there are 16 features in this category.

2. Perspective consistency: The idea behind perspective consistency fea-
tures is adopted from [4]. The lines in the image can be assigned into 3
groups corresponding to the 3 vanishing points (Fig. 2). For each major
face, we are more likely to observe lines from 2 of the 3 groups. For example,
on the front wall we are more likely to observe lines belonging to vp0 and
vp1, but not vp2. In [4] they defined 5 features by computing the length
percentage of lines from the “correct” groups for each face. In our work we
enlarge the number of features to leave the learning algorithm with more
flexibility. Specifically we count the total length of lines from all 3 groups in
all 5 faces, and treating clutter and non-clutter segments separately, which
results in 3 × 5 × 2 = 30 features in this category.

3. Cross-face difference: For the 21 appearance values, we compute the dif-
ference between the 8 pairs of adjacent faces (excluding clutters), which
results in 168 features.

4. Overall layouts: For each of 5 major faces, we use a binary feature indicat-
ing whether it is observable or not, and we also use a real feature for its area
percentage in the image. Finally, we compute the likelihood of each of the 4
parameters {yi}

4
i=1 under p0(y). So there are 14 features in this category.

3 If all 5 faces are present, there are 8 boundaries between them.
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Table 1. Quantitative results. Row 1: pixel error rate. Row 2 & 3: the number
of test images (out of 105) with pixel error rate under 20% & 10%. Column 1 ([6]):
Hoiem et al.’s region labeling algorithm. Column 2 ( [4] w/o): Hedau et al.’s method
without clutter label. Column 3 ([4] w/) : Hedau et al.’s method with clutter label
(iteratively refined by supervised surface label classification [6]). The first 3 columns
are directly copied from [4]. Column 4 (Ours w/o): Our method (without clutter
label). Column 5 (w/o prior): Our method without the prior knowledge constraint.
Column 6 (h = 0): Our method with latent variables fixed to be zeros (assuming
“no clutter”). Column 7 (h = GT): Our method with latent variables fixed to be
hand-labeled clutters in learning. Column 8 (UB): Our method with latent variables
fixed to be hand-labeled clutters in both learning and inference. In this case the testing
phase is actually “cheating” by making use of the hand-labeled clutters, so the results
can only be regarded as some upperbound. The deviations in the results are due to the
randomization in both learning and inference. They are estimated over multiple runs
of the entire procedure.

[6] [4] w/o [4] w/ Ours w/o w/o prior h = 0 h = GT UB

Pixel 28.9% 26.5% 21.2% 20.1±0.5% 21.5±0.7% 22.2±0.4% 24.9±0.5% 19.2±0.6%

≤20% – – – 62±3 58±4 57±3 46±3 67±3

≤10% – – – 30±3 24±2 25±3 20±2 37±4

4 Experimental Results

For experiments we use the same datast4 as used in [4]. The dataset consists
of 314 images, and each image has hand-labeled box and clutter layouts. They
also provided the training-test split (209 for training, 105 for test) on which they
reported results in [4]. For comparison we use the same training-test split and
achieve a pixel-error-rate of 20.1% without clutter labels, comparing to 26.5%
in [4] without clutter labels and 21.2% with clutter labels. Detailed compar-
isons are shown in Table 1 (the last four columns are explained in the following
subsections).

In order to validate the effects of prior knowledge in constraining the learning
process, we take out the prior knowledge by adding the two terms Ea and Ec as
ordinary features and try to learn their weights. The performance of recovering
box layouts in this case is shown in Table 1, column 5. Although the difference
between column 4 and 5 (Table 1) is small, there are many cases where recovering
more reasonable clutters does help in recovering the correct box-layout. Some
examples are shown in Figure 3, where the 1st and 2nd column (from left) are the
box and clutter layouts recovered by the learned model with prior constraints,
and the 3rd and 4th column are the result of learning without prior constraints.
For example, in the case of the 3rd row (Fig. 3), the boundary between the floor

and the front-wall (the wall on the right) is correctly recovered even though it
is largely occluded by the bed, which is correctly inferred as “clutter”, and the

4 The dataset is available at
https://netfiles.uiuc.edu/vhedau2/www/groundtruth.zip

https://netfiles.uiuc.edu/vhedau2/www/groundtruth.zip
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Learning w/ prior knowledge Learning w/o prior knowledge

Inferred box layout Inferred clutter layout Inferred box layout Inferred clutter layout

Fig. 3. Sample results for comparing learning with and without prior constraints. The
1st and 2nd column are the result of learning with prior constraints. The 3rd and
4th column are the result of learning without prior constraints. The clutter layouts are
shown by removing all non-clutter segments. In many cases recovering more reasonable
clutters does help in recovering the correct box layout.
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boundary is probably found by the appearance difference between the floor and
the wall. However, with the model learned without prior constraints, the bed
is regarded as non-clutter whereas the major parts of the floor and walls are
inferred as clutter (this is probably because the term Ec is not acting effectively
with the learned weights), so it appears that the boundary between the floor and
the front-wall is decided incorrectly by the difference between the white pillow
and blue sheet.

We tried to fix the latent variables h to be all zeros. The results are shown in
column 6 of Table 1. Note that in obtaining the result of 26.5% without clutter
labels in [4], they only used “perspective consistency” features, although other
kinds of features are incorporated as they resort to the clutter labels and the
supervised surface label classification method in [6]. By fixing h to be all zeros
(assuming no clutter) we actually decomposed our performance improvement
upon [4] into two parts: (1) using the richer set of features, and (2) account-
ing for clutters with latent variables. Although the improvement brought by
the richer set of features is larger, the effect of accounting for clutters is also
significant.

We also tried fix the latent variables h to be the hand-labeled clutter layouts5

The results are shown in column 7 of Table 1. We quantitatively compared our
recovered clutter to the hand-labeled clutters, and the average pixel difference
is around 30% on both the training and test set. However this value does not
necessarily reflect the quality of our recovered clutters. In order to justify this,
we show some comparisons between the hand-labeled clutters and the recovered
clutters (from the test set) by our method in Fig. 4. Generally the hand labels
include much less clutters than our algorithm recovers. Because delineating ob-
jects by hand is very time consuming, usually only one or two pieces of major
furniture are labeled as clutter. Some salient clutters are missing in the hand-
labels such as the cabinet and the TV in the image of the 1st row (Fig. 4), the
smaller sofa in the image of the 5th row, and nothing is labeled in the image of
the 3rd row. Therefore it is not surprising that learning with the hand-labeled
clutter does not resulting in a better model (Table 1, column 7). Additionally,
we also tried to fix the latent variable to be the hand-labeled clutters in both

learning and inference. Note that the algorithm is actually “cheating” as it has
access to the labeled clutters even in the testing phase. In this case it does give
slightly better results (Table 1, column 8) than our method.

Although our method has improved the state-of-the-art performance on the
dataset, there are still many cases where the performance is not satisfiable. For
example in the 3rd image of Fig. 4, the ceiling is not recovered even though
there are obvious image cues for it, and in the 4th-6th image of Fig. 4, the
boundaries between the floor and the wall are not estimated accurately. There

5 The hand-labeled clutters in the dataset are not completely compatible with our
over-segmentation, i.e., some segments may be partly labeled as clutter. In that case,
we assign 1 to a binary latent variable if over 50% of the corresponding segment is
labeled as clutter. The pixel difference brought by this “approximation” is 3.5% over
the entire dataset, which should not significantly affect the learning results.
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Inferred box layout Inferred clutter layout Hand-labeled clutter layout

Fig. 4. Sample results for comparing the recovered clutters by our method and the
hand-labeled clutters in the dataset. The 1st and 2nd column are recovered box and
clutter layouts by our method. The 3rd column (right) is the hand-labeled clutter
layouts. Our method usually recovers more objects as “clutter” than people would
bother to delineate by hand. For example, the rug with a different appearance from
the floor in the 2nd image, paintings on the wall in the 1st, 4th, 5th, 6th image, and
the tree in the 5th image. There are also major pieces of furniture that are missing in
the hand-labels but recovered by our method, such as the cabinet and TV in the 1st
image, everything in the 3rd image, and the small sofa in the 5th image.
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Fig. 5. Left: Comparison between the inference method described in Algorithm 2
and the baseline inference method that evaluates hypotheses independently. Right:
Empirical convergence evaluation for the learning procedure.

is around 6-7% (out of the 20.1%) of the pixel error due to incorrect vanishing
point detection results6.

We compare our inference method (Algorithm 2) to the baseline method (eval-
uating hypotheses independently) described in Section 3.2. Fig. 5 (Left) shows
the average pixel error rate over test set versus the number of calls to the joint
feature mapping Ψ in log scale, which could be viewed as a measure of running
time. The difference between the two curves is actually huge as we are plotting
in log-scale. For example, for reaching the same error rate of 0.22 the baseline
method would take roughly 10 times more calls to Ψ.

As we have introduced many approximations into the learning procedure of
latent struct-SVM, it is hard to theoretically guarantee the convergence of the
learning algorithm. In Fig. 5 (Right) we show the performance of the learned
model on test set versus the number of iterations in learning. Empirically the
learning procedure approximately converges in a small number of iterations,
although we do observe some fluctuation due to the randomized approximation
used in the loss augmented inference step of learning.

5 Conclusion

In this paper we addressed the problem of recovering the geometric structure as
well as clutter layouts from a single image. We used latent variables to account for
indoor clutters, and introduced prior terms to define the role of latent variables
and constrain the learning process. The box and clutter layouts recovered by
our method can be used as a geometric constraint for subsequent tasks such

6 The error rate of 6-7% is estimated by assuming a perfect model that always picks
the best box generated from the vanishing point detection result, and performing
stochastic hill-climbing to infer the box using the perfect model.
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as object detection and motion planning. For example, the box layout suggests
relative depth information, which constrains the scale of the objects we would
expect to detect in the scene.

Our method (without clutter labels) outperforms the state-of-the-art method
(with clutter labels) in recovering the box layout on the same dataset. And we
are also able to recover the clutter layouts without hand-labeling of them in the
training set.
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