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ABSTRACT

In this paper, we present a supervised method to improve

the multiple pitch estimation accuracy of the non-negative

matrix factorization (NMF) algorithm. The idea is to ex-

tend the sparse NMF framework by incorporating pitch

information present in time-aligned musical scores in or-

der to extract features that enforce the separability between

pitch labels. We introduce two discriminative criteria that

maximize inter-class scatter and quantify the predictive po-

tential of a given decomposition using logistic regressors.

Those criteria are applied to both the latent variable and the

deterministic autoencoder views of NMF, and we devise

efficient update rules for each. We evaluate our method

on three polyphonic datasets of piano recordings and or-

chestral instrument mixes. Both models greatly enhance

the quality of the basis spectra learned by NMF and the

accuracy of multiple pitch estimation.

1. INTRODUCTION

Non-negative matrix factorization (NMF) is an unsuper-

vised technique to discover parts-based representations un-

derlying non-negative data [12], i.e. a set of characteristic

components that can be combined additively to reconsti-

tute the observations. When applied to the magnitude spec-

trogram of a polyphonic audio signal, NMF can discover a

basis of interpretable recurring note events and their asso-

ciated time-varying encodings, or activities, that together

optimally reconstruct the original spectrogram.

In general, the extracted representation will converge to

individual note spectra provided the following conditions

are met [5]. First, each observed spectrogram frame must

be representable as a non-negative linear combination of

the isolated note spectra, an approximation that depends on

the interference between overlapping harmonic partials in

a polyphonic mix but that is nevertheless reasonable [22].

The second condition requires that basis spectra be linearly

independent, and the third condition requires that all com-

binations of individual notes be present in the database.
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This last assumption is of course difficult to achieve com-

pletely but partial combinations seem sufficient in practice.

Consequently, the activities extracted by NMF have proven

useful as features to detect individual note pitches played

simultaneously at a given instant in a polyphonic audio sig-

nal, a task known as multiple pitch estimation, and for the

related task of transcribing audio excerpts into musical no-

tation [1, 3, 4, 19]. Sparsity, temporal and spectral priors

have proven useful to enhance the accuracy of multiple

pitch estimation [3, 7, 20].

Since NMF is an unsupervised technique, it can be ap-

plied in principle to an unlimited number of musical record-

ings without the need for ground-truth pitch labels. How-

ever, such information is often readily available as recorded

expressive performances, symbolic sequences (e.g. a MIDI

file) or time-aligned musical scores. In those cases, we

would like to exploit the pitch information to steer the NMF

decomposition in a supervised way to obtain discrimina-

tive features more useful for multiple pitch estimation. A

few attempts have been made in this direction, notably

by adding a linear discriminant analysis (LDA) stage to

the activities extracted by NMF [23], or by embedding

Fisher-like discriminant constraints inside the decomposi-

tion [9, 21, 23]. Discriminative dictionaries have also been

developed for sparse coding [15]. Those methods how-

ever are designed for classification, which means choosing

a single label, whereas multiple pitch estimation is a multi-

label task, i.e. multiple pitch labels can be associated with

a single spectrogram frame. In this context, we propose

two discriminative criteria that maximize inter-class scatter

for each label separately and estimate the predictive power

of a given decomposition using logistic regressors. Those

ideas are applied in the conventional latent variables frame-

work of NMF and in a deterministic autoencoder model

to directly maximize test-time discriminative performance.

Efficient update rules are devised for each, and we show

that our method greatly improves the quality of the basis

spectra learned by NMF and the accuracy of multiple pitch

estimation on three polyphonic datasets of piano record-

ings and orchestral instrument mixes.

The remainder of this paper is organized as follows. In

Sections 2 and 3, we review the NMF algorithm and its ap-

plication to multiple pitch estimation. In Sections 4 and 5

we introduce the latent variables and autoencoder discrim-

inative models. We describe our experiments and evaluate

our method in Sections 6 and 7.
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Figure 1. Illustration of the sparse NMF decomposition (λ = 0.01, µ = 10−5) of an excerpt of Drigo’s Serenade. Using

a dictionary W pretrained on a polyphonic piano dataset, the spectrogram X is transformed into an activity matrix H ap-

proximating the piano-roll transcription Y . The columns of W were sorted by increasing estimated pitch for visualization.

2. NON-NEGATIVE MATRIX FACTORIZATION

The NMF method aims to discover an approximate factor-

ization of an input matrix X:

nf×nt

X ≃
nf×nt

Λ ≡
nf×m

W ·
m×nt

H (1)

where X is the observed magnitude spectrogram with time

and frequency dimensions nt and nf respectively, Λ is the

reconstructed spectrogram, W is a dictionary matrix of m
basis spectra and H is the activity matrix. Non-negativity

constraints Wi,j ≥ 0, Hi,j ≥ 0 apply on both matrices.

NMF seeks to minimize the reconstruction error, a distor-

tion measure between the observed spectrogram X and the

reconstruction Λ. A popular choice is the Euclidean dis-

tance:

CLS ≡ ||X − Λ||2 (2)

with which we will demonstrate our method although it can

be easily generalized to other distortion measures in the β-

divergence family [11]. Minimizing CLS can be achieved

by alternating multiplicative updates to H and W [13]:

H ← H ◦
WTX

WTΛ
(3)

W ←W ◦
XHT

ΛHT
(4)

where the ◦ operator denotes element-wise multiplication,

and division is also element-wise. These updates are guar-

anteed to decrease the reconstruction error assuming a lo-

cal minimum is not already reached. While the objective

is convex in either W or H separately, it is non-convex in

W and H together and thus finding the global minimum is

intractable in general.

2.1 Sparsity constraints

In a polyphonic signal with relatively few notes played at

any given instant, it is reasonable to assume that active ele-

ments Hij should be limited to a small subset of the avail-

able basis spectra. To encourage this behavior, a sparsity

penalty CS can be added to the total SNMF objective [10]:

CS = λ|H| (5)

where | · | denotes the L1 norm and λ specifies the relative

importance of sparsity. In order to eliminate underdeter-

mination associated with the invariance of WH under the

transformation W → WD, H → D−1H , where D is a

diagonal matrix, we impose the constraint that the basis

spectra have unit norm. Equation (3) becomes:

H ← H ◦
WTX

WTΛ + λ
(6)

and the multiplicative update to W (equation 4) is replaced

by projected gradient descent [14]:

W ←W − µ(Λ−X)HT (7)

W:i ←
W:i

||W:i||
(8)

where W:i is the i-th column of W , µ is the learning rate

and 1 ≤ i ≤ m.

3. NMF FOR MULTIPLE PITCH ESTIMATION

The ability of NMF to extract fundamental note events

from a polyphonic mixture makes it an obvious stepping

stone for multiple pitch estimation. In the ideal scenario,

the dictionary W contains the spectrum profiles of indi-

vidual notes composing the mix and the activity matrix H
approximately corresponds to the ground-truth score. An

example of the sparse NMF decomposition of an excerpt of

Drigo’s Serenade using a dictionary pretrained on a simple

polyphonic piano dataset is illustrated in Figure 1. The

dictionary contains mostly monophonic basis spectra that

were sorted by increasing estimated pitch for visualization.

We also observe a clear similarity between the activity ma-

trix and the target score in a piano-roll representation Y .

There are many options to exploit the NMF decomposi-

tion to perform actual multiple pitch estimation. The dic-

tionary inspection approach [1, 18, 19] consists in estimat-

ing the pitch (or lack thereof) of each column of W , which

can be done automatically using harmonic combs [20], and

to transcribe all pitches for which the associated Hij activ-

ities exceed a threshold η:

Ykj = 1⇔
∑

i|L(i)=k

Hij ≥ η (9)
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where L(i) is the estimated pitch label (index) of the i-th
basis spectrum. For this method, a new factorization can

be performed adaptively for each new piece to analyze,

or the dictionary can be pretrained from an extended cor-

pus and kept fixed during testing. Dictionaries can also be

constructed from the concatenation of isolated note spec-

tra [3, 4].

Another option is to predict each column of Y from

the corresponding column of H using a general-purpose

multi-label classifier or a set of binary classifiers, one for

each label (note) in the designated range. This obviously

requires the use of a fixed dictionary and the availability

of annotated pieces to train the classifiers. In this work, we

will exclusively employ pretrained dictionaries and we will

consider both dictionary inspection and multi-label classi-

fication with linear support vector machines (SVM) [17].

4. DISCRIMINATIVE CRITERIA

The simple interpretation of the activity matrix as an ap-

proximate transcription usually deteriorates when we in-

crease instrumental diversity, pitch range or polyphony. In

this section, we introduce two discriminative criteria ex-

ploiting the aligned score information Y to ensure that NMF

extracts meaningful features into W and H .

The first criterion is inspired from linear discriminant

analysis in that we aim to maximize the inter-class scatter

of the Hij , where the classes here refer to the presence or

absence of a given pitch label at a given time. We encour-

age the activities associated with a given basis spectrum to

be maximal when its pitch is present in the score and mini-

mal otherwise, such that a unidimensional decision thresh-

old is sufficient to estimate the presence of a note. We first

assign a pitch label L(i) to each column i of W , or set

L(i) = −1 to denote an unpitched basis spectrum. Due to

the invariance of WH under the column permutation of W
and the equivalent row permutation of H , this assignment

can be done arbitrarily as long as the number of basis spec-

tra describing each pitch (q) and the number of unpitched

spectra (q̄) remain constant. More precisely, this criterion

has the form:

Cd(H) =
∑

ij











−β+Hij if YL(i),j = 1

β−Hij if YL(i),j = 0

0 if L(i) = −1

(10)

where the β+ and β− parameters quantify respectively the

importance of presence and absence of an Hij element.

Note that the limit β− →∞ corresponds to setting Hij =
0 for YL(i),j = 0.

The second proposed criterion does not impose a pre-

determined structure on the activity matrix, but rather at-

tempts to determine whether H is a good predictor for Y .

We introduce a stage of logistic regressors with weight ma-

trix V and bias vector b using H as input:

pkj = σ((V H)kj + bk) (11)

where σ(x) ≡ (1+e−x)−1 is the element-wise logistic sig-

moid function and p is an output matrix of note probabili-

X

Y
W

H*

Minimization
Problem

�

Output
Prediction

Figure 2. In the DNMF autoencoder model, the input is

encoded via a deterministic minimization procedure. The

code H∗ is trained to reconstruct X and to predict Y .

ties, or probabilistic piano-roll. We use the cross-entropy

as a discriminative criterion for H:

Cl(H) = −α
∑

kj

Ykj log pkj + (1− Ykj) log(1− pkj)

(12)

where α is a weighting coefficient. Adding our criteria to

the total objective yields the DNMF model:

C = CLS + CS + Cd + Cl. (13)

It is easy to show that the Hessian matrices ∇2
HCd(H)

and ∇2
HCl(H) are both positive semi-definite and that the

DNMF objective remains convex in W or H separately.

The multiplicative update rule for H (equation 6) becomes:

H ← H ◦
WTX

WTΛ + λ+ ∂Cd(H)
∂H

+ ∂Cl(H)
∂H

(14)

where the gradients are given by:

∂Cd(H)

∂Hij

=











−β+ if YL(i),j = 1

β− if YL(i),j = 0

0 if L(i) = −1

(15)

∂Cl(H)

∂H
= αV T (p− Y ). (16)

The update rules for W are the same as for sparse NMF and

are given by (7) and (8). The V and b parameters are opti-

mized via stochastic gradient descent using the updates:

V ← V − µ(p− Y )HT (17)

bk ← bk − µ
∑

j

(pkj − Ykj). (18)

5. AUTOENCODER MODEL

In the probabilistic latent variables model (LV) underly-

ing NMF, the activities are regarded as hidden variables

with joint negative log probability given by (13) and the

use of equations (14) and (7-8) during training corresponds

to the expectation and maximization phases of an EM al-

gorithm [12]. A subtlety associated with this interpretation

arises in testing conditions when the labels Y are unknown.

We can resort to equation (6) to infer H , but it is possible

to address this issue in a more principled manner with the

autoencoder model (AE) presented in this section.

Let us consider the value of H obtained in testing con-

ditions, denoted H∗:

H∗(W ) ≡ argmin
H

(CLS + CS) (19)
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and let us apply the same discriminative criteria Cd(H
∗)

and Cl(H
∗) on that variable. Since H∗ is a purely de-

terministic function of the input with W the only learned

parameter, this model can be assimilated to an autoencoder

with the encoding step consisting in a complex minimiza-

tion problem (equation 19) and the decoding step is the

usual linear input reconstruction (equation 1). In addition,

the discriminative criteria encourage H∗ to be a good pre-

dictor of Y . The overall model is depicted in Figure 2. The

projected gradient descent update for W becomes:

W ←W − µ
∂C(H∗)

∂W
(20)

W:i ←
W:i

||W:i||
(21)

Since H∗(W ) is the result of an optimization process,

the gradient of C(H∗) with respect to W is not trivial to

compute. We can exploit the convergence guarantee of the

multiplicative update (6) to express H∗ as an infinite se-

quence truncated to K iterations:

H∗ = lim
k→∞

Hk ≃ HK (22)

where:

Hk+1 = Hk ◦
WTX

WTWHk + λ
(23)

from which the gradients are easily computed by back-

propagation through iteration k in an efficient O(K) time:

∂C

∂Hk
=

∂C

∂Hk+1
◦
Hk+1

Hk
−WTWBk (24)

for 0 ≤ k < K, where the auxiliary variable Bk is:

Bk =
∂C

∂Hk+1
◦

Hk+1

WTWHk + λ
. (25)

The initial conditions are:

∂C

∂HK
= WT (WHK −X) + λ+

∂Cd

∂HK
+

∂Cl

∂HK
(26)

where the two rightmost terms are given by (15) and (16)

with H = HK . The gradient with respect to W is then

given by:

∂C

∂W
=

K−1
∑

k=0

[

X
( ∂C

∂Hk+1
◦
Hk+1

WTX

)

−

W (BkHkT +HkBkT )
]

+ (WHK −X)HKT . (27)

When computing ∂C/∂W , the finite-sequence approx-

imation (22) needs only be accurate in the vicinity of the

current value of W , denoted W 0. We can increase effi-

ciency without sacrificing precision by initializing H0 ≡
H∗(W 0) and keeping K small (< 10). Note also that this

gradient may become infinite when W is rank deficient,

a condition that arises when combinations of basis spectra

momentarily align [8]. This optimization issue is alleviated

in practice by two facts: the basis spectra are renormalized

after each update (equation 21), and the use of a finite se-

quence to approximate the gradient tends to smooth out

singularities.

6. EVALUATION

We use three datasets to evaluate our method:

RAND is a piano dataset of random chords part of the

larger MAPS database [6]. Each chord contains from 2 to 7

notes sampled from the whole piano range with heteroge-

neous loudnesses. We randomly split the data into training,

validation and test sets using a 4:1:1 ratio.

ORC is a random polyphonic dataset similar to RAND,

but that includes common orchestral instruments such as

violin, cello, trumpet, French horn, saxophone, oboe, bas-

soon, clarinet, flute and piccolo, in addition to piano and

organ. Each of the 3000 tracks contains 5 instruments si-

multaneously playing in their respective range for 16 sec-

onds and was rendered with the FluidR3 SoundFont 1 .

MUS is a collection of classical piano pieces also in-

cluded in MAPS [6], that contains nine sets created by

high-quality software synthesizers (7 sets) and a Yamaha

Disklavier (2 sets). Five synthesizer sets were selected for

training, with the remaining two held out for validation

to avoid overfitting the specific piano tones heard during

training. We used the first 30 seconds of each piece from

the Disklavier sets for test. The average polyphony for this

dataset is 2.9.

The magnitude spectrogram was computed for all data-

sets by the short-term Fourier transform using a 93 ms slid-

ing Blackman window at 10 ms intervals. Each spectro-

gram frame (column of X) was normalized and square root

compressed to reduce the dynamic range. The ground truth

Y was directly inferred from the MIDI files [6].

We evaluate multiple pitch estimation performance with

the standard metrics of accuracy, precision, recall and F-

measure [2]. Either dictionary inspection or linear SVMs

using H∗ or X as input serve to estimate the pitches. The

SVMs can optionally be replaced by multilayer percep-

trons (MLP) [16] for comparison. For each NMF model,

the parameters are first selected to maximize accuracy on

the validation set and we report the final performance on

the test set. Parameters are optimized over predetermined

search grids on the following intervals:

q ∈ [1, 7] q̄ ∈ [0, 12] η ∈ [0, 20]
β± ∈ [10−6, 10] α ∈ [10−2, 102]
λ ∈ [10−7, 2] µ ∈ [10−6, 10−3]

7. RESULTS

To illustrate the effectiveness of our approach, we first eval-

uate qualitatively the learned basis and pitch activities on

polyphonic piano data. The dictionary matrices obtained

on RAND via unsupervised NMF (Fig. 3(a)) and DNMF

(Fig. 3(b)) are presented in Figure 3 after sorting the columns

by increasing estimated pitch. From these results, it is clear

that DNMF extracted basis spectra – from a purely poly-

phonic mix – that correspond much closely to the expected

spectrum of individual piano notes. It is thus not surprising

that applying those dictionaries to extract pitch activities

H∗ from an excerpt of the MUS test set (Fig. 4(a)) yielded

1 http://www.hammersound.net
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Figure 3. Dictionaries trained (q = 1, q̄ = 0) on the RAND dataset via NMF (a) and DNMF (b). Columns were sorted by

increasing estimated pitch for visualization.
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Figure 4. Spectrogram (a) and piano-roll score (b) for the first 15 seconds of an arpeggiated version of Silent Night, Holy

Night from the MUS test set. Pitch activities H∗ (c-d) were estimated for that signal using the pretrained dictionaries in

Figure 3(a-b) respectively.

less noisy estimates much closer to the ground-truth score

(Fig. 4(b)), as can be observed from Figure 4(c-d).

A more quantitative measure of the discriminative qual-

ity of the learned basis is the discriminative ratio r:

r(H) =





∑

i,j|YL(i),j=1

Hij

/

∑

i,j|YL(i),j=0

Hij



 . (28)

According to this definition, we obviously favor higher ra-

tios. While r can be made arbitrarily high in training con-

ditions simply by increasing β±, what we really care about

is its value in testing conditions r(H∗). Figure 5 shows

a significant increase in the test discriminative ratio with

our latent variable algorithm compared to the sparse NMF

baseline, which indicates a much better pitch label sepa-

rability. The additional improvement provided by the au-

toencoder model demonstrates that directly optimizing H∗

is useful to increase discriminative performance.

In the next experiments we verify if the discriminative

features learned by our models translate in good pitch esti-

mation performance. Frame-level accuracies on the RAND

and ORC datasets are presented in Table 1 using dictionary

inspection and in Table 2 for multi-label classification. The

proposed models outperform the baselines in all cases, es-

pecially DNMF-AE used in conjunction with SVMs. Ta-

ble 3 shows frame-level precision, recall and F-measure

results on the MUS test set for common existing NMF

variants. Our approach surpasses adaptive unconstrained

NMF and is competitive with NMF trained on isolated pi-

ano notes and NMF with spectral constraints [20].
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SNMF

Figure 5. Evolution of the ratio r(H∗) during training on

the RAND dataset. “tr” stands for training conditions.

Method RAND ORC

NMF 27.6% 30.0%

SNMF 32.3% 43.8%

DNMF-LV 53.2% 58.8%

DNMF-AE 53.4% 58.6%

Table 1. Multiple pitch estimation accuracy obtained by

dictionary inspection on the RAND and ORC datasets.

8. CONCLUSION

We have shown that by exploiting pitch information present

in time-aligned musical scores to encourage the extracted

features to discriminate against the pitch labels, we can im-

prove the multiple pitch estimation performance of NMF

on three datasets of polyphonic music. Interestingly, the

13th International Society for Music Information Retrieval Conference (ISMIR 2012)

209



Features RAND ORC

Spectrogram 50.9% 55.9%

NMF 56.2% 59.4%

SNMF 55.5% 59.5%

DNMF-LV 60.4% 63.3%

DNMF-AE 61.6% 65.5%

Spectrogram (MLP) 52.7% 62.0%

Table 2. Multiple pitch estimation accuracy obtained on

the RAND and ORC datasets via linear SVMs using the

specified feature extraction technique.

NMF variant Prec. Rec. F-meas.

No training

Unconstrained † 58.9% 60.0% 57.8%

Spectral constraints [20] 71.6% 65.5% 67.0%

Pretrained dictionary

Isolated note spectra † 68.6% 66.7% 66.0%

Proposed (DNMF-LV) 68.1% 65.9% 66.9%

Proposed (DNMF-AE) 66.8% 68.7% 67.8%

Other methods

SONIC [16] 74.5% 57.6% 63.6%

Table 3. Average multiple pitch estimation performance

of common NMF variants on the MUS (MAPS) piano

dataset. †These results are from Vincent [20].

resulting basis spectra closely resemble the spectrum of

individual piano notes, even though they were trained on

purely polyphonic data without explicit harmonicity con-

straints. Once that discriminative basis is learned, relevant

pitch activity features can be efficiently computed using

only standard multiplicative updates.
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