
Discriminative Pattern Mining in Software Fault Detection

Giuseppe Di Fatta
Department of Computer and

Information Science
University of Konstanz

78457 Konstanz, Germany

fatta@inf.uni-konstanz.de

Stefan Leue
Department of Computer and

Information Science
University of Konstanz

78457 Konstanz, Germany

Stefan.Leue@uni-
konstanz.de

Evghenia Stegantova
Department of Computer and

Information Science
University of Konstanz

78457 Konstanz, Germany

steganto@inf.uni-
konstanz.de

ABSTRACT
We present a method to enhance fault localization for soft-
ware systems based on a frequent pattern mining algorithm.
Our method is based on a large set of test cases for a given
set of programs in which faults can be detected. The test
executions are recorded as function call trees. Based on test
oracles the tests can be classified into successful and failing
tests. A frequent pattern mining algorithm is used to iden-
tify frequent subtrees in successful and failing test execu-
tions. This information is used to rank functions according
to their likelihood of containing a fault. The ranking sug-
gests an order in which to examine the functions during fault
analysis. We validate our approach experimentally using a
subset of Siemens benchmark programs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Diagnostics, Tracing

General Terms
Experimentation, Reliability

Keywords
Automated debugging, Fault isolation

1. INTRODUCTION
Insufficient software production and quality assurance tech-

nologies are a tremendous societal cost factor for software
dependent societies [16]. Considering individual software
development projects, software quality assurance amounts
to more than 50% of the total cost in the software life cycle.
This money is largely spent during the software testing and
debugging phases [12].

The applicable software terminology standard [2] defines
a software error as an inappropriate action committed by

a programmer. The results of an error appear as faults
during the coding of a program. The existence of errors
and faults leads to unexpected results obtained while exe-
cuting the program on a specific input. The occurrence of
unexpected results during program execution is defined as
a program failure. The objective of this paper is to con-
tribute to the goal of locating software faults by proposing
an automated data analysis method working on large sets
of software testing data which can support and speedup the
detection of software faults.

The most commonly used software quality assurance method
is software testing. Customarily, testing a software system
involves a large set of test cases. Our method is based on the
assumption that for a given set of programs, we have a large
number of test cases available. The set of test cases can be
split in two categories, namely those corresponding to cor-
rect and those corresponding to failing test runs. After exe-
cution of the set of test cases every test run is documented
in the form of a program execution trace. The large number
of program execution traces that we thus obtain gives rise
to a data mining problem that is aiming at localizing faults
by comparing correct and faulty test runs.

A failure is caused by the presence of a fault. However,
a fault does not always lead to an observable failure. The
cause of a failure is a set of circumstances of the program
execution. These are defined by, amongst others, the envi-
ronment of the program, the program input and the program
code [3]. A set of circumstances is called a scenario. We are
not interested in the circumstances themselves but in the
effect that they have on the test runs. The main idea is
that a scenario that leads to a failing test run is necessar-
ily executed in circumstances in which it contains faults in
the program code. And at least one of these faults induces
the failure. Hence the data flow created by this scenario will
cause a specific control flow in the neighborhood of the faulty
statement that induced the failure. By the neighborhood of
a given statement we refer to a part of the control flow of
the program run that includes the given statement itself plus
some preceding and some succeeding program statements.

The method presented in this paper uses data mining
techniques in the analysis of the data generated during pro-
gram test runs. It reveals meaningful parts of the control
flow in program tests that are useful in the discovery of
software faults. As an input the method takes a database
of traces of program test runs classified as failing and pass-
ing runs. The traces are represented in the form of reduced
function call trees, a data structure that we will define in

http://www.ub.uni-konstanz.de/kops/volltexte/2008/6188/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-61883


alt_sep_test

main

own_below_threats

initialize alt_sep_test

main
main

alt_sep_testinitialize
...

a b... ... ...... ...

...

non_crossing_biased_climb own_below_threats

Figure 1: A fragment of the function call tree of the execution of the tcas program.

the paper. The method determines frequent patterns inside
the reduced function call trees that carry discriminative in-
formation which distinguishes between passing and failing
test runs. The discriminative trace patterns play the role of
the above mentioned control flow neighborhoods. We claim
that such patterns can potentially be the neighborhoods of
the faulty statement. To identify these patterns we use a
commonly known frequent subtree mining algorithm. We
refer to these mining steps of our approach as data filter-
ing. Based on the discriminative patterns that the preceding
steps yield we finally develop quantitative metrics that rank
the functions according to the probability of them contain-
ing a fault. The final analysis report contains a list of ranked
functions suggesting the order in which the functions should
be examined in order to quickly detect the actual fault.

The rest of the paper is structured as follows. In Section
2 we describe the general architecture of our fault localiza-
tion approach and give a detailed description of every phase.
Experiments that we performed as well as results and dis-
cussions are presented in Section 3. In Section 4 we give
an overview of related work and previous research in this
area. Section 5 finally summarizes the approach, presents
conclusions and proposes topics for further research.

2. SYSTEM DESCRIPTION
In this section we outline the general architecture of our

method.
Our analysis follows the steps that we summarize below

1. Collection, classification and abstraction phase. Dur-
ing the executions of the program test suites the execu-
tion traces are stored in a suitable format. An oracle
classifies the test execution traces as failing or suc-
cessful. In order to reduce the size of the traces an
abstraction procedure is performed. This step is use-
ful to reduce the overall memory and computational
requirements.

2. Filtering phase. Here we employ a frequent pattern
mining algorithm to extract patterns from the database
of execution traces that carry discriminative informa-
tion between correct executions and executions that
lead to a failure.

3. Analysis phase. We rank the functions according to
the probability of them containing a fault and present
the final report to the programmer.

2.1 Representation of program traces
The objective of our method is to extract potential neigh-

borhoods of the faulty statement in the program code, to

analyze them, and finally to draw a conclusion regarding
the location of the fault. We use the term neighborhood to
denote a section of the control flow of a program that is
carried out during a part of a particular test run on this
program. As a consequence, the execution traces of the test
runs that our method gets as an input will contain suitably
selected and represented control flow information.

We define a program P as a set of functions F associ-
ated with a given function main() which is always executed
first. In our approach execution traces gather the infor-
mation on the function calls in the given program P . We
represent a trace of function calls that are executed during
a test run of the program as a rooted, ordered, labeled tree
T = (V, E,F , L, v0, 4). The set of vertices V represents a
set of function calls that occurred during the execution of
the program. The set E ⊆ V ×V represents the set of edges
such that (f, g) ∈ E if there is a call to a function g dur-
ing the executions of the function f . The labeling function
L : V → F assigns to each function call v a name of the
called function L(v) from the alphabet F . The vertex v0

represents the root of the tree T . It corresponds to the first
function call in the program execution and it is labeled with
main(). The binary relation 4⊆ V 2 represents a sibling
relation for the ordered tree T such that f and g are chil-
dren of the same parent and f 4 g iff the function call f

happened before the function call g. A test execution trace
represented in the above described way is called a function
call tree.

As an example, Figure 1a illustrates a fragment of a func-
tion call tree corresponding to some execution of the tcas
program from the set of the Siemens Programs. Function
main() was executed first. During the execution function
main() calls consecutively functions initialize() and alt sep test()
etc.

Any subtree G that occurs in a function call tree G′ is
a neighborhood in G‘.Figure 1b gives some examples of the
neighborhoods that occur in the function call tree illustrated
in Figure 1a. We say that a subtree G is of size l iff it has
l nodes, i.e. |VG| = l. In this case we can also say that a
neighborhood G has a size l.

2.2 Abstractions in program traces
Due to the iterations and recursions that commonly oc-

cur in program code, an average function call tree contains
a lot of repeated information, in particular identical, repeti-
tive function calls. Figure 2a illustrates an example of a toy
program execution tree, where function D is called repeat-
edly during the execution of a loop in function C a number
of times. Such contiguous repeating function calls increase
the number of neighborhoods in the execution traces. This



D D D

A

B

A

B C

D

C

D D D D

A

B C

..... D

..... .....

.....

ba

Figure 2: Repetitions.

enlarges the exploration space of the frequent pattern min-
ing algorithm because more candidates in the computation
of frequent patterns will be generated. As a consequences
the memory requirements of the frequent pattern mining al-
gorithm will increase significantly. On the other hand, as
we argue in the following paragraphs we maintain that re-
peated calls to the same function do not commonly cause er-
rors, although in some situations ignoring repeated function
invocations may bring some imprecision into our analysis.

We will now analyze the information value of contiguous
repeating function calls with respect to locating a failure.
As it was mentioned earlier a scenario that leads to a failing
test run is necessarily executed in circumstances in which it
contains faults in the program code. At least one of these
faults can be assumed to induce the failure. This gives rise
to the hypothesis that the data flow created by this scenario
will entail a specific control flow in the neighborhood of a
faulty statement. Assume that in the program execution il-
lustrated in Figure 2a the fact that C calls the function D

in a loop does not become an inevitable consequence of the
circumstances that lead to the failure of the program run.
However the existence of this loop in the execution trace
leads to the appearance of the neighborhoods that differ
only by a number of contiguously repeating leaves, for ex-
ample neighborhoods illustrated in Figure 2b differ by the
number of calls to D. Since the loop doesn’t become the
cause of the failure, these neighborhoods do not carry dis-
tinct information in relation to the fault. Hence, we may
abstract from contiguously repeating leaves by deleting the
repetitions without any loss of meaningful information.

Consider again Figure 2a. It represents a part of the exe-
cution trace of a program induced by some faulty scenario.
We now analyze the case when executing the faulty state-
ment causes at some point the initiation of function calls
to the function D in a loop a particular number of times.
Our subsequent reasoning applies equally to the scenario in
which a repeated execution of the function D in a loop later
becomes a cause for the execution of a faulty statement. In
both cases, the loop that initiates calls to the function D is
highly related to the fault in the program. Thus it becomes
a part of a specific control flow in the neighborhood of the
faulty statement. In these situations abstracting a function
call tree by reducing the number of repetitions will lead to
the loss of a subset out of the set of neighborhoods of the
faulty statement. For example, assume that in Figure 2a the
execution of the faulty statement leads to a program failure
only if function D was called more that 2 times in the loop.
Than the occurrence of the neighborhood ( Figure 2b ) that
calls D three times becomes a cause of the failure of the pro-
gram. On the other hand, the neighborhood that contains
only two calls to D can represent the common behavior of

the program that not necessarily fails. Reducing the num-
ber of repetitions of D in this case will cause the loss of the
neighborhood in Figure 2b and thus to the loss of relevant
information for our method. We assume that in such cases
other neighborhoods specific for this particular failure will
also be generated and by deleting the contiguous repeating
function calls we do not eliminate all specific neighborhoods,
hence we do not predispose our method to the failure.

As a consequence, we perform a zero-one-many abstrac-
tion on the function call trees by reducing the number of
contiguously repeating leaves to two, i.e., the ”many” case
will be abstracted to the value two. A trace represented
as a function call tree with the sequences of contiguously
repeating leaves of length reduced to two is called reduced
function call tree. When in the sequel we speak about ex-
ecution traces we refer simply to thus reduced function call
trees.

2.3 Filtering Procedure
In the previous sections we often referred to the specific

neighborhoods of a faulty statement that can hint us at the
place where a fault is located. To define formally the notion
of the specific neighborhood of a faulty statement we need to
classify the neighborhoods of an average execution trace of
a program.

For a given program, a set of potential neighborhoods is
defined by the structure of the program code, in particular
by the static function call graph. Every time the program
is executed on a given input a subset of the set of potential
neighborhoods is executed.

Given a dataset of program execution traces D and a sta-
bility threshold s ∈ [0, 1] we adapt the definition of frequent
subtrees in a tree dataset to define a set of neighborhoods N
s-stable to the input in the following way:

N (D, s) = {n | supp(n, D) ≥ s}, (1)

where n is a subtree and supp(n, D) is the percentage of
traces in D which contain a neighborhood n, i.e. the support
of n in D. We also call this set s-stable neighborhoods in D.

The term stability appears from the intuition behind the
threshold s. Thus the case when threshold s = 1 means that
neighborhoods from the set N (D, 1) occurred in all program
executions in the database D independently on the input,
i.e the set N (D, 1) is stable in relation to the variations of
input data. On the other hand the lower the threshold s is
the less is the percentage of the program runs that execute
the neighborhoods N (D, s), i.e. the set N (D, s) depends on
the input data and the stability in relation to the variation
of input data decreases.

A simple example of a 1-stable neighborhood could be
the function call to the function main() that happens at the
beginning of every execution. The threshold s = 0 defines
the set of all neighborhoods that occurred during the exe-
cution of the program. Note that any subtree of an s-stable
neighborhood is also an s-stable neighborhood.

Let a program P contain a fault and Df be the set of
traces of the failing test runs. We assume that in each of
the test runs in the set Df a data flow has caused the ap-
pearance of the neighborhoods of the faulty statement that
are specific for the faulty scenarios and that these neighbor-
hoods have a high stability to the input, i.e occur in most
of the failing executions . At the same time due to the fact
that these neighborhoods appear as a consequence of the



executions 
failing

executions 
passing 

A

B

A

B

D

B

A

B E

A B

E

B

B

D B
D

A

D
B

A

B

B

D

A

B

E

B

E

A

B

E

A

D

B

D
D

A

B

D

A B D

specific
neighborhoods

Set 1

of size 2

Set 4

s1−stable neighborhoods 
of size 2

s−stable neighborhoods 

Set 2

s−stable neighborhoods 

s1−stable neighborhoods 

Set 3

Set2\Set4 is empty 
Set1\Set3 

Figure 3: Restricted specific neighborhoods.

faulty scenario in the failing runs, they are likely to occur
occasionally but not commonly in the database of traces of
passing test runs. Thus we call a set of neighborhoods SN
specific neighborhoods of a faulty statement or just specific
neighborhoods if given a stability threshold sp for the set of
traces of passing test runs Dp and a stability threshold sf

for the set of traces of failing test runs Df

SN (Dp, sp, Df , sf ) = N (Df , sf ) \ N (Dp, sp). (2)

The set SN represents the set of discriminative patterns,
i.e. those pattern that are frequent in the set Df and not
frequent in the set Dp.

Our method locates the s-stable neighborhoods by means
of a frequent pattern mining algorithm.

Realistic program traces are very large, which implies a
large number of neighborhoods to be mined by the frequent
pattern mining algorithm. This results in a high memory
consumption [17, 1]. To control memory consumption in
our analysis we restrict ourselves to mining neighborhoods
of a particular size l, i.e., neighborhoods that include no
more that l function calls. Thus the equation above changes
form to

SN (Dp, sp, Df , sf ) = N (Df , sf , l) \ N (Dp, sp, l), (3)

where l indicates the upper bound of the size of the neigh-
borhoods to be mined.

However, as it is illustrated on the toy example in Figure
3, restricting the size of a neighborhood entails a loss of in-
formation. In Figure 3 the Set1 is generated by the frequent
pattern mining algorithm from the dataset of traces of the
failing test runs, given a stability threshold s1. The Set3 is
generated from the dataset of traces of the passing test runs,
given a stability threshold s. The specific neighborhood
identified by our method is the set difference Set1\Set3 and

contains one single neighborhood A → B → D. In the next
step we restrict the size of neighborhoods that frequent pat-
tern mining algorithms looks for to 2. In this case we obtain
Set2 of s1-stable neighborhoods in the set of failing execu-
tions and Set4 of s-stable neighborhoods in the set of pass-
ing execution. As a result the set of specific neighborhoods
becomes the empty set. Thus maximizing the parameter l

improves the quality of our method.

2.4 Function Ranking
We consider a function an atomic unit of program code.

The outcome of our analysis should guide the the program-
mer which functions to inspect first when searching for the
fault. As final step we thererfore rank functions according
to their probability of containing a fault.

A naive way to rank the functions is to compare the fre-
quency of calls to a particular function in the initial sets of
traces of passing and failing test runs. This approach does
not take into account information on the context in which
a particular function call occurred, i.e., the neighborhood of
that function call. It just formalizes the hypothesis that if
some function was called in a bigger percentage of failing
test runs than passing test runs, it is more probable that
this function contains the faulty statement.

Let Df be the dataset of traces of failing test runs and
Dp the dataset of traces of passing test runs. We denote
the probability of a function f to contain a fault by P(f)
and a subtree that contains one single node with label f by
tf . The P(f) values used in the ranking are computed as
follows:

P(f) =
supp(tf , Df )

supp(tf , Df ) + supp(tf , Dp)
, (4)

As we can see the probability P(f) becomes 1 if a particu-
lar function call occurred only in failing test runs. Functions



that have been called approximately in the same percentage
of both failing and passing test runs (i.e. function main()
that is called in all test runs) obtain a probability of around
0.5.

We contend that the above described filtering procedure
extracts the specific neighborhoods of the faulty statement.
They represent portions of the traces of the failing test runs.
Hence these neighborhoods can be viewed as small contexts
extracted from a trace that have a direct relation to the
fault. We introduce another method to rank functions that
exploits the fact that a call to a function has occurred within
the specific neighborhoods. We say that a function is more
probable to contain the faulty statement if it is frequently
called in the specific neighborhoods and at the same time
is highly ’unpopular’, i.e infrequently called in passing test
runs. We call this ranking system the Frequent Pattern
ranking and compute the values for P(f) in the following
way:

P(f) =
supp(tf ,SN )

supp(tf ,SN ) + supp(tf , Dp)
, (5)

where SN represents a set of specific neighborhoods extracted
in the filtering phase.

It is easy to see that the Frequent Pattern ranking assigns
the a probability of 0 to contain a fault to functions that
weren’t called within the specific neighborhoods. It is possi-
ble that the set of specific neighborhoods becomes an empty
set. This situation is illustrated in the example in Figure
3 and was discussed in the Section 2.3. To avoid having
empty results in cases when the calculated set of specific
neighborhoods is empty we resort to ranking functions us-
ing the naive ranking system for the lack of more suitable
information.

3. EVALUATION AND RESULTS

3.1 Experiment Setup
We run our technique on the Siemens programs test suite

benchmark. This benchmark consists of 7 correct C pro-
grams and 132 variations of those programs with injected
faults. Each program consists of a number of functions
which lies in the range from 7 to 21, and the number of
lines in each program varies from 173 to 565. The number
of tests provided for each program varies from 1026 to 5542.
In our experiment we had to rule out 4 programs, two be-
cause the test suites didn’t reveal any failure, and two due
to technical problems with trace collection.

The filtering phase of our method (c.f. Section 2.3) uses
3 parameters: the stability thresholds sp and sf for the
datasets of execution traces of failing and passing test runs
respectively and a neighborhood size restriction parameter
l. Due to the fact that there is one fault injected in the pro-
gram code it is preferable to use a comparatively high value
for sf . This choice means that we mine the neighborhoods
that are highly independent on input variations. For our ex-
periments we keep the value of the sf of 100%. The value of
sp controls the stability of the specific neighborhoods to the
input in the passing test runs. In our experiments we set it
to 85%. The neighborhood size limit l is mainly influenced
by the size of the RAM available on the PC. We perform the
experiments for the size limitations of the neighborhoods of
4, 3 and 2, which allowed us to compute frequent patterns
in the obtained forest databases on a PC with 512MB RAM

Nr. of functions FP method
to examine l=2 l=3 l=4

1 28 27 29
2 19 24 24
3 17 22 17
4 16 10 13

more than 4 47 44 44

Table 1: Results: FP performance

available.

3.2 Report Evaluation
The results of our analysis are presented to the program-

mer in a report that lists functions ranked according to their
probability of containing a fault. The availability of correct
versions of the Siemens programs allows us to measure the
effectiveness of our method by assigning a score to the final
report. The score measures the percentage of program code
that the programmer will not have to examine while search-
ing for the fault. For a given report R, its score is measured
in the following way:

score(R) =
|{f | P(f) < P(f?)}|

|F |
, (6)

where f? is a function that contains the faulty statement
and |F | is the number of functions in the program.

In the evaluation of the report we don’t take into account
that the size of functions can differ and that some faults
are easier to spot than others. The best report possible pro-
duced by our method will pinpoint the faulty function, which
means that the faulty function is the only one in the highest
rank. The score of this best possible report is computed as

score(R) =
|F | − 1

|F |

and converges to 1 for software systems with big numbers of
functions. Related to the Siemens programs it can show a
rather low score even in case when the best result is achieved,
i.e the method pinpoints the faulty function. For example
the tot info package has 7 functions, thus the best score that
can be achieved is

|F | − 1

|F |
=

7 − 1

7
= 0.86.

A report scored with 0 ranks the faulty function as one of the
least probable of containing the fault. And as a consequence
a programmer will examine the whole program before locat-
ing the fault.

3.3 Time Complexity
In our experimental tests we use the frequent pattern min-

ing algorithm FREQT, independently introduced by Asai et
al. [1] and Zaki [17]. It efficiently extracts frequent ordered
labeled subtrees from a database of rooted ordered labeled
trees. In order to assess the time complexity we experi-
mented with 30 versions of replace package from the Siemens
Programs, which has 22 functions. The average time for FP
with size restriction l=3 for the analysis of each version is
17.66 sec.

3.4 Results and Analysis



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100

%
 o

f t
es

t c
as

es

% of program to be examined

Sensitivity of the FP method to variations of l 

FP l=4
FP l=3
FP l=2

Naive ranking

Figure 4: Performance of Naive ranking and Fre-
quent Patterns (with variations of l)

We call our method Frequent Pattern and denote it by
FP. As we can see from the Table 1 the FP technique with
neighborhood size restriction l = 2, l = 3 and l = 4 achieve
the best score, i.e pinpoint the faulty function in 28 , 27 and
29 cases respectively out of 127. This constitutes about 22−
23% of all test cases. And in 48, 51 and 53 test cases, which
constitutes about 37− 42% of all test cases the programmer
would need to walk through at most two functions in order
to locate the fault in the program.

In Figure 4 we illustrate the cumulative distribution of
effectiveness scores per analysis method where the x-axis
indicates the maximum percentage of code that needs to be
examined to locate a fault. The y-axis denotes a percentage
of the total number of programs that we analyzed. The
lines in the chart represent for what percentage of the total
number of cases we applied our method to it is necessary to
inspect at most which percentage of code in order to locate
a fault. I.e., for the FP method with parameter l = 4, in
40% of the cases analyzed it is necessary to examine 20% or
less of the code in order to locate the fault, and in 55% of
the cases analyzed it is necessary to examine 30% or less of
the code.

As it can be seen in Figure 4, in the whole range of the
test runs Naive Ranking shows poorer performance than the
Frequent Pattern method in the whole range of the test runs.
This justifies the filtering procedure that we proposed for the
FP method.

An important observation we made during the experiment
is that the set of specific neighborhoods SN never occurred

to be empty and we never applied Naive ranking to obtain
a result.

As we can see in Figure 4 in about 70% of all test cases
the programmer will examine 45% of program code to locate
a fault, i.e about 30 % of all test cases are accumulated after
the border of 45% of program code to be examined. Among
these programs are 2 cases with the worst report obtained.
This means that the faulty function was considered the least
probable to contain the fault and obtained the lowest rank.
The analysis of the failing test cases shows that the worst re-
ports are the faulty versions of the t cas program. In these
cases in function initialize() the Positive RA Alt Thresh []
array was assigned wrong values. However in most of those
cases ALIM() was calculated to be the most probable to
contain the fault. Function ALIM contains just one state-
ment: return Positive RA Alt Thresh[Alt Layer Value];, it
directs the programmer immediately to the values of the
variable Alt Layer Value and array Positive RA Alt Thresh[].
The latter was initialized in the function initialize(). The
other ’bad’ reports have diverse faults, for instance wrong
type of the variable, wrong or omitted if condition or wrong
precision of the constant. The cases are distributed over dif-
ferent programs with different static structure and number
of functions. We have not yet found the precise classifica-
tion of the these runs and the reason for the moderate result
of the FP method in those cases. The possible explanation
could be the choice of parameters and the loss of information
due to the neighborhood size restriction.

Figure 4 also illustrates the sensitivity of the FP method
to variations of the parameter l. The lines FP l=2, FP
l=3 and FP l=4 illustrate the accumulative scores of the
FP method with neighborhood size restrictions 2, 3 and 4
respectively. As one can see all three FP methods yield com-
parable results in the range of 0-20% of test runs, however
later on the performance difference increases and already for
30% of the code FP l=4 outperforms FP l=3 and FP l=3
outperforms FP l=2. This relationship is maintained as one
moves along the x-axis towards higher percentages. This
justifies our hypothesis that one of the reasons of having
bad reports is the restriction over the size of the neighbor-
hoods mined in the filtering procedure. At the same time
the similarity of the results in the range of 0-20% of test
runs implies that the restriction of the size of the neighbor-
hoods does not have a big influence over the best reports
FP technique produces.

4. RELATED WORK
The problem of automated fault localization has been in-

vestigated in various frameworks. A common approach is to
suggest locations in the software source code that are most
likely to contain the fault which causes a given failure. We
now discuss the main research directions in this area.

The initiators of the coverage based approach, Reps et al.
[15] introduce the idea to represent a program execution by
a spectrum, i.e., a set of features of a program’s execution
applicable to all programs independent of specific charac-
teristics of a particular program such as input data, control
structure, etc. They propose the idea that differences in the
spectra of passing and failing test runs are related to defects
in the program code. Jones et al. [8] visualize coverage in-
formation to assist programmers in fault localization. They
introduce a ranking system that ranks the source code state-
ments in the following way: statements more often executed



 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  10  20

%
 o

f t
es

t c
as

es

% of program to be examined

NN(perm)
CT

SOBER

Figure 5: Cumulative score: Nearest Neighbor vs
CT vs SOBER

in failing runs than in passing runs rank higher. We adapted
this system over program functions as a Naive ranking. As
it was illustrated in Section 3.4 FP outperforms Naive rank-
ing, and hence it outperforms the Jones’ analysis applied
over function coverage of the program execution. Renieris
et al. [14] propose a way to locate suspicious regions in the
program code by analyzing three models built on the base
of the spectra of failing and passing test runs. The most
successful nearest neighbor model that they define shows
encouraging performance. The central idea of the nearest
neighbor approach is to select out of the set of passing runs
the closest one (in terms of coverage, or some other crite-
ria) to the failing run, and then to focus on the difference
between these two runs alone. The results of the approach
are illustrated in the Figure 5, denoted by NN(perm). The
Figure 5 represents the cumulative effectiveness scores of
three methods that performed their experiments over the
Siemens Programs. It illustrates the percentage of test cases
in which no more than a certain percent of code needs to
be examined in order to locate a fault. The Plot has the
same structure as plot in the Figure 4, however the results
can not be compared directly due to the following reason.
The methods illustrated in Figure 5 use as a program unit
a program statement. Thus the x-axis represents the pre-
cise percentage of code. We use functions as program units
and the “percentage of code” used for the representation
of the results of the FP method in Figure 4 is an approx-
imation (as explained in Section 3.2). Dallmeier et al. [5]
propose a fault localization technique for Java based on the
postmortem analysis of the method calling object-specific
sequences showing up in passing and failing runs.

The approach proposed by Cleve and Zeller [4] called
Cause Transition Algorithm represents an enhancement of
the Delta Debugging technique initially proposed by Zeller
[18]. The original Delta debugging technique implements
the “search in space” concept by comparing memory graphs
[19] of failing and passing test runs, thus narrowing down
the difference between these runs to a set of suspicious vari-
ables. In addition to “search in space” the Cause Transition
Algorithm performs “search in time” by exploiting cause
transitions [4]. The performance of the Cause Transition
Algorithm is depicted in Figure 5, the method called CT.
Subsequently Gupta et al. [7] combine the delta debugging
approach with forward and backward dynamic program slic-

ing. Both techniques use as a program unit a program state-
ment and need only one pair of passing and failing runs for
analysis. On the other hand they require the availability
of automated scenario modification capabilities as well as
means to observe and manipulate the program state. These
means and capabilities may not always be available. Our
analysis is more time efficient and requires less instrumen-
tation effort.

Statistical analysis proves to be a very powerful approach
towards automated fault localization. Dickinson et al. [6]
cluster program execution profiles in order to find the pro-
gram failures. Later on they first perform the feature se-
lection using logistic regression and cluster failure reports
within the space of selected features [13]. In their early
work Liblit et al.[9] use logistic regression to select suspi-
cious value predicates associated with the fault in the pro-
gram. Later they propose a technque to isolate the faults
in program code based on probabilistic correlations of value
predicates and program crashes [10]. Liu et al. [11] use a
technique called SOBER based on the hypothesis testing.
SOBER uses predicates as program units and is evaluated
using the Siemens benchmark programs. The experimental
results of SOBER are summarized in Figure 5. SOBER and
FP analyze two different types of information: control and
data flow. We believe that combining this methods would
improve the results in this domain.

5. CONCLUSIONS AND FURTHER DISCUS-
SIONS

We have present the Frequent Pattern method to enhance
fault localization for software systems based on a frequent
pattern mining algorithm. The method is applicable to soft-
ware systems for which a large set of test cases as well as a
test oracle are available. It uses a frequent pattern mining
algorithm on the function call trees that are used to repre-
sent test executions. As a result of the mining, the functions
in the program are ranked according to the probability of
them containing an error, which greatly facilitates locating
faults.

We have evaluated our method experimentally using the
Siemens programs test suit as benchmark. The experiments
showed that our method outperforms the coverage-based ap-
proaches. We also analyzed the sensitivity of our method
to changes in the length parameter l which determines the
maximum depth of considered subtrees. It turned out that
by increasing l we improve the result in the worst cases and
even the minimum l = 2 is already enough to pinpoint the
faulty function in 22% of the test cases.

Threats to the validity of our results lie in the fact that
we relied on a single benchmark to evaluate the performance
of our method. Programs in the Siemens test suite have
moderate size and faults are injected. It hence remains to
be proven how the method scales to larger, real life scenarios.

Future research will address steps to alleviate some of the
constraints of our method. For instance, it remains to be
addressed how the necessary large set of test cases can be
automatically synthesized.

To increase scalability, we will look into the question to
which extent other program analysis and abstraction meth-
ods, such as program slicing, can be used in combination
with our proposed method. Finally, it will also be of in-
terest to us to investigate to what extent sequence mining



algorithms that work on linear function or statement exe-
cution traces compare to the tree mining approach that we
use in this paper.

Acknowledgments.. The first and third authors were sup-
ported by the DFG-funded PhD graduate program ”Ex-
plorative Analysis and Visualization of Large Information
Spaces” (GK 1042).

6. REFERENCES
[1] K. Abe, S. Kawasoe, T. Asai, H. Arimuri, and

S. Arikawa. Optimized substructure discovery for
semi-structure data. In LNAI 2431, Springer-Verlag,
August 2002.

[2] ANSI\IEEE. Ieee standard glossary of software
engineering terminology. In IEEE, Std 729 - 1983,
New York, 1983.

[3] H. Cleve and A. Zeller. Finding failure causes through
automated testing. In Proc. of the Fourth
International Workshop on Automated Debugging,
Munich, Germany, August 2000.

[4] H. Cleve and A. Zeller. Locating causes of program
failures. In Proc. 27th International Conference on
Software Engineering (ICSE 2005), St. Louis,
Missouri, May 2005.

[5] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight
defect localization for java. In Proc. of the 19th
European Conference on Object-Oriented
Programming, 2005.

[6] W. Dickinson, D. Leon, and A. Podgurski. Finding
failures by cluster analysis of execution profiles. In
ICSE’01: Proc. of the 23rd International Conference
on Software Engineering, pages 339–348, 2001.

[7] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating
faulty code usinf failure-inducing chops. In Proc. of
the International Conference on Automated Software
Engineering, pages 263–272, Long Beach, California,
November 2005.

[8] J. Jones, M. Harrold, and J. Stasko. Visualization of
test information to assist fault localization. In
Proceedings of the 24th International Conference on
Software Engineering, May 2002.

[9] B. Liblit, A. Aiken, A. X. Zheng, and M. J. Jordan.
Bug isolation via remote sampling. In J. James,
B. Fernwick, and C. Norris, editors, ACM SIGPLAN
2003 Conference on Programming Language Design
and Implementation (PLDI-03), volume 38, 5 of ACM
SIGPLAN Notices, pages 141–154, 2003.

[10] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. J.
Jordan. Scalable statistical bug isolation. In Proc. of
ACM SIGPLAN 2005 Int. Conf. on Programming
Language Design and Implementation (PLDI-05),
2005.

[11] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff.
Sober: Statistical model-based bug localization. In
Proc. of the 5th joint meeting of the European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software
Engineering (ESEC/FSE 05), 2005.

[12] G. Myers. The Art of Software Testing. John Wiley &
Sons, Inc, 1979.

[13] A. Podgurski, D. Leon, P. Francis, W. Marsi,
M. Minch, J. Sun, and B. Wang. Automated support
for clussifying software failure reports. In Proc. of the
25th International Conference on Software
Engineering, pages 465–475, 2003.

[14] M. Renieris and S. Reiss. Fault localization with
nearest neighbor queries. In 18th International
Conference on Automated Software Engineering,
Montreal, Canada, 2003.

[15] T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with
applications to the year 2000 problem. In Proceedings
of the 6th European Software Engineering Conference,
pages 432–449, September 1997.

[16] RTI Health, Social and Economics Research. The
economic impacts of inadequate infrastructure for
software testing. Technical report, National Institute
of Standards and Technology, Gaithersburg, MD,
USA, May 2002.

[17] M. J. Zaki. Efficiently mining frequent trees in a
forest. In 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, July 2002.

[18] A. Zeller. Isolating cause-effect chains from computer
programs. In ACM SIGSOFT 10th International
Symposium on the Foundations of Software
Engineering (FSE-10), Charleston, South Carolina,
November 2002.

[19] T. Zimmermann and A. Zeller. Vizualizing memory
graphs. In S. Diehl, editor, Lecture Notes in Computer
Science, volume 2269, pages 191–204, Dagstuhl,
Germany, May 2002. Springer-Verlag.


