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ABSTRACT

In this paper we show how a discriminative objective function such
as Maximum Mutual Information (MMI) can be combined with a
prior distribution over the HMM parameters to give a discrimina-
tive Maximum A Posteriori (MAP) estimate for HMM training.
The prior distribution can be based around the Maximum Likeli-
hood (ML) parameter estimates, leading to a technique previously
referred to as I-smoothing; or for adaptation it can be based around
a MAP estimate of the ML parameters, leading to what we call
MMI-MAP. This latter approach is shown to be effective for task
adaptation, where data from one task (Voicemail) is used to adap-
t a HMM set trained on another task (Switchboard). It is shown
that MMI-MAP results in a 2.1% absolute reduction in word error
rate relative to standard ML-MAP with 30 hours of Voicemail task
adaptation data starting from a MMI-trained Switchboard system.

1. INTRODUCTION

Recently discriminative training techniques such as Maximum Mu-
tual Information Estimation (MMIE) have been shown to outper-
form conventional Maximum Likelihood Estimation (MLE) for
large vocabulary HMM-based speech recognition [8]. Howev-
er adaptation techniques for these models such are still general-
ly based on MLE and include transform-based methods such as
Maximum Likelihood Linear Regression (MLLR) and Maximum
A Postriori (MAP) approaches.

While it has been shown that MMI-trained models can be ef-
fective with MLLR for speaker adaptation [8] and conventional
MAP can be effective for task adaptation [1] it is interesting to in-
vestigate what additional benefits can be found for using discrim-
inative objective functions in adaptation as well as for training the
original models. Previous work in discrimative adaptation includes
a MAP-type scheme described in [3] and discriminative transform
estimation [7].

This paper introduces a technique denoted MMI-MAP which
combines a prior distribution with the statistics required for M-
MI estimation using the adaptation data. A key feature of the
MMI-MAP scheme presented here is that it is a two-level scheme
with the prior derived by conventional (ML)-MAP estimation. The
technique is evaluation on task adaptation, adapting initial HMM
sets trained on the Switchboard system to the Voicemail task.

The paper is arranged as follows. In Section 2 the concept
of weak-sense auxiliary functions is introduced, which is a con-
venient framework for deriving discriminative parameter updates.
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This is used to derive the update formulae for MMI. Section 3 de-
scribes the use of weak-sense auxiliary functions for the case of a
prior distribution and introduces MMI-MAP. distribution is includ-
ed. Section 4 presents the experimental results on task adaptation.

2. STRONG-SENSE AND WEAK-SENSE AUXILIARY
FUNCTIONS

(a) (b)

Fig. 1. Use of (a) strong-sense and (b) weak-sense auxiliary func-
tions for function optimisation

If a function ���� is to be maximised, then ���� ��� is said to
be a strong-sense auxiliary function for ���� around ��, iff

���� ���� ����� ��� � ����������� (1)

where ���� ��� is a smooth function of �. A strong-sense auxil-
iary function is the kind of auxiliary function used in Expectation-
Maximisation (EM). The idea is illustrated in Figure 1(a). A max-
imum w.r.t. � of the function ���� ��� is found, indicated by the
arrow. If this increases �, it will also increase � ; if � is at a local
maximum then � is also at a local maximum. These condition-
s follow from Eq. (1), and imply that repeated maximisation of
the auxiliary function is guaranteed to reach a local maximum of
����.

A weak-sense auxiliary function for ���� around �� is a s-
mooth function ���� ��� such that
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The idea is shown in Figure 1(b). The gradients of the two func-
tions are the same around the point � � ��. Maximising the func-
tion ���� ��� w.r.t. � does not now guarantee an increase in ����.
However if there is no change in � after maximisation on a partic-
ular iteration, this implies that we have reached a local maximum
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of ���� (the gradient is zero at that point). If the update converges
it will be to a local maximum of ����.

The use of a weak-sense auxiliary function can be considered a
minimum condition for an auxiliary functon used for optimisation.
In addition the function should be chosen so as to ensure good
convergence.

Weak-sense auxiliary functions are useful when optimising
functions containing some terms that can be optimised by strong-
sense auxiliary functions but others that cannot; one such function
is the MMI objective function (expressed as a sum of logs). Weak-
sense auxiliary functions make it possible to modify the update
procedures used in techniques based on Expectation-Maximisation
(i.e, the use of strong-sense auxiliary functions), rather than using
entirely different techniques based on gradient descent.

2.1. Strong-sense auxiliary functions for ML estimation

An HMM likelihood (for an observation sequence) is a sum over
state sequences. In general terms, if the HMM parameters are
represented by �, the HMM likelihood ���� � ���

�
� ����� is

maximised, where � correspond to state sequences and ����� are
state sequence likelihoods. If the optimisation is started at � � ��,
a strong-sense auxiliary function for ���� is

���� ��� �
�
�

����
���

� ����
��
��� ������ (3)

Eq. (1) can be shown to hold for the ���� and ���� ��� of Eq. (3);
it reduces to an equation involving the Kullback-Leibler distance.

The auxiliary function is a sum of state-sequence log like-
lihoods ��� �����, weighted by the initial posterior probability
����

���
� ����

��
of the state sequence.

If ����� is defined as the sum over state sequence posterior

probabilities ����
���

� ����
��

for all sequences � that include state 	 at

time �, the auxiliary function is as follows (considering only the
Gaussian parameters and a single Gaussian per state):
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� � �
�
� �� (4)

where 
� and ��� are the updated mean and variance corresponding
to the new parameters �. This can equivalently be expressed as
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where ���� �
��

��� ��������� is the sum of data weighted by
probability, ����� is the same sum over squared data and �� ���

��� ����� is the occupancy of the state.

2.2. Weak-sense auxiliary functions for MMI estimation

The MMI objective function is a difference of HMM log like-
lihoods, ���� � ��� � �������� � ��� � ����	
��, where
���� and �	
� are HMMs corresponding to the correct tran-
scription and all passible transcriptions, respectively. Strong-sense

auxiliary functions as for ML estimation, ������� ��� and �	
���� ���
can be derived separately for the two log-likelihoods ��� � ��������
and ��� � ����	
��: the auxiliary functions differ only in the
model topology used. A difficulty arises because the second term
is negated in the MMI objective function; strong-sense auxiliary
functions cannot be used when the problem is negated since the
inequality of Eq. (1) will no longer hold. However weak-sense
auxiliary functions do not suffer from this problem, and the dif-
ference ������� ���� �	
���� ��� is still a weak-sense auxiliary
function for the MMI objective function.

In order to improve convergence we can add a smoothing func-
tion ������ ��� which can in principle be any function with a zero
differential w.r.t. � around the current estimate � � ��. This
will not affect the local differential and the result will be a still be
a weak-sense auxiliary function for the MMI objective function.
This leads to the following auxiliary function:

���� ��� � ������� ���� �	
���� ��� 	 ������ ���� (6)

One possible form for ������ ��� is:
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which has a zero differential w.r.t. the parameters ��� and 
� eval-
uated at the old values ���� and 
�� , so the auxiliary function is still
a weak-sense auxiliary function for the objective function aroudn
��. �� are positive smoothing constants for each state 	 (or each
Gaussian 	�� in the mixture-of-Gaussians case).

The total auxiliary function (considering only terms involving
Gaussian parameters) now becomes:
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(8)

The above analysis can be extended for Gaussian mixture like-
lihoods with Gaussian components � � � � � �� . For multiple
components, maximisation of the function in Eq. 8 leads to the
Extended Baum-Welch (EB) update equations [8] as follows:
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where ��	 are set on a per-Gaussian level to the larger of i) twice
the smallest value needed to ensure positive variances, or ii) �	
��	

times a further constant �, which is generally set to 1 or 2. Since
it is based on weak-sense auxiliary functions, if this update con-
verges to a particular value � of the HMM parameters then � must
be a local maximum of the objective function. For large � the
update approaches gradient descent with parameter-specific learn-
ing rates proportional to �



, so there should be some sufficiently

small learning rate (i.e. sufficiently large �) for which the update
converges.
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3. MAP UPDATES

Any function is both a weak and strong-sense auxiliary function of
itself around any point. Therefore if we add a log prior distribution
��� � ��� to the MMI objective function making

���� � ��� � ��������� ��� � ����	
�� 	 ��� � ����
(11)

the extra term can simply be added to the auxiliary function lead-
ing to

���� ��� � ������� ���� �	
���� ��� 	 ������ ��� 	 ��� � ����
(12)

3.1. Priors over Gaussian parameters

The form of prior used over a mean 
 and variance �� is:

��� � �
� ��� � � 	���� �
���� ���
�
��� 	 


�
�����
� �

���
(13)

where��� � � �, defined in Eq. 5, is the likelihood of � points of data
with mean 
��� and variance �����, and � is a normalisation term
which and can be ignored.

For the mean, this prior is a Gaussian with variance ��

�
, i.e.

�
�

times the variance of the distribution itself, as in conventional
MAP [4]. For the variance, defining � � �
 � 
����

� 	 �����,
matching the first and second-order terms of the Taylor expansion
around the value �� � � shows that the distribution over �� is lo-
cally equivalent to a Gaussian distribution with mean � and vari-
ance ��

�
. The prior over the variance differs from the standard

approach to priors over variances [4], in that the prior over the
variance has a slightly different mean. This formulation makes
sense if our intuition about the prior is that the Gaussian parame-
ters ought to give a high likelihood to data drawn from a particular
distribution.

3.2. I-smoothing

I-smoothing for discriminative training [6] may be regarded as the
use of a prior over the parameters of each Gaussian, with the prior
being based on the ML statistics. The log prior likelihood is equal
to
��� � � � �

������ ���

����
��

� �
������ ����

����
��

�
�	� ���	�, i.e. the likelihood of

� � ponts of data with mean and variance equal to the numerator
(correct model) mean and variance. This can be implemented by
altering the numerator statistics as follows:

�
���
�	

� � �
���
�	 	 �

� (14)

����	 ���� � ����	 ���
�����	 	 � �

�����	

(15)


���
�	 ����� � 

���
�	 ����

�����	 	 � �

�����	

(16)

Typically � � is set to around 100 for MMI training.

3.3. MMI-MAP

In the context of adapting a HMM set, the use of ML statistics
accumulated from the data as the center of the prior may be non-
robust since there may not be enough data to estimate the ML

Gaussian parameters. In this case it is preferable to estimate the
the center of the prior in a conventional ML-MAP fashion. The
technique denoted MMI-MAP is the use of ML-MAP estimates of
the Gaussian parameters to estimate the center of a prior used to
smooth the MMI-trained parameters.

In the first level of MAP the unadapted mean and variance


���
�	 and �

���
�	 are used as the prior, and the numerator (ML) s-

tatistics as the evidence. The parameters 
��� and ���� of the
second-level prior are obtained by maximising the product of the

prior������� ����
����	 � ����������	

�
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and the evidence �������	 � ����	 ���� ����	 �����
���� �
�
����.

In the second level of MAP, the log prior is ���� � � �
����
� ������� 	 
������
�	� �

�
�	� and the evidence is the MMI cri-

terion itself. The prior can be included in the EB re-estimation
process by adding the three moments of the data �� , � �
��� and
� ������� 	 
����� to the numerator (
��) statistics of the Gaus-
sian in a modification of Equations 14 to 16, using:
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4. EXPERIMENTS

This section describes the evaluation of MMI-MAP for the task
adaptation from HMMs trained on the Switchboard database to
the Voicemail (VM) task.

4.1. Experimental conditions

Initial Switchboard HMM training used 265 hours of data, and
task adaptation and testing was on the Voicemail database [5, 2].
The total amount of VM training/adaptation data is about 30h, and
subsets of approximately 1h, 4h, 15h and 20h were also used [2].
The VM test data was 94 minutes long and is described in detail in
[2]. All HMM sets had 6684 tree-clustered states and 16 Gaussians
per state.

All test set WERs reported here are from testing with unadapt-
ed Switchboard language models (LMs). The use of adapted LM-
s greatly improves error rates [2], but the relative improvements
from discriminative adaptation are similar.

Three Switchboard-trained models were used for training: an
MLE-trained model, and both MMIE and MPE-trained [6] mod-
els. implementation used lattices generated using bigram LMs
but including unigram LM probabilities, scaling of the likelihood-
s during forward-backward alignment by the inverse of the usual
LM scale factor, and the “exact-match” form of forward-backward
alignment [8].

MMI-MAP task adaptation was continued for four iterations
and ML-MAP for one iteration; further iterations of ML-MAP
were not found to be helpful. The smoothing constant � for Gaus-
sian updates (Section 2.2) was set to 2. Conventional MAP (here
referred to as ML-MAP) was performed with � � �, MMI-MAP
with � � � � and ���� � �.

4.2. Results

Figure 2 shows the effect of adapting an ML or MMI-trained ini-
tial HMM set with ML-MAP or with MMI-MAP. The improve-

I - 314

➡ ➡



0 5 10 15 20 25 30
40

42

44

46

48

50

52

Hours of adaptation data

T
es

t W
E

R
 o

n 
V

oi
ce

m
ai

l

ML−>ML−MAP  
ML−>MMI−MAP 
MMI−>ML−MAP 
MMI−>MMI−MAP

Fig. 2. MMI-MAP and ML-MAP from MMI and ML baselines:
Unadapted LM

Training, Hours adaptation data
Adaptation: 0 1 4 15 20 30
ML,ML-MAP 50.8 49.8 47.6 45.0 44.8 44.0
ML,MMI-MAP 50.8 49.9 46.9 43.7 42.7 42.2
MMI,ML-MAP 47.0 46.1 44.8 43.3 42.8 42.6
MMI,MMI-MAP 47.0 46.1 44.0 41.4 41.1 40.5

Table 1. ML-MAP and MMI-MAP adaptation of ML and MMI
systems from Switchboard: WERs on VM

ment from using an initially MMI-trained HMM set is retained if
adaptation is with MMI-MAP but is partly lost with ML-MAP, es-
pecially with increasing adaptation data.

These results are also given in Table 1. There is 7.5% relative
improvement from ML to MMI on the Switchboard-trained HM-
M set; the difference between ML-MAP-adapted ML and MMI-
MAP-adapted MMI with 30h adaptation data is 8.0% relative. So
the total improvement from discriminative training is 8.0%. Com-
paring ML-MAP-adapted MMI with MMI-MAP-adapted MMI,
the improvement from using discriminative adaptation rather than
ML adaptation is 4.6% relative.

Training, Hours adaptation data
Adaptation: 0 1 4 15 20 30
MPE,ML-MAP 46.0 44.8 43.6 42.9 42.5 42.6
MPE,MMI-MAP 46.0 44.9 43.3 41.1 40.6 40.2

Table 2. ML-MAP and MMI-MAP adaptation of MPE-trained
system from Switchboard: WERs on VM

Table 2 gives results from both MMI-MAP and ML-MAP adap-
tation starting from an MPE-trained system. The initial MPE-
trained system is better than the MMI-trained system by 1.0% ab-
solute, but after 30h of adaptation data this advantage over MMI
is reduced to 0.3% absolute with MMI-MAP, or 0.0% with ML-
MAP. The best results are obtained by using MMI-MAP to adapt
an MPE-trained system (40.2%). Other experiments investigated
the MPE-MAP adaptation of an MPE-trained system using a simi-
lar approach to MMI-MAP, but this did not robustly give improved

results. and there may not be enough adaptation data for MPE to
give better results than MMI.

Experiments are reported in [2] in which Switchboard and
Voicemail data are used together to train HMMs using MMI and
ML, weighting the 30h of Voicemail data by varying amounts.
With MMI training, the optimal weight is 2; WER is 41.6% with
combined data as opposed to 40.5% with MMI-MAP following M-
MI (MMI-MAP gives 1.1% improvement); with ML training the
optimal weight is 10 and the WER is 44.5%, as opposed to 44.0
with MAP (ML-MAP gives 0.5% improvement). So for adapta-
tion, MAP training is better than training with combined data using
optimised weights.

5. CONCLUSIONS

A method has been described for MAP adaptation of HMM sets
using the MMI criterion. This has been shown to be effective in
maintaining the relative improvement of MMIE over MLE in the
context of task adaptation. Furthermore the technique could al-
so be applied to models trained which used the MPE-criterion for
both initial models and/or discriminative adaptation. The theory
behind this form of MAP also provides a justification for the tech-
nique of I-smoothing [6] as a method of discriminative training
with prior information.

While this paper has evaluated MMI-MAP in the context of
task adaptation it could also be applied to speaker adaptation with
large amounts of enrolment data or to the creation of discrimina-
tively trained gender-dependent models using adaption techniques.
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