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Discriminative Multimetric Learning

for Kinship Verification
Haibin Yan, Jiwen Lu, Member, IEEE, Weihong Deng, and Xiuzhuang Zhou, Member, IEEE

Abstract— In this paper, we propose a new discriminative
multimetric learning method for kinship verification via facial
image analysis. Given each face image, we first extract multiple
features using different face descriptors to characterize face
images from different aspects because different feature descrip-
tors can provide complementary information. Then, we jointly
learn multiple distance metrics with these extracted multiple
features under which the probability of a pair of face image with
a kinship relation having a smaller distance than that of the pair
without a kinship relation is maximized, and the correlation of
different features of the same face sample is maximized, simulta-
neously, so that complementary and discriminative information
is exploited for verification. Experimental results on four face
kinship data sets show the effectiveness of our proposed method
over the existing single-metric and multimetric learning methods.

Index Terms— Kinship verification, multi-metric learning,
discriminative learning, face recognition, biometrics.

I. INTRODUCTION

RECENT advances in psychology [2], [5], [6], [8], [15],

[16] have shown that human facial appearance is an

important cue for genetic similarity measure because children

and their parents are biologically related and children usually

resemble their parents more than other adults. Motivated by

this finding, computer vision researchers have investigated

the problem of kinship verification via facial image analysis

over the past five years [9], [10], [13], [20], [23], [28], [35],

[36], [40], [41]. While some encouraging results have been

obtained, this problem still remains unsolved especially when

face images were captured in unconstrained environments.

This is because varying poses, illumination, expressions, and
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Fig. 1. Some sample positive pairs (with kinship relation) from different
face kinship databases. Face images from the first to fourth row are from
the KinFaceW-I [23], KinFaceW-II [23], Cornell KinFace [10] and UB
KinFace [35] datasets, respectively.

aging usually occur in the collected face images in such

scenarios, which makes this problem extremely challenging.

In this paper, we propose a discriminative multi-metric

learning (DMML) method for kinship verification via facial

images. Fig. 1 shows some sample positive pairs from different

kinship databases. Our approach is motivated by the following

two intrinsical characteristics of this challenging problem:

• Since the intra-class variation (the difference of face

images with kinship relation) is usually large and even

higher than the inter-class variation (the difference of

face images without kinship relation), the kinship relation

cannot be well represented by the original feature space

and it is desirable to learn a semantic space to better

characterize the kinship relation.

• Since different feature descriptors can characterize face

images from different aspects, we extract multiple

features to exploit more complementary information to

improve the kinship verification performance.

1556-6013 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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To achieve this, for each given face image, we first

extract multiple features using different feature descriptors to

characterize the face image from different aspects for each

face image. Then, we jointly learn multiple distance metrics

(one for each feature), under which the probability of each

pair of positive sample having a smaller distance than that of

the most similar negative samples is maximized. Moreover, we

expect the correlation of different features of the same image

is maximized in the learned distance metrics. Experimental

results on four publicly available face kinship databases are

presented to demonstrate the efficacy of the proposed method.

Lastly, we test human ability in kinship verification and our

experimental results show that our method is comparable to

that of human observers.

The rest of the paper is organized as follows. Section II

discusses related work. Section III details our proposed

approach. Section IV provides the experimental results, and

Section V concludes the paper.

II. RELATED WORK

In this section, we briefly review two related topics:

1) kinship verification, and 2) metric learning.

A. Kinship Verification

There have been several seminal attempts on kinship ver-

ification via facial images over the past five years [9], [10],

[13], [17], [23], [28], [35], [36], [40], [41], and these methods

can be roughly classified into two categories: 1) feature-

based [10], [13], [40], [41], and 2) learning-based [23], [28],

[35], [36]. For feature-based methods, some discriminative

feature representations were applied to characterize facial

images, such as skin color [10], histogram of gradient [10],

Gabor gradient orientation pyramid [41], salient part and self-

similarity [13], and dynamic expressions [9]. For learning-

based methods, some discriminative learning algorithms such

as subspace learning [28], [35] and metric learning [23] were

used to seek a semantic subspace to enhance the separability

of face images for kinship verification. Unlike these previous

studies [10], [13], [17], [23], [28], [35], [36], [40], [41], in

this work, we extract multiple features for each face image

and learn multiple discriminative metrics for the kinship veri-

fication problem. Since more complementary information can

be well exploited and combined, our method achieves state-

of-the-art performance on the existing benchmark face kinship

datasets.

B. Metric Learning

Many metric learning algorithms [12], [18], [18], [24], [30],

[37], [39] have been proposed in recent years, and they have

been successfully used in many computer vision tasks such as

face recognition [12], [18], gait recognition [22], human activ-

ity recognition [30], human age estimation [37], and person

re-identification [18], [24], [39]. Most existing metric learning

methods only learn a Mahalanobis distance from a single

feature space and cannot handle multi-feature representations

directly. To address this, several multi-task metric learning

methods [14], [27] which modeling the information sharing

among different features have been proposed more recently.

However, the interaction of different metrics has not been well

exploited in these methods. More recently, several multi-metric

learning methods have been proposed [25], [34], where a set

of local distance metrics are first learned from each training

sample/cluster, and then ensemble learning is applied to

integrate local classifier in a probabilistic framework. Unlike

existing multi-metric learning methods which aim to exploit

more geometrical information in learning distance metrics, in

this work, we propose a discriminative multi-metric learning

(DMML) method to simultaneously learn multiple distance

metrics, one for each feature descriptor, to exploit comple-

mentary information to better describe face images for kinship

verification.

III. APPROACH

A. DMML

Let S = {(xi , yi )|i = 1, 2, . . . , N} be the training set of

N pairs of face images with kinship relation (positive image

pairs), where xi and yi are face images of the i th parent

and child, respectively. For each face image, assume there

are K different features extracted and Sk = {(xk
i , yk

i )|i =

1, 2, . . . , N} is the kth feature representation. Different from

most previous metric learning algorithms which minimiz-

ing inter-class variation and maximizing intra-class variation

simultaneously [7], [12], [26], [33], we aim to learn multiple

distance metrics from these multiple features under which

the probability of each positive image pair having a smaller

distance than that of each negative pair is maximized, so

that it is more robust to face appearance change and less

susceptible to over-fitting. Specifically, for a positive image

pair (xk
i , yk

i ) in the kth feature representation space, we learn

a distance function gk(·) such that g(xk
i , yk

i ) < g(xk
i , yk

j )

and g(xk
i , yk

i ) < g(xk
l , yk

i ), where xl and y j are the par-

ent and child images of any other person except the i th

person in the training set, 1 ≤ j, l ≤ N , and j, l �= i .

To achieve this, we measure the probability of the distance

between a positive pair being smaller than that of a neg-

ative pair which share a same parent or child image as

follows:

P
(

g(xk
i , yk

i ) < g(xk
i , yk

j )
)

=
(

1 + exp(g(xk
i , yk

i ) − g(xk
i , yk

j ))
)−1

(1)

P
(

g(xk
i , yk

i ) < g(xk
l , yk

i )
)

=
(

1 + exp(g(xk
i , yk

i ) − g(xk
l , yk

i ))
)−1

(2)

where

g(xk
i , yk

i ) = (xk
i − yk

i )T Mk(xk
i − yk

i ) (3)

where Mk is a semi-definite matrix learned for the kth feature

representation.

We assume the distance comparison of each positive and

negative pair is independent, i.e., g(xk
i , yk

i ) < g(xk
i , yk

j ) and

g(xk
i , yk

i ) < g(xk
l , yk

i ) are independent. Based on the maxi-

mum likelihood principle, we formulate our proposed DMML
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method as the following constrained optimization problem:

min
M1,...,MK ,α

J =

K
∑

k=1

αk fk(Mk) + λgk(W1, . . . , WK )

subject to

K
∑

k=1

αk = 1, αk ≥ 0. (4)

where

fk(Mk) = − log(
∏

Ok
1

P
(

g(xk
i , yk

i ) < g(xk
i , yk

j )
)

)

−log(
∏

Ok
2

P
(

g(xk
i , yk

i ) < g(xk
l , yk

i )
)

) (5)

gk(W1, . . . , WK ) =

K
∑

k1,k2=1
k1 �=k2

N
∑

i=1

‖W T
k1

x
k1

i − W T
k2

x
k2

i ‖2
F (6)

Wk is a low-dimensional subspace decomposed from Mk ,

where Mk = Wk W T
k . Ok

1 and Ok
2 are the pairwise sets of

the kth feature representation, α = [α1, . . . , αK ] is the weight

vector and αk is the weight of the kth feature, λ > 0 is a

trade-off parameter to balance the two terms in the objective

function. The first term in (4) is to ensure that the probability

of the distance between a positive pair being smaller than that

of a negative pair is as large as possible, so that discriminative

information can be exploited. The second term in (4) is to

ensure that the correlations of different feature representations

of each sample are maximized to extract complementary

information.

Since kinship verification is an under-sampled computer

vision problem, most conventional metric learning

methods [4], [7], [11], [12], [26], [30], [33], [38] are easily

over-fitted if the distance metric is learned by directly

minimizing intra-class distance and maximizing inter-class

distance simultaneously. Unlike these methods, our DMML

seeks the distance metrics under which the probability of each

positive image pair having a smaller distance than that of each

negative pair is maximized, such that it is less susceptible

to over-fitting. On the other hand, the physical meaning of

the second term in (4) is that we aim to learn K distance

low-dimensional feature subspaces Wk (k = 1, 2, . . . , K )

under which the difference of feature representations of the

same sample is enforced to be as small as possible, which

is consistent to the canonical correlation analysis (CCA)-like

multiple feature fusion approach [29]. For CCA-based

feature fusion, different feature representations are combined

by jointly learning a common subspace under which the

correlation of different feature representations of the same

sample is maximized. In our model, the reason we used the

difference of each pair of feature descriptors for the same

sample rather than the correlation to measure the similarity

of different feature representations in the low-dimensional

subspace is that such a pairwise difference is very easy to

compute the gradient in the optimization procedure.

Now, (4) can be rewritten as

min
W1,...,WK ,α

J =

K
∑

k=1

αk fk(Wk)

+ λ

K
∑

k1,k2=1
k1 �=k2

N
∑

i=1

|W T
k1

x
k1

i − W T
k2

x
k2

i ‖2
F (7)

where

fk(Wk) =
∏

Ok
1

log(1 + exp(‖W T
k x

p
ik‖

2 − ‖W T
k xn

ik‖
2)) (8)

and x
p

ik = xk
i − yk

i , xn
ik = xk

i − yk
j .1

There is no closed-form solution to the problem defined

in (7) since there are K matrices and one vector to be opti-

mized simultaneously. In this paper, we employ an alternating

optimization method to get a local optimal solution. Specif-

ically, we first initialize W1, . . . , Wk−1, Wk+1, . . . , WK and α

and solve Wk sequentially. Then, we update α accordingly.

Given W1, . . . , Wk−1, Wk+1, . . . , WK and α, Eq. (7) can be

rewritten as

min
Wk

J (Wk) = αk fk(Wk) + λ

K
∑

l=1,l �=k

G(Wk) (9)

where

G(Wk) =

N
∑

i=1

‖W T
k xk

i − W T
l x l

i ‖
2
2 (10)

Since (9) is also not convex, it is non-trivial to get a global

optimization solution. In this work, we propose a gradient-

based optimization method by differentiating fk(Wk) and

G(Wk) with respect to Wk as follows:

∂ fk(Wk)

∂Wk

=
∏

Ok
1

2 + exp(‖W T
k x

p
ik‖

2 − ‖W T
k xn

ik‖
2)

1 + exp(‖W T
k x

p
ik‖

2 − ‖W T
k xn

ik‖
2)

×(x
p
ik x

pT

ik − xn
ik x

nT

ik )Wk (11)

∂G(Wk)

∂Wk

= 2λ(K − 1)Wk

N
∑

i=1

(xk
i )T xk

i

−2λWk

K
∑

l=1
l �=k

N
∑

i=1

(x l
i )

T x l
i (12)

Hence, we can update Wk by using the following gradient

descent method:

W t+1
k = W t

k − η(αk
fk(Wk)

Wk

+ λ

K
∑

l=1,l �=k

∂G(Wk)

∂Wk

) (13)

where η > 0 is a step length parameter to control the gradient

descent speed. The iteration is terminated when the following

criterion is satisfied:

J (W t
k ) − J (W t+1

k ) < ε or ‖W t+1
k − W t

k ‖ < ε (14)

where ε is a small tolerance value set to 10−3 in this work.

1Since Ok
1 and Ok

2 are the same because they are generated from the same
parents and children image sets, we only optimize the distance constraints in

the Ok
1 pairwise set.
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Algorithm 1 DMML

Input: Training set S = {(xi , yi )|i = 1, 2, . . . , N},

iteration number M and convergence error ε.

Output: Mapping matrices W1, W2, . . . , WK and the

weighting vector α.
Step 1 (Initialization):

Set W 0
k

= I d×d and α = [1/K , · · · , 1/K ].
Step 2 (Local optimization):

For m = 1, 2, · · · , M , repeat
2.1. Compute W m

k
according to (11)-(13).

2.2. Compute α according to (20).
2.3. If m > 2 and (14) is satisfied, go to Step 3.

Step 3 (Output mapping matrices):
Output mapping matrices Wk = W m

k .

Having obtained W1, W2, . . ., WK , α can be updated by

solving the following optimization problem

min
α

J (α) =

K
∑

k=1

αk fk(Wk)

subject to

K
∑

k=1

αk = 1, αk > 0. (15)

The solution to (15) is αk = 1 corresponding to the

maximal fk(Wk) over different features, and αk = 0 otherwise.

This solution corresponds to selecting the best feature and

ignores exploiting the complementary information of different

features. To overcome this limitation, we revisit αk as αr
k ,

where r > 1, and present the following alternative objective

function:

min
α

J (α) =

K
∑

k=1

αr
k fk(Wk)

subject to

K
∑

k=1

αk = 1, αk > 0. (16)

The Lagrange function can be constructed as:

L(α, ζ ) =

K
∑

k=1

αr
k fk(Wk) − ζ(

K
∑

k=1

αk − 1) (17)

Let
∂L(α,ζ )

∂αk
= 0 and

∂L(α,ζ )
∂ζ

= 0, we have

rαr−1
k fk(Wk) − ζ = 0 (18)

K
∑

k=1

αk − 1 = 0 (19)

Combining (18) and (19), we can obtain αk as follows

αk =
(1/ fk(Wk))

1/(r−1)

∑K
k=1(1/ fk(Wk))1/(r−1)

(20)

Having obtained α, we can update Wk by using Eq. (9).

Algorithm 1 summarizes the proposed DMML method.

B. Implementation Details

We apply three different feature descriptors including

Local Binary Patterns (LBP) [1], Spatial Pyramid

LEarning (SPLE) [40] and Scale-Invariant Feature

Transform (SIFT) [19] to extract different and complementary

information from each face image. The reason we selected

these three features is that they have shown reasonably

good performance in recent kinship verification works [23],

[40]. No doubt, more effective feature descriptors could

be employed to improve the verification performance.

However, the main interest in this study is to evaluate the

proposed DMML method which uses multiple features for

kinship verification.

For each face image, we employed 256 bins to extract the

LBP feature. For the SPLE feature, three different resolutions

are first constructed and 21 cells are obtained. Then, each

local feature in each cell was quantized into 200 bins and

each face image was represented by a 4200-dimensional long

feature vector. For the SIFT feature, each SIFT descriptors

was first sampled over each 16 ×16 patch with a grid spacing

of 8 pixels. Then, each SIFT descriptor is concatenated into

a long feature vector. For these features, we apply Principal

Component Analysis (PCA) [31] to reduce each feature into

200 dimensions to remove some noise components.

C. Discussion With Previous Work

Our method is intrinsically different from previous multi-

metric learning methods [21], [25], [32], [34]. The method

in [25] learns a set of local distance metrics from each training

example and applies ensemble learning to combine the learned

local metrics. The method in [34] partitions the training data

into disjoint clusters and learns a distance metric for each

cluster, and then the cluster-dependent distance metric is used

for classification. The methods in [21] and [32] learn multiple

class-specific distance metrics for recognition, so that the

data heterogeneity can be alleviated. Unlike these existing

multiple metric learning methods which aim to handle the

data nonlinearity in learning distance metrics and have not

well exploited the interaction of different distance metrics,

our DMML method simultaneously learns multiple distance

metrics, one for each feature descriptor, to exploit more

complementary information to better describe face images.

Hence, our method is more suitable for multi-feature based

distance metric learning, and is complementary to existing

multiple metric learning methods.

IV. EXPERIMENTS

In this section, we conducted extensive kinship verification

experiments on four publicly available face kinship datasets

to show the effectiveness of our proposed DMML method.

The following details the experimental settings and results.

A. Data Sets

Four publicly available face kinship datasets, KinFaceW-I

[23],2 KinFaceW-II [23],3 Cornell KinFace [10]4 and

2https://sites.google.com/site/elujiwen/download.
3https://sites.google.com/site/elujiwen/download.
4http://chenlab.ece.cornell.edu/projects/KinshipVerification.
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UB KinFace [35],5 were used for evaluation. There are four

kinship relations in all these datasets: Father-Son (F-S), Father-

Daughter (F-D), Mother-Son (M-S), and Mother-Daughter

(M-D). There are 156, 134, 116, and 127 pairs of kinship

images in KinFaceW-I for these four relations. For the

KinFaceW-II dataset, each relationship contains 250 pairs of

kinship images.

There are 143 pairs of kinship images in the Cornell

KinFace dataset,6 where 40%, 22%, 13% and 26% are the

F-S, F-D, M-S, and M-D relations, respectively.

There are 600 face images of 400 persons from 200 families

in the UB KinFace dataset. For each family, there are three

images, corresponding to the child, young parent and old par-

ent, respectively. Since there are three images for each family,

we constructed two subsets for the UB KinFace dataset: Set 1

(200 old parent and young parent image pairs) and Set 2 (200

young parent and child image pairs). Since there are large

imbalances of the four kinship relations of the UB Kinface

database (nearly 80% of them are father-son relations), we

have not considered separate kinship relation verification on

this dataset. Fig. 1 shows some example images with kinship

relations of these datasets, respectively.

B. Experimental Setups

In our experiments, face images were aligned and cropped

into 64×64 pixels according to the provided eyes positions in

each dataset. We performed five-fold cross validation experi-

ments on all the kinship datasets, where each subset of these

datasets was equally divided into five folds so that each fold

contains nearly the same number of face pairs with kinship

relation. Specifically, for face images in each fold of these

datasets, all pairs of face images with kinship relation were

used as positive samples, and those without kinship relation

as negative samples. Hence, the positive samples are the true

pairs of face images (one from the parent and the other from

the child), and the negative samples are false pairs of face

images (one from the parent and the other from the child’s

image who is not his/her true child of the parent). Generally,

the number of positive samples is much smaller than that of the

negative samples. In our experiments, each parent face image

was randomly combined with a child image who is not his/her

true child of the parent to construct a negative pair. Moreover,

each pair of parent and child images appeared once in the

negative samples.

We tuned the parameters of our DMML method on the

KinFaceW-II dataset because this dataset is the largest one

and it is more effective to tune parameters on this dataset than

others. We learned our DMML model on the first three folds of

the KinFaceW-II dataset, and used the fourth fold to tune the

parameters of DMML. In our implementations, the parameters

r and λ were empirically set as 5 and 2, respectively. Having

learned the DMML model, we apply it for kinship verification

on all the four kinship datasets.

5http://www.cse.buffalo.edu/ yunfu/research/Kinface/Kinface.htm.
6While there are 150 pairs of parents and children images in [10], only

143 pairs were released for evaluation.

TABLE I

COMPARISON OF THE MEAN VERIFICATION RATE (%) OF DIFFERENT

METRIC LEARNING STRATEGIES ON THE KINFACEW-I DATASET

TABLE II

COMPARISON OF THE MEAN VERIFICATION RATE (%) OF DIFFERENT

METRIC LEARNING STRATEGIES ON THE KINFACEW-II DATASET

The SVM classifier with the RBF kernel was used for

classification. It is to be noted that other classification methods

such as the nearest neighbor (NN) and the k-nearest neighbor

(KNN) classifier are also applicable to our kinship verification

tasks. Our empirical results have also shown that SVM can

obtain better performance than the other compared classifiers,

which will be presented in the next subsections.

C. Results and Analysis

1) Comparison With Different Metric Learning Strategies:

We first compare our method with three other different metric

learning strategies:

• Single Metric Learning (SML): we learn a single distance

metric by using the first term of (4) with each singe

feature representation.

• Concatenated Metric Learning (CML): we first concate-

nate different features into a longer feature vector and

then learn a single distance metric by using the first term

of (4) with the augmented feature representation.

• Individual Metric Learning (IML): we learn the distance

metric for each feature representation by using the first

term of (4) and then use the equal weight to compute the

similarity of two face images.

Tables I-IV show the mean verification rates of differ-

ent metric learning strategies on different kinship datasets.

To further investigate the performance differences between our

DMML and the other compared methods, we evaluated the

verification results by using the null hypothesis statistical test

based on Bernoulli model [3] to check whether the differences

between the results of our method and those of other methods

are statistically significant. The results of the p-tests are given

in the brackets right after the verification rate of each method

in each table, where the number “1” represents significant
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TABLE III

COMPARISON OF THE MEAN VERIFICATION RATE (%) OF DIFFERENT

METRIC LEARNING STRATEGIES ON THE CORNELL KINFACE DATASET

TABLE IV

COMPARISON OF THE MEAN VERIFICATION RATE (%) OF DIFFERENT

METRIC LEARNING STRATEGIES ON THE UB KINFACE DATASET

TABLE V

COMPARISON OF THE MEAN VERIFICATION RATE (%) OF DIFFERENT

MULTI-METRIC LEARNING METHODS ON THE KINFACEW-I DATASET

difference and “0” represents otherwise. We see from these

tables that our DMML outperforms the other compared metric

learning strategies in terms of the mean verification rate.

2) Comparison With Existing Multi-Metric Learning

Methods: We compared our DMML method with five

existing multi-metric learning methods, including Multi-

feature Canonical Correlation Analysis (MCCA) [29],

Multi-feature Marginal Fisher Analysis (MMFA) [29], Local

Discriminative Distance Metrics (LDDM) [25], Discriminative

Multi-Manifold Analysis (DMMA) [21] and Multi-feature

Neighborhood Repulsed Metric Learning (MNRML) [23].

Since LDDM and DMMA were originally developed

for recognition tasks, we extended them for our kinship

verification task by modifying their objectives, respectively.

Specifically, we learn a local distance metric by LDDM

or DMMA for each triplet which consists of one positive

pair and one negative pair. Then, we combined these local

distance metrics for verification by following the ensemble

strategy in [25]. Tables V-VIII show the verification rate of

these methods on different kinship datasets. As can be seen,

our proposed DMML always outperforms the other compared

methods in terms of the mean verification rate.

TABLE VI

COMPARISON OF THE MEAN VERIFICATION RATE (%) OF DIFFERENT

MULTI-METRIC LEARNING METHODS ON THE KINFACEW-II DATASET

TABLE VII

COMPARISON OF THE MEAN VERIFICATION RATE (%) OF DIFFERENT

MULTI-METRIC LEARNING METHODS ON THE CORNELL

KINFACE DATASET

TABLE VIII

COMPARISON OF THE MEAN VERIFICATION RATE (%) OF DIFFERENT

MULTI-METRIC LEARNING METHODS ON THE UB KINFACE DATASET

To better visualize the difference between our proposed

DMML and the other compared multi-metric learning meth-

ods, the receiver operating characteristic (ROC) curves of

different methods are shown in Fig 2. We see that the ROC

curves of our DMML method are higher than those of other

compared multi-metric learning methods.

3) Comparison With Different Classifiers: We investigated

the performance of our DMML by using different classi-

fiers. We compared SVM with another two widely used

classifiers: NN and KNN. For KNN, the parameter k was

empirically set as 31 in our experiments. Table IX tabulates

the verification rate of our DMML method when differ-

ent classifiers were used for kinship verification. We see

that SVM always outperforms NN and KNN in terms

of the verification accuracy in our kinship verification

task.

4) Parameter Analysis: We evaluated the effect of the

parameter r in DMML. Fig. 3 plots the verification accuracy of

our DMML versus different number of r on different datasets.

We see that our DMML method is in general robust to the

varying value of r , and the best performance can be obtained

when r was set as 5.
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Fig. 2. The ROC curves of different methods obtained on the (a) KinFaceW-I, (b) KinFaceW-II, (c) Cornell KinFace, and (d) UB KinFace datasets,
respectively.

TABLE IX

VERIFICATION ACCURACY (%) OF DIFFERENT CLASSIFIERS ON DIFFERENT KINSHIP DATASETS

Fig. 4 shows the verification rate of DMML versus different

number of iterations on different datasets. We see that our

proposed DMML converges to a local optimal peak in a few

number of iterations.

Fig. 5 show the verification rate of DMML versus dif-

ferent number of feature dimension on different datasets.

We see that our proposed DMML method obtains stable

verification performance when the feature dimension is larger

than 40.

5) Computational Time: Table X shows the time spent on

the training and the testing (verification) phases by different

multi-metric learning methods, where a 2.4-GHz CPU, a 6GB

RAM, the Matlab software, the KinFaceW-I dataset, and the

SVM classifier were used.

As can be seen from this figure, the computational

complexity of our DMML and the existing MNRML for

training are larger than other two because both of them are

iterative methods. However, the recognition time of DMML is

comparable to those of other multi-metric learning methods.

6) Comparisons With Human Observers in Kinship

Verification: Lastly, we also tested human ability in kinship

verification via facial image analysis. We randomly selected

100 pairs (50 positive and 50 negative) of face samples from

each of the four subsets of the KinFaceW-I and KinFaceW-II

datasets, and presented them to 10 human observers (5 males

and 5 females) who are 20-30 years old. We didn’t train

them how to verify kinship relation from facial images. There

are two parts in this experiment. For the first part, only
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Fig. 3. Verification rate DMML versus different values of r on different
kinship datasets.

Fig. 4. Verification rate of DMML versus different number of iterations on
different kinship datasets.

Fig. 5. Verification rate of our DMML versus different feature dimensions
on different kinship datasets.

the cropped face regions such as the images are shown to

human observers (HumanA). For the second part, the whole

original color face images such as the samples are presented

to human observers. Hence, HumanA aims to test kinship

TABLE X

CPU TIME (IN SECOND) USED BY DIFFERENT MULTI-METRIC

LEARNING METHODS ON THE KINFACEW-I DATASET

TABLE XI

COMPARISON OF THE MEAN VERIFICATION RATE (%) OF HUMAN

ABILITY ON KINSHIP VERIFICATION AND OUR PROPOSED DMML

METHOD ON THE KINFACEW-I AND KINFACEW-II DATASETS

verification ability only from face part in the image, and

HumanB intends to test the ability from multiple cues in the

images such as face region, skin color, hair, and background.

Therefore, face images provided in HumanA are the same as

those used in this work. Tables XI shows the performance

of these observers. We clearly see that our proposed DMML

obtains better verification performance than HumanA, and is

comparable to HumanB.

D. Discussion

In this subsection, we discuss some potential applications

of our kinship verification results presented in this work.

One representative application of kinship verification is social

media analysis. For example, there are tens of billion images

in the popular Facebook website, and more than 2.5 billions

images are added to the website each month. How to auto-

matically organize such large-scale data remains a challenging

problem in computer vision and multimedia. There are two key

questions to be answered: 1) who these people are, and 2) what

their relations are. Face recognition is an important approach

to address the first question, and kinship verification is a useful

technique to approach the second question. When kinship

relations are known, it is possible to automatically create

family trees from these social network websites. Currently,

our method has achieved 70-75% verification rate when two

face images were captured from different photos, and 75-80%

verification rate from the same photo. While the performance

is lower than the state-of-the-art face verification accuracy

which is above 90% verification rate on the LFW dataset, it

still provides useful information for us to analyze the relation

of two persons because these numbers are not only much

higher than random guess (50%), but also comparable to that

of human observers.

Another important application of kinship verification is

missing children search. Currently, DNA testing is the dom-

inant approach to verify the kin relation of two persons,

which is effective to find missing children. However, there

are two limitations for the DNA testing: 1) the privacy of



YAN et al.: DMML FOR KINSHIP VERIFICATION 1177

DNA testing is very high, which may make it restricted in

some applications; 2) the cost of DNA testing is higher.

However, kinship verification from facial images can remedy

these weaknesses because verifying kinship relations from

facial images is very convenient and its cost is very low. For

example, if we want to find a missing child from thousands of

children, it is difficult to use the DNA testing to verify their

kin relation due to privacy concerns. However, if our kinship

verification method is used, we can quickly first identify some

possible candidates which have high similarity from facial

images, Then, the DNA testing is applied to get the exact

search result. Different users may have different preferences

to remove the false candidates. Hence, the ROC curve results

in Fig. 4 can provide some guidelines for users in practical

applications, which can provide a trade-off between the search

accuracy and efficiency.

V. CONCLUSION AND FUTURE WORK

We make the following four observations from the above

experimental results:

• SPLE is the best feature descriptor for kinship verification

from facial images. Different from other hand crafted

feature representations methods such as LBP and LBP,

the SPLE feature is directly learned from training samples

and hence it is more data-adaptive and higher verification

accuracy can be achieved.

• DMML outperforms the other compared multi-metric

learning methods on our kinship verification task. That

is because our method jointly learns multiple distance

metrics such that the interactions of different metrics can

be well exploited.

• Verifying human kinship relation in the same photo can

obtain higher accuracy than in different photos. That is

because face images collected from the same photo can

reduce some challenges caused by the illumination and

aging variations.

• Our proposed DMML method can obtain comparable kin-

ship verification performance to that of human observers,

which further demonstrates the feasibility of verifying

human kinship via facial image analysis and the efficacy

of our proposed method for practical applications.

For future work, we are interested in applying the proposed

kinship verification approach in this work for the following

potential applications:

• Social media mining: we will apply our proposed kinship

verification approach for face image analysis in social

network websites. Since the current verification rate is

less than 80%, we will combine more cues such as texts

and contextual information with face images to further

improve the verification performance in social networks.

• Family alumni organization: we will employ our pro-

posed kinship verification approach for family alumni

photo organization. Since there are usually large age

progression in face images in family alumni photo, we

will combine both kinship verification and age-invariant

face recognition techniques to further improve verification

performance.
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