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Discriminative Segmentation-based Evaluation

through Shape Dissimilarity
Ender Konukoglu, Ben Glocker, DongHye Ye, Antonio Criminisi, and Kilian M. Pohl

Abstract—Segmentation-based scores play an important role in
the evaluation of computational tools in medical image analysis.
These scores evaluate the quality of various tasks, such as
image registration and segmentation, by measuring the similarity
between two binary label maps. Commonly these measurements
blend two aspects of the similarity: pose misalignments and
shape discrepancies. Not being able to distinguish between these
two aspects, these scores often yield similar results to a widely
varying range of different segmentation pairs. Consequently,
the comparisons and analysis achieved by interpreting these
scores become questionable. In this paper we address this
problem by exploring a new segmentation-based score, called
normalized Weighted Spectral Distance (nWSD), that measures
only shape discrepancies using the spectrum of the Laplace
operator. Through experiments on synthetic and real data we
demonstrate that nWSD provides additional information for eval-
uating differences between segmentations, which is not captured
by other commonly used scores. Our results demonstrate that
when jointly used with other scores, such as Dice’s similarity
coefficient, the additional information provided by nWSD allows
richer, more discriminative evaluations. We show for the task
of registration that through this addition we can distinguish
different types of registration errors. This allows us to identify
the source of errors and discriminate registration results which
so far had to be treated as being of similar quality in previous
evaluation studies.

Index Terms—Evaluation, Accuracy Assessment, Image Regis-
tration, Image Segmentation, Shape Dissimilarity, Overlap Mea-
sures, Spectral Distance, Shape Dissimilarity, Laplace Operators.

I. INTRODUCTION

EVALUATION of computational tools in medical image

analysis is an important task. Widespread application of

these tools in different research fields, their deployment on

commercial systems, their use in advanced analysis tasks and

the amount of basic research focusing on developing new

tools emphasize the need of sound evaluation methodologies.

This need not only arises for understanding which algorithm

performs better on a specific dataset. It is also crucial for

devising unit tests for commercial systems, understanding

algorithm limitations for clinical use, detecting failures in

applications involving large amount of data and interpreting

analysis results correctly.

Though very important, evaluations for most analysis tools

are not straightforward. The main difficulty is the lack of

ground truth or gold standard. One particular tool is very
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striking in this regard: image registration [1]–[3]. Registra-

tion is defined as determining the coordinate transformation

between two images that aligns the corresponding anatomical

points. It is used for a wide range of purposes such as

fusing images of different modalities of the same anatomy [4],

studying spatiotemporal dynamics [5] and performing large

cohort studies [6].

Evaluating a registration method is defined as assessing

the accuracy of the coordinate transformation computed by

the method. In theory, this assessment can be done simply

by comparing the computed transformation with the real

transformation between the images. However, this is precisely

the point where it becomes difficult. The “real” transformation

between two arbitrary images is usually unknown, and thus,

ground truth for evaluation is inaccessible.

Despite the difficulty in its assessment, many analyses rely

on registration. Their outcome and correctness heavily depend

on the accuracy of the computed coordinate transformation.

This issue has been discussed, for example, in the context of

voxel-based [7] and deformation-based morphometry [8]. In

2003, Crum et al. in [9] remarked: “Clinical studies whose

results rely heavily on registration techniques of questionable

validity should be treated with suspicion.”

In order to circumvent the lack of ground truth, scien-

tists resort to using indirect or sparse methods for accuracy

assessment. Different approaches include using synthetically

generated transformations [10], [11], using sparse set of land-

marks to quantify alignment errors [11]–[13] and quantifying

mathematical properties of the computed coordinate trans-

formation [11], [13]–[16]. Although used in various studies,

these approaches are either too application-specific, in the case

of landmarks and synthetic transformations, or not indicative

of the registration accuracy. The last group of approaches,

which is also the most widely used one, uses segmentations

of corresponding structures [17], [18].

Segmentation-based approaches for assessing accuracy of a

given coordinate transformation is based on the fact that the

correct transformation between two images would align the

corresponding anatomical structures perfectly. These methods

thus quantify the quality of the coordinate transformation

by measuring the discrepancies between the corresponding

segmentations after registration. Although segmentation-based

methods do not directly quantify the registration accuracy

(in terms of mm displacements of corresponding anatomical

points), they are the most generally applicable and the most

popular group of evaluation strategies. This popularity is

mainly due to: i) creating manual segmentations of structures

is often easier and less sensitive to noise than annotating
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landmarks, ii) existence of publicly available imaging studies

that include scans and associated expert segmentations, iii)

segmentations in some sense provide a “dense sampling of

landmarks along the boundary” (given that the exact corre-

spondence of such landmarks between reference and floating

image is unknown), which enable the computation of a wide

array of measurements, such as the overlap agreement between

regions, and iv) one of the major applications of registration is

segmentation via label propagation and therefore, measuring

the registration accuracy via segmentations is closely aligned

to the target application.

Although very popular and useful, segmentation-based

scores that are commonly used in the literature have limi-

tations, [17], [19]. The one that is tackled in this article is

that scoring functions, such as Dice’s similarity coefficient

(DSC) [20] and surface distance, are often not discriminative

enough when it comes to certain differences between segmen-

tations. They measure the differences by blending two sources

of imperfections: i) pose misalignments (linear) and ii) shape

discrepancies (nonlinear). However, they cannot discriminate

these two sources and as a result, for a large class of visu-

ally very different segmentation pairs, these functions return

very similar scores. Such an example is shown in Figure 1.

In the context of registration, this means that coordinate

transformations of different qualities might not be correctly

discriminated, which undermines the assessment. Here, we

focus on this issue and address it by exploring a scoring

function that ignores pose misalignment and only measures

shape discrepancies.

Specifically, we present a score of shape dissimilarity, called

normalized Weighted Spectral Distance (nWSD). nWSD is a

normalized score (in the interval [0, 1]) that quantifies the

amount of discrepancy between two shapes by using their

Laplace spectra. In doing so, it enriches segmentation-based

evaluation by providing an additional measurement that cannot

be solely captured using other scores. Here, we define nWSD

and analyse its properties. Through different experiments with

synthetic and real data, we demonstrate that nWSD i) can

capture and quantify shape differences independently from

pose misalignments, and ii) can complement existing scores

leading to more discriminative and richer evaluation.

We first demonstrate the limitations of commonly used

segmentation-based scores. We do so by constructing in Sec-

tion II a very simple database of segmentations where popular

scores, such as DSC, are not able to discriminate between

visually very different segmentation pairs. In Section III, we

provide some technical background on Laplace operators and

their role in shape analysis. We then present nWSD, which

can provide the necessary discrimination. For the sake of

brevity and focus, we omit the theoretical analysis of our

score, which is described in [21]. Instead we discuss a

series of synthetic examples to underline the properties and

the advantages of nWSD for the purposes of this article.

Based on these examples, we then propose a two dimensional

evaluation system, which jointly uses nWSD along with an

overlap score, namely DSC. In Section IV we apply the two

dimensional system on real data for assessing the quality of

306 registrations cross aligning MRI brain scans of 18 different

(a) (b) (c)

Fig. 1: Example images from the synthetic database. Image in

(a) is the reference disc of radius 15 mm, followed by four

perturbed versions of this reference in (b) and (c). The first

image shown in (b) is a simple translation of (a) by 3 mm. The

remaining three shown in (c) are nonlinear deformations of the

reference with varying magnitude and amount of nonlinearity.

By construction, the DICE scores between the reference and

all the perturbed ones are identical.

subjects. The experiment highlights the additional information

provided by nWSD and the use of this richer assessment in

the registration scenario. In particular the results demonstrate

that nWSD allows us to interpret differences in DSC, where

higher not always means better.

II. STUDYING COMMON SCORING FUNCTIONS

Commonly used segmentation-based scoring functions

quantify the differences between two label maps taking into

account: i) misalignments due to incorrect pose and ii) shape

(geometry) discrepancies. The scores are applied in the eval-

uation of registration methods for indirectly measuring the

quality of anatomical correspondences between the aligned

images. This evaluation is indirect as it rather measures errors

of overlap and resemblance of corresponding regions, than

the errors in actual point correspondences. Popular parameter-

free measures are DSC, symmetric mean surface distance

(SMSD), symmetric root-mean-square error over surface dis-

tance (SRMS), Hausdorff distance (HD), volume similarity

(VS) [17], and other statistics based on true/false positives and

negatives such as overlap score (OS). Their popularity partly

lies in their ease of implementation and intuitive meaning.

While HD and SRMS are more sensitive to shape differences

by responding to the largest errors, DSC, SMSD, OS, and VS

are more robust to outliers and segmentation errors.

All these segmentation-based scores have limitations when

it comes to distinguishing shape differences, whether subtle

or substantial. The robust ones, such as DICE and VS,

cannot discriminate misalignments due to incorrect pose from

mismatches in shape even in the case when the shapes are

significantly different. The more sensitive measures such as

HD and SRMS, essentially measure the dissimilarity between

the boundaries of the segmentations in terms of locations but

not in terms of their overall geometry. As a result, when

applied to evaluate registration algorithms, these measures

may yield similar scores to substantially different registration

outcomes. We demonstrate these shortcomings on a synthetic

database of 2D label maps.

Our synthetic database consists of a reference label map

showing a disc of radius 15 mm in an image of 200 × 200
pixels with a resolution of 0.5 mm, see Fig. 1(a). By randomly

perturbing the reference, we created 250 other segmentations.

One can imagine these new segmentations to represent differ-

ent possible registration results with respect to the reference.
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Fig. 2: Different overlap similarity scores applied to the synthetic database (examples shown in Figure 1). The graphs show

different similarity scores between the reference label map and each of the 250 perturbed images. The x-axis in each graph

is the index of the perturbed image. Notice, the commonly used segmentation-based accuracy scores are unable to properly

capture the substantial shape variation in the constructed dataset.

The first perturbed segmentation is a simple translation of the

reference by 3 mm, therefore has exactly the same shape

but a misalignment with respect to pose, see Fig. 1(b). The

remaining 249 segmentations are created by deforming the

reference shape using transformations with varying magnitude

and amount of nonlinearity. As a result, they all have different

shapes than the reference, as the samples shown in Fig. 1(c).

As an additional constraint, the dataset is constructed such

that the DICE scores between each perturbed image and the

reference shape is identical. We note the wide variations of

the sample shapes shown in Figure 1. Now, we analyse the

commonly used scores using this dataset.

We first compute DSC, SMSD, OS and VS between the

reference image and all the other perturbed images. Figures 2

plots these scores for each perturbed segmentation. As ex-

pected DSC, OS and VS are exactly the same for all the

images. The same, although not shown here, is actually also

true for other measures, such as various statistics based on

true/false positives. They do not capture the shape differences

and as a result they cannot distinguish between errors in pose

and shape discrepancy. The SMSD score shows some variation

between different segmentations however: i) this variation

is very small, i.e. 200 of 250 images are within interval

[1.6, 2.0] mm and ii) there is no discrimination with respect

to shape.

We also obtain measurements on the synthetic database us-

ing HD and SRMS scores, although these scores are normally

not used due to their high susceptibility to outliers. The HD

and SRMS scores are shown in Figure 3(a). As expected, the

dispersions for these scores are much higher throughout the

dataset compared to the previously shown scores. However,

the dispersions do not necessarily correlate with the shape

differences between the segmentations. Figure 3(b) illustrates

this issue with an example. The two segmentations shown in

this figure have very similar, identical up to the first floating

point, HD scores with respect to the reference disc. The

HD score fails to identify the substantial shape differences

between the segmentations. We observe a similar behaviour for

SRMS with respect to the segmentations of Figure 3(c). These

examples show that, in addition to their high susceptibility to

outliers, HD and SRMS are unable to capture certain shape

discrepancies. Furthermore, we would also like to point out

(a)

(b) HD[mm]: 8.5 (c) SRMS[mm]: 2.4

Fig. 3: The HD and SRMS scores for the synthetic dataset.

(a) The graphs plot the HD and SRMS scores between the

reference image and the perturbed images. We notice that HD

and SRMS show higher variations throughout the synthetic

database compared to the scores in Figure 2. However, this

dispersion does not correspond to shape differences. (b) Two

perturbed segmentations whose HD distances to the reference

disc are very similar, both 8.5 mm. (c) Two other perturbed

segmentations whose SRMS scores are very similar, both

2.4 mm. HD and SRMS scores are unable to acknowledge

the shape differences.

that just as we constructed a dataset which has identical

DSC scores with respect to the reference shape, one can also

construct a dataset that would have identical HD or SRMS

scores with respect to the reference.

These simple tests demonstrate that DSC, SMSD, SMRS,

OS, and VS are generally not discriminative enough to allow

a distinction between misalignments due to pose and shape

differences. Even in the case where the shape differences are

substantial these scores will not be able to identify them.

Considering that many registration evaluation studies [16]–

[18] are based on these measures, and different algorithms are

ranked by considering a few percent differences in their scores,

the limitation of the segmentation-based scores is critical.
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It is crucial that the measures discussed in this section are

considered in combination with others. Examples are overlap

distance [22] or PCA [14]. However, these latter measures are

either also not discriminative or require training data for which

statistics of the residual transformation are not trivial to obtain.

III. SPECTRAL SHAPE DISSIMILARITY

In this section, we explore the use of the spectrum of

Laplace operators to define a shape dissimilarity score nor-

malized Weighted Spectral Distance – nWSD. We show that

nWSD captures and quantifies shape differences and offers a

solution to the limitations of existing scores.

We begin this section by first briefly providing the necessary

background on Laplace operators, their spectra and their

role in shape analysis, Section III-A. Then we present in

Section III-B the nWSD score and its properties that make

it useful for measuring shape differences. In Section III-C we

experimentally analyse nWSD and demonstrate its advantages

for the problem segmentation-based evaluations. We further

show that jointly using nWSD with DSC yields more discrimi-

native power than either of the scores alone. Finally, we briefly

discuss implementation details of nWSD and the choices of

its parameters in Section III-D.

A. Spectrum of Laplace Operator

Laplace operators and their spectra have been studied in

mathematics and theoretical physics for a long time [23].

Their introduction in computational shape analysis is however,

rather recent [24]. In this first part, we give a brief overview

of Laplace operators to equip the reader with the necessary

background. We specifically focus on their role in shape

analysis. For a more thorough discussion of these topics we

refer the reader to [23], [25], [26] and [24].

We denote an object (an anatomical structure) as a closed

bounded domain Ω ⊂ R
d with piecewise smooth boundaries

in the d-dimensional Euclidean space. With respect to images

or volumes, Ω corresponds to the region outlined by the seg-

mentation (or the label map). Now let FΩ , {f |f : Ω → R}
be the space of real-valued functions on Ω and DΩ the space of

twice differentiable functions in FΩ, then the Laplace operator

∆Ω : DΩ → FΩ for f ∈ DΩ with respect to Ω is defined as

∆Ωf ,

d
∑

i=1

∂2

∂x2
i

f,

where x , {x1, . . . xd} represent the spatial coordinates

of R
d. The importance of the Laplace operator for shape

analysis arises from the fact that the eigenvalues and the

eigenfunctions of this operator contain information on the

intrinsic geometry of the object [23], [27], [28]. An intuitive

analogy (in 2D) is to consider a drum membrane that has the

same shape as the object. Then, the eigenvalues of the Laplace

operator defined on the object correspond to the fundamental

frequencies of vibration of the membrane during percussion.

These frequencies depend on the shape of the drum and

as such the eigenvalues depend on the shape of the object.

Mathematically, the eigenvalues and the eigenfunctions of ∆Ω

are the solutions of the Helmholtz equation with Dirichlet type

boundary conditions1, [23],

∆Ωf + λf = 0, ∀x ∈ Ω and f(x) = 0, ∀x ∈ ∂Ω,

where ∂Ω denotes the boundary of the object and λ ∈ R

is a scalar. The eigenvalue-eigenfunction pairs {(λn, fn)}∞n=1

that satisfy this equation form an infinite set. Furthermore,

the ordered set of eigenvalues is a positive diverging sequence

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . . This infinite sequence is

called the Dirichlet spectrum of ∆Ω, which we refer simply as

the “spectrum”. In addition, each component of the spectrum

is called a “mode”, e.g. λn is the nth mode of the spectrum.

As we mentioned above, the spectrum contains information

on the intrinsic geometry of objects. Mathematically, this is

given by the heat-trace, which in R
d is

Z(t) ,

∞
∑

n=1

e−λnt =

∞
∑

s=0

as/2t
−d/2+s/2, t > 0, (1)

where t is formally related to a time variable in a heat diffusion

system [29]. The coefficients of the polynomial expansion,

as/2, are the components carrying the geometric information.

These coefficients are given as sums of volume and boundary

integrals of some local invariants of the shape, [26], [27], [30],

[31]. For instance, as given in [30], the first three coefficients

are:

a0 =
1

(4π)d/2
VΩ,

a1/2 = −
1

4(4π)d/2−1/2
SΩ,

a1 = −
1

6(4π)d/2

∫

∂Ω

κd∂Ω,

where VΩ is the volume, SΩ is the surface area (circumference

in 2D) and κ is the mean (geodesic) curvature on the boundary

of Ω. The functional relationship between the eigenvalue

sequence and the coefficients as/2 as given by the Equation (1)

relates the spectrum to the intrinsic geometry. This “spectrum-

geometry” link makes the Laplace spectrum important for the

computational study of shapes.

In addition to the spectrum-geometry link, the spectrum

of the Laplace operator has two other properties that make

it useful for shape analysis, [23]: i) eigenvalues are invari-

ant to isometric transformations and ii) eigenvalues change

continuously with the deformations applied to the boundary

of the object. The first property shows that the eigenvalues

capture the fact that isometric transformations do not alter the

shape but only the location and the orientation of an object.

The second property, on the other hand, states that there is a

continuous link between the differences in eigenvalues and the

difference in shape. This continuous link is a key property that

makes the spectrum useful in quantifying shape differences.

Unfortunately, it has also been shown that there exist non-

congruent shapes that have exactly the same spectrum, called

isospectral shapes [32]. Therefore, theoretically the spectrum

does not uniquely identify shapes. However, as stated in [24],

1Here we are only interested in the Dirichlet type. Please refer to [23] for
other types.
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practically this does not cause a problem mostly because

the constructed isospectral shapes in 2D and 3D are rather

extreme examples with nonsmooth and nonconvex boundaries.

Furthermore, for dimensions less than four, it is not even

clear whether there exist continuous deformations that do not

modify the spectrum while changing the shape [33].

Although the spectrum-geometry link has been known for

a long time, this link has not been explored for computational

analysis of shapes until recently. Inspired by the properties of

the spectrum, Reuter et al. in [24] proposed a shape descriptor,

called shape-DNA, based on the eigenvalue sequence. For a

given shape Ω, it is defined as the vector composed of the first

(smallest) N modes of the spectrum of the associated Laplace

operator (i.e. the operator defined on Ω) : [λ1, λ2, . . . , λN ].
Using shape-DNA, authors in [34] and [35] analysed anatom-

ical structures and showed the potential of the spectrum as

a descriptive feature vector. They were able to capture the

shape differences between distinct objects and use shape-DNA

for the purposes of classification, recognition and statistical

analysis.

In the context of segmentation-based evaluation, the com-

mon measures discussed in Section II mainly use the spatial

information extracted from the segmentations. For instance,

DSC computes the spatial overlap between the corresponding

segmentations. These measures thus combine pose and shape

differences in one score. Now, the Laplace spectra present

other opportunities. As a representation, using exactly the

same input as the other measures, the spectrum extracts

information on the intrinsic geometry from the segmentation.

Therefore, a scoring function that can quantify the difference

between spectra of two objects can also be used as a measure

of shape dissimilarity. As a result, such a scoring function

alleviates the limitations of existing scores.

B. Normalized Weighted Spectral Distance - nWSD

In order to make use of the shape information contained in

the Laplace spectra, we need to define a score or a distance that

quantifies the difference between the spectra of two objects.

Defining such a shape-distance however, is a challenging task

due to the diverging nature of the eigenvalue sequence.

A first approach is presented in [24], where a distance

is defined as the Euclidean distance between shape-DNAs

of objects. Although this distance can be useful for certain

cases, it has some important drawbacks [36]. The Euclidean

distance between shape-DNAs: i) is extremely sensitive to

the descriptor size N while the choice of this parameter is

arbitrary, ii) cannot be defined over the entire spectrum, iii) is

dominated by the differences at higher modes of the spectrum

even though these modes are not necessarily more informative

about the intrinsic geometry and iv) cannot be normalized and

therefore, it is not trivial to use in conjunction with other scores

that have different ranges, such as DSC which is in the interval

[0, 1]. These problems limit the use of the Euclidean distance

in practice.

Here we present an alternative definition, which overcomes

the difficulties posed by the diverging nature of the spectrum.

In order to keep the presentation focused on the problem

of measuring discrepancies between segmentations we only

provide the definitions and briefly describe the properties. The

derivations and the detailed theoretical analysis of the follow-

ing definitions, in a more general framework, are presented in

[21].

To define our shape dissimilarity score, we first create a

theoretically sound spectral distance that can be normalized to

the [0, 1] interval. The weighted spectral distance (WSD) for

two closed bounded domains with piecewise smooth bound-

aries, Ωλ,Ωξ ⊂ R
d, whose spectra are given as the sequences

{λn}
∞
n=1 and {ξn}

∞
n=1 respectively, is defined as

ρ(Ωλ,Ωξ) ,

[

∞
∑

n=1

∣

∣

∣

∣

1

λn
−

1

ξn

∣

∣

∣

∣

p
]

1

p

, (2)

where p is a positive scalar such that p > d/2. Unlike the

Euclidean distance between shape-DNAs, WSD is defined

over the entire eigenvalue sequence and the difference at each

mode uses 1/λn and 1/ξn rather than λn and ξn. The basic

theoretical properties of WSD are:

(i) for p > d/2, WSD exists for any two closed bounded

domains with piecewise smooth boundaries, i.e. the

infinite sum in the definition is guaranteed to converge

to a finite value

(ii) WSD satisfies the triangular inequality making it a

pseudometric and

(iii) WSD has a multi-scale aspect with respect to p in the

sense that increasing p lowers the sensitivity of WSD

with respect to shape differences at finer scales, i.e. with

respect to geometric differences at local level such as

thin protrusions or small bumps.

Based on the first property of WSD, we can now define

the normalized score of shape dissimilarity, which we call

normalized weighted spectral distance (nWSD), as

ρ(Ωλ,Ωξ) ,
ρ(Ωλ,Ωξ)

W(Ωλ,Ωξ)
∈ [0, 1) (3)

where ρ(Ωλ,Ωξ) is mapped to the [0, 1) interval using the

shape-dependent normalization factor

W(Ωλ,Ωξ) ,

{

C + K ·

[

ζ

(

2p

d

)

− 1 −

(

1

2

)

2p

d

]}

1

p

.

ζ(·) represents the Riemann zeta function [37], and C and K
are the shape based coefficients given as

C ,
∑

i=1,2





d + 2

d · 4π2
·

(

BdV̂

i

)
2

d

−
1

µ
·

(

d

d + 4

)i−1





p

K ,

[

d + 2

d · 4π2
·
(

BdV̂
)

2

d

−
1

µ
·

d

d + 2.64

]p

,

V̂ , max
(

VΩλ
, VΩξ

)

and µ , max (λ1, ξ1) ,

where Bd is the volume of the unit ball in R
d. nWSD

inherits the properties of WSD except being a pseudometric.

Furthermore, being confined to [0, 1), nWSD also allows us

to i) easily use the shape dissimilarity in combination with

scores quantifying other types of differences between objects,
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such as DSC, and ii) compare dissimilarities of different pairs

of shapes which is of practical importance in the setting of

registration evaluation.

An important theoretical property of the nWSD score is that

it is defined over the entire eigenvalue sequence. In practice,

however, we can only compute a finite number of eigenvalues

and therefore, can only approximate nWSD. Considering this,

we also define the finite approximations of nWSD using the

smallest N eigenvalues as

ρN (Ωλ,Ωξ) ,
ρN (Ωλ,Ωξ)

W(Ωλ,Ωξ)
∈ [0, 1), (4)

which has diminishing asymptotic errors

limN→∞ |ρ(Ωλ,Ωξ) − ρN (Ωλ,Ωξ)| = 0. Furthermore,

ρN (·, ·) can accurately approximate nWSD only using a few

number of modes, which makes nWSD useful in practice.

The invariance properties of the eigenvalues is the other very

important property of nWSD. Since the eigenvalues do not

change with respect to isometric transformations, e.g. rotation

and translation, the ρ(·, ·) does not change with respect to

isometric transformations applied to the objects. As a result

of these invariance properties the nWSD score focuses solely

on the shape differences between objects becoming truly

complementary to other scores discussed in Section II.

The nWSD score allows us to use the shape information

encoded via the Laplace spectra for measuring shape discrep-

ancies between binary label maps.

C. Experimental Analysis of nWSD using Synthetic Images

We now explore nWSD experimentally and analyse its

properties from the viewpoint of segmentation-based evalu-

ation by reviewing a series of experiments based on synthetic

data. Specifically, we confirm in Section III-C1 the ability

of our measure to capture shape differences that are missed

by the scores studied in Section II. Furthermore, we perform

experiments that demonstrate nWSD’s invariance to isometric

transformations (Section III-C2) and its continuous relation-

ship with respect to deformations ( Section III-C3). These

findings serve as a motivation in III-C4 to combine nWSD

with DSC resulting in a rich quantification of differences

between two binary label maps. Consequently, in the scenario

of registration, this yields a more discriminative assessment of

registration quality than possible by either score alone.

1) Discriminating Shape Differences: We start our exper-

iments with the dataset of Section II. Following the same

procedure as before, we compute nWSD scores between the

reference, i.e. a disc of 15 mm radius, and each of the 250

perturbed segmentations, where the first one is a translation of

the reference by 3 mm (see also Figure 1). In Figure 4(a) we

plot these scores for each perturbed segmentation along with

some example images that lie at different bands of the nWSD

score. We make the following important observations:

- Considering the value ranges we see that the dispersion

of the nWSD score for this dataset is substantially larger

than for other scores used in Section II. This shows that

nWSD provides a much higher level of discrimination

for the segmentations considered in this dataset.

(a)

(b) (c) (d)

Fig. 4: nWSD scores for the synthetic dataset described in

Section II. (a) The graph shows the nWSD scores between

the reference segmentation and each of the 250 perturbed

segmentations, where x-axis is the image index. The 16 images

on the right are some examples of perturbed segmentations

corresponding to different bands of nWSD score (same row

= similar scores). Note that segmentations with similar scores

are visually more similar than ones with very different scores.

(b) The two perturbed segmentations with the second and the

third lowest nWSD scores with respect to the reference disc.

Although the shape differences are subtle they are captured by

nWSD. (c) The same images as in Figure 3(b). The difference

between their nWSD scores is relatively large considering the

maximum and minimum values of nWSD seen in plot (a).

nWSD captures the difference between these shapes, while

HD does not. (d) The same images as in Figure 3(c), where

we see a similar behaviour: the shape difference that is not

differentiated by SRMS is captured by nWSD.

- The first image in the dataset, which is simply a transla-

tion of the reference segmentation, received the lowest

nWSD score, nWSD = 7.5 × 10−14.

- Observing the example segmentations and the corre-

sponding bands of the nWSD score shown in Figure

4(a), we notice that the ordering of shapes with respect

to nWSD is visually meaningful. Segmentations that

receive similar nWSD scores with respect to the refer-

ence have indeed visually comparable discrepancies. It

is remarkable that all these segmentations yield identical

DSC scores with respect to the reference, as shown in

Fig. 2.

- The images with the second and third lowest nWSD

score are shown in Figure 4(b), from left to right re-

spectively. We note that these segmentations have fairly

subtle shape differences compared to the reference. Yet

nWSD is able to capture these differences.

- Figure 4(c) and (d) show the pairs of segmentations
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(a)

(b)

Fig. 5: Invariance of nWSD to isometric transformations. (a) A

synthetic dataset of 250 perturbed images obtained by rotating

a reference segmentation with angles varying in [0, 2π]. The

left most image shows the reference while the remaining are

examples from the perturbed ones. (b) The graph on the left

plots the DSC scores between the reference and the perturbed

images with respect to the angle of rotation. The graph on the

right similarly plots the nWSD score.

that were earlier used in Figures 3(b) and (c), where

we have illustrated the limitations of HD and SRMS.

Below each segmentation we also give their nWSD

scores with respect to the reference. We see that nWSD

discriminates between these segmentations while not

having the drawbacks of HD and SRMS.

In summary, while other segmentation-based scores fail to

capture shape differences in this dataset, nWSD captures the

differences and provides a visually meaningful discrimination

between different segmentations. We also notice that nWSD

does not capture all the differences between two segmenta-

tions, i.e. misalignments due to incorrect pose. This is due

to its invariance to isometric transformations, which we will

explore in the next section. Before proceeding to this analysis,

we would like to point out that this invariance is precisely why

nWSD is able to provide additional information to the other

scores and enriches segmentation-based evaluation.

2) The Source of Extra Information: Invariance to Isometric

Transformations: As we have mentioned in Section II, scoring

functions, such as DSC, measure the differences between two

label maps by blending discrepancies arising from misalign-

ments due to pose and actual shape mismatches. Due to this,

they are unable to distinguish between simple translations and

substantial shape differences. nWSD only focuses on the shape

differences providing that extra information. It achieves this as

a consequence of its invariance to isometric transformations. In

this section, we demonstrate this invariance of nWSD through

a simple example.

For simplicity, we only focus on rotations however similar

results can be produced with translations. We constructed a

synthetic dataset which consists of a reference segmentation,

shown in Figure 5(a) left most image, and rotations of this

segmentation with angles varying in [0, 2π]. Examples of the

rotated reference segmentation are shown in Figure 5(a). We

then compute DSC and nWSD scores between the reference

and the rotated segmentations. Figure 5(b) shows these scores

with respect to the angle of rotation. We observe that, as

expected, DSC changes with respect to the angle of rotation

successfully capturing the misalignment due to pose. The

nWSD score varies slightly within the small interval [0, 0.003],
meaning that the shape similarities between the reference and

the rotated segmentations are almost perfect. In theory, the

score should exactly be 0 for all the rotated segmentations. The

small deviation from 0 is due to image discretization artifacts,

which slightly change the shape.

This experiment demonstrates that the score values obtained

via nWSD purely quantify the shape differences, in other

words nonlinear discrepancies between two segmentations.

As such, nWSD can point out the shape differences without

being affected by misalignments due to incorrect pose. This

provides a richer understanding of the discrepancies between

segmentations and a better interpretation of other scores.

3) Continuity with Respect to Deformations: Another im-

portant property of the spectrum mentioned in Section III

is that the eigenvalues change continuously with respect to

deformations applied to an object’s boundary [23]. Here, we

use the notion of continuity in the mathematical sense [37].

The continuous relation between the deformations and the

spectrum is also inherited by the nWSD score, i.e. the score de-

pends continuously on the deformations. We demonstrate this

with a simple example. We start from a reference segmentation

– a disc of radius 15 mm – and protrude the boundary of this

reference in a continuous manner to create 160 perturbed seg-

mentations. Some examples of these perturbed segmentations

are shown in Figure 6. We then computed the nWSD score

between the reference and each perturbed segmentation. The

graph shown in Figure 6 plots the nWSD scores versus the

maximum extent of the protrusion.

Figure 6 shows that nWSD depends continuously on the

extent of the protrusion. This continuous relation is especially

interesting in segmentation-based scoring for the problem of

assessing registration quality because it relates the amount of

deformation to the magnitude of the spectral distance.

4) 2D Accuracy Measure: Combining nWSD with DSC

Score: The properties that we demonstrated above make

nWSD a useful and complementary segmentation-based eval-

uation score. Motivated by its properties, in this section we

propose a two dimensional scoring system where one dimen-

sion is DSC, quantifying the overall differences between the

segmentations through spatial overlap, and the other dimension

is nWSD, focusing on the shape discrepancies. We note that

instead of DSC we could have also used one of the other

scores studied in Section II.

We follow the same procedure as in the previous sections

and make use of a synthetic dataset generated from a reference

segmentation. The reference segmentation for this experiment

is chosen as the slightly more complicated structure shown in

Figure 7(a) left most image. Starting from this reference, we

have generated 500 perturbed segmentations using transforma-

tions with varying degrees of nonlinearity and magnitude. In
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Fig. 6: Change of nWSD with respect to continuously growing

deformation. The synthetic dataset in this experiment consists

of a reference disc and 160 perturbed images. The perturbed

images are constructed by protruding the boundary of the

reference in a continuous manner and taking snapshots at

different points. The graph plots the nWSD score between the

reference and the perturbed images. Some of the perturbed

images are shown on the graph pointing to their respective

nWSD score.

addition, for the last 100 perturbed segmentations, we have

only used isometric transformations, i.e. rotations and trans-

lations. Some examples of the perturbed segmentations are

shown in Figure 7(a). We then computed the DSC and nWSD

scores between the reference and each perturbed segmentation.

In Figure 7(b) we plot the nWSD scores. As expected there

is a large dispersion among the first 400 images. Furthermore,

the last 100 images receive very low scores.

In Figure 7(c) we combine DSC with nWSD in a two dimen-

sional evaluation score. Each point in this graph corresponds

to a different perturbed segmentation, the dots representing

the ones constructed using nonlinear transformations and the

crosses representing the ones constructed using isometric

transformations. We observe that there are many segmentations

that have very similar DSC scores but different nWSD scores.

First of all, this 2D dispersion allow us to further discrim-

inate between these segmentations, which would not have

been possible by using only DSC. Furthermore, we can now

interpret the sources of the discrepancies as measured by DSC:

whether the discrepancy is due to pose misalignments or shape

mismatches. Lastly, using this system we can better compare

segmentation pairs that yield slightly different DSC values

and interpret the difference correctly. By looking at nWSD

values for these segmentations, we can conclude whether

higher DSC score corresponds to a truly better alignment of

the segmentations or if the increase in DSC is coming at

the expense of altering the shape. We will elaborate on this

idea further in Section IV in the context of an intersubject

registration scenario.

In summary, we see that the 2D score (DSC,nWSD) pro-

vides richer information on the discrepancies between seg-

mentations. A “good” registration in this plot would lie on

the bottom-right corner close to the point (DSC, nWSD)=
(1, 0). At this point we can ensure that the structures are

not only overlaid well but also that their shapes are similar.

(a)

(b) (c)

Fig. 7: Joint use of nWSD with DSC. (a) Examples from

the synthetic dataset constructed for this experiment. The left

most image is the reference image from which 500 other

segmentations are constructed by perturbing the reference

via deformations of varying magnitude and amount of non-

linearity. The last 100 perturbed images are the result of

applying isometric transformations to the reference. (b) The

graph shows the nWSD score between the reference and the

perturbed images. (c) The graph shows DSC vs. nWSD scores

for the perturbed images with respect to the reference. Each

point in the graph represents a perturbed image. The crosses

correspond to the images which are isometric transformations

and the dots correspond to the images which are nonlinear

deformations of the reference. This 2D accuracy system pro-

vides richer information regarding discrepancies between the

perturbed and the reference segmentations. For the same DSC

score now we can identify the source of the discrepancy, i.e.

whether pose or shape. A good registration in this plot lies

on the bottom-right corner where we can not only ensure that

the corresponding structures in the aligned images are well

overlaid, but also guarantee that their shapes are similar.

Furthermore, comparing segmentations to the template we can

conclude that the segmentations with higher DSC score is the

result of truly a better alignment if it also has similar or lower

nWSD score. If it has a higher nWSD score then this points

out that the increase in DSC came at the expense of increasing

shape differences.

D. Implementation Details

There are two different aspects of the numerical com-

putation of the nWSD score. The first one concerns the

computation of the Laplace spectra for each segmentation.

Most existing numerical methods [24], [38] for computing

eigenvalues of the Laplace operator in a volume or on a surface

can be used to compute nWSD. For the experiments provided

in this article, we choose to use the basic finite difference

scheme using the natural image grid (see for instance Chapter

2 of [38] for further details). Our main argument in choosing

this method is to avoid additional steps, such as volumetric
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(a) (b)

(c)

Fig. 8: Evolution of nWSD with respect to the parameters

N and p. The line types shown below the images of (a) are

used for plotting the corresponding results in (b) - (c). The

nWSD scores are computed between each of segmentations

shown in (a) and the reference segmentation of Section II

shown in Figure 1(a). We see that the convergence for all the

segmentations is rapid with respect to the number of modes

N . Furthermore, the choice of p do not alter the ordering for

these segmentations.

mesh construction, but use exactly the same inputs as other

segmentation-based scores. For a segmentation Ω represented

as binary image in a rectangular grid we compute the dis-

crete Laplacian operator using the central finite-difference

approximation of the ∆Ω operator. This step yields a sparse

matrix which we then solve using Arnoldi’s method [39] as

implemented in MATLAB R©.

The second numerical aspect in computing nWSD is the

choice of the parameters p, the norm type, and N , the number

of modes. In order to provide the reader an intuition we plot

in Figures 8 the change of nWSD (and ρ(·, ·)) with respect

to these parameters. We choose four segmentations from the

synthetic dataset used in Section II and compute their nWSD

scores with respect to the reference segmentation (the disc of

15 mm radius shown in Figure 1(a)) using different p and

N . In Figure 8(a) we show these images where the small

strips below the images displays the line style each image

corresponds to in the accompanying plots. In Figure 8(b) we

plot the evolution of nWSD scores with respect to N (setting

p = 1.5). We notice that the nWSD scores converge rapidly

as N increases and do not change after N = 50. Although

not shown here, the same convergence holds for any pair of

segmentation and in 3D as well. Therefore, the choice of N
is not a very crucial parameter for the computation of nWSD
as long as it is a fairly large number, such as N > 50. In all

the experiments shown in this article, whether 2D or 3D, we

have used N = 200.

In Figure 8(c) we plot the evolution of ρ(·, ·) (see Eqn. 2)

and nWSD with respect to different p, for the same four

segmentations (setting N =200). As we can see in the plot to

the left, ρ(·, ·) increases with decreasing p. This is as expected

since, as mentioned in Section III-B, as p decreases ρ(·, ·)
becomes sensitive to finer scale shape discrepancies showing

higher distances. On the other hand, in the formulation of

nWSD given in Eqn. 3 we notice that p also affects the

normalization factor W. Integrating this effect as well, we see

in the plot to the right that nWSD increases with increasing

p and then converges. The important point to notice in these

plots is that the order of the curves do not change with p.

the exact value of p is application dependent and should be

chosen keeping in mind two points. First, low values of p
will emphasize the very fine scale differences, which might be

due to noise. Therefore, for having a robust score one should

not choose p too low. Second, too high values of p might

loose details which can be important to distinguish between

segmentations. In our experiments we empirically found that

the values p = 1.5 in 2D and p = 2.0 in 3D provide good

discrimination while being robust to noise.

In summary, we described a new score that exploits the

properties and advantages of spectral representations to mea-

sure discrepancies between segmentations. We showed on

synthetic images that nWSD is a sound and useful scoring

function. It allows us to further distinguish pairs of segmen-

tations with similar DSC score and better interpret the score

differences as it ignores pose changes and only measures shape

differences.

IV. INTER-SUBJECT MRI BRAIN REGISTRATION

We now perform a series of real data nonlinear registration

experiments to underline the benefits of nWSD in practice.

For these experiments we use the publicly available dataset

IBSR (Internet Brain Segmentation Repository 2). This dataset

includes MR brain scans (T1) of 18 healthy subjects along

with manual delineations of 43 structures – subcortical and

cortical – for each scan. In [17] the IBSR dataset has been used

for a comparative study of different registration algorithms.

The comparisons were based on various segmentation-based

evaluation scores using the manual delineations. Regarding

the behaviour of different scores, the authors state in their

results: “Target, union and mean overlap measures for volumes

and surfaces (and the inverse of their false positive and

false negative values) all produced results that are almost

identical if corrected for baseline discrepancies.” In other

words, different measures did not provide extra information for

discriminating different algorithms. Here, we demonstrate that

nWSD indeed provides additional information to commonly

used segmentation-based scores on the same dataset. We show

that when used jointly with DSC, nWSD yields a much richer

discrimination between different registrations.

In our experiments we use a single registration algorithm

and compare the outcome of different registrations, i.e. dif-

ferent source and target images. For this purpose we employ

the diffeomorphic demons algorithm [40] implemented within

the ITK library (http://www.itk.org). We cross registered each

2http://www.cma.mhg.harvard.edu/ibsr



10

image in the IBSR dataset to the remaining 17, adding up to

306 non-rigid registrations in total. Each registration is run

for 50 iterations and 3 resolution levels. The images have

been skull-stripped prior to registration, and the non-rigid

registration is initialized with an affine alignment.

After registering the scans, for each pair of source-target

images we align the manual segmentations of the correspond-

ing structures using the transformations computed by the

registration algorithm. For all cases, we compute the DSC,

SMSD, and nWSD scores between the aligned segmentations

of four selected structures: right ventricle, caudate, thalamus,

and putamen. In Figure 9, we plot these scores for each

registration in the 2D coordinate systems (DSC,SMSD) and

(DSC,nWSD). In each graph every point corresponds to a dif-

ferent registration problem, i.e. different source-target image

pair.

The plots demonstrate the large variation of each score

across the dataset and the relationships between different

scores. Observing these plots we note the following:

- Figures 9(a)-(c) show that DSC and SMSD are highly

correlated for the corresponding structures, i.e. Pearson’s

correlation coefficients are r = −0.95,−0.98,−0.98
respectively. This means that these two scores do not

provide different information regarding the quality of

the registration with respect to these structures, which

is inline with the results given in [17].

- The combination of DSC and nWSD for the

same structures shows much less correlation (r =
−0.59,−0.35,−0.48). There is a large number of regis-

trations that have very similar DSC and different nWSD

scores, and vice-versa. This shows for this experiment

that nWSD provides additional information to DSC and

the proposed 2D scoring system has a higher disrimina-

tive power than each score alone.

- The plots in (d) show that the variations of all three

scores across the dataset are larger for ventricles than for

the other structures. We see that the correlation between

DSC and SMSD is still high in this case but slightly

lower than the previous cases, i.e. r=−0.85. Correlation

between DSC and nWSD is also higher, r=−0.82. This

high correlation is largely due to registrations yielding

bad values in all scores. In fact, if we only consider

registrations that achieve DSC score higher than 0.7 then

the correlation between DSC and nWSD drops yielding

r=−0.33. A similar behaviour to a lesser extent is also

apparent in (a).

The proposed (DSC,nWSD) scoring system allows us to

interpret the quality of the nonlinear registration in a much

richer way than by just reporting the resulting DSC scores. For

instance, for two registration problems that achieve the same

DSC score we can now recognise the sources of imperfections

between the aligned segmentations. A low nWSD score would

hint us that the imperfection is due to pose misalignment while

a high score tells us that there is a shape mismatch. Such

information can help to understand better the behaviour of

registration methods and the influence of parameters such as

the amount of regularization.

One of the most important uses of the (DSC,nWSD) evalu-

ation system is for comparing different registrations yielding

slightly different DSC scores (or any other score mentioned

in Section II). In the literature, it is common to assume that a

slightly better DSC score is an indicator of a better registration

(or segmentation). However, the shape variations that one

obtains for exactly the same DSC score, as shown in Section II,

raise some concerns on the validity of this assumption. By con-

sidering DSC only, one cannot understand whether the increase

in the score is a consequence of a truly better registration or

just a result of a better pose alignment while substantial shape

mismatches might be present. Providing a quantification of the

shape discrepancy through nWSD, removes this ambiguity.

Below we demonstrate this with some visual examples. We

examine four pairs of registrations, one pair for each structure,

which yield slightly different DSC and SMSD scores.

From the graphs shown in Figure 9 we select two cases

for each structure independently. These selected registrations

are indicated by red and green points. For each of these

registrations, we provide a visual interpretation of the nWSD

score. We extract the segmentations of the aligned structures

of interest and correct for remaining pose misalignments using

the iterative closest point (ICP) algorithm. We determine

the residual surface distances and colour-encode these on

the surface meshes shown in Figure 10. Blue corresponds

to lower residuals. For each structure, Registration #1 (#2)

corresponds to the green (red) point in the respective graph

in Figure 9. For the ease of demonstration, we only show

either the target or the warped source segmentation, whichever

shows higher residuals. The meshes are rendered from two

different viewpoints. In the accompanying table we provide

the DSC, SMSD, and nWSD scores for each structure and

each registration.

Observing Figure 10 we notice that although the DSC

scores for Registration #2 for each structure are higher, these

registrations also show much higher discrepancy between the

aligned surfaces after correcting for the pose misalignments

which is reflected in the nWSD scores. It is debatable if

these registrations are really better, and it would have been

impossible to notice these differences by only considering

DSC. nWSD detects these differences and assigns high scores

to Registration #2. If the results shown in Registration #2

were truly better they would have also yielded lower nWSD

scores. In fact, by equipping the segmentation-based evaluation

system with nWSD, we can now define the following rule: if

two registrations yield similar nWSD scores, and one of them

has higher DSC, that one truly better aligns the delineations

of the corresponding anatomical structures and therefore, has

a better quality.

In summary, the experiments indicate that only relying on

commonly used scoring functions, such as DSC, is not suf-

ficient for discriminating between registrations. Registrations

of different quality can be assigned similar scores. Confirming

the conclusions of [17], we also see that alternative scores

such as SMSD actually do not provide additional information

for most of the structures. Furthermore, comparing different

registration results (different methods or problems) based

on DSC, or any other similar score, does not necessarily
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(a) right caduate nucleus (b) right thalamus

(c) right putamen (d) right ventricle

Fig. 9: The DSC vs. SMSD and DSC vs nWSD scoring plots for the 306 registrations. In the graphs, each point corresponds

to a different registration problem, i.e. different source-target image pair. The scores are computed for each registration by

aligning the manual segmentations of the target and source image using the computed transformations. We compute the scores

based on four subcortical structures: (a) caudate, (b) thalamus, (c) putamen and (d) ventricle. We note that in (a)-(c) DSC

and SMSD are very correlated while nWSD and DSC are much less correlated. This shows that the information provided by

nWSD is indeed not captured by DSC. The correlation scores (r-values) are given in the titles of each plot. In each plot we

also highlight two points in red and in green, which we elaborate further in Fig. 10 and in the text.

provide a valid conclusion. nWSD, on the other hand, provides

additional information that is not captured by the commonly

used scores. Our experiments illustrate that jointly using DSC

and nWSD achieves a much richer characterization and a

higher discriminative power than either one of them alone. It

provides the ability to interpret the imperfections in alignments

as well as better means for comparisons.

V. CONCLUSION

This paper explored a new score, called normalised

Weighted Spectral Distance (nWSD), for segmentation-based

evaluation. We showed that commonly used measures, such

as Dice’s coefficient (DSC), are not discriminative enough in

measuring discrepancies between two binary label maps. They

cannot make the distinction between simple pose alignments

and substantial shape mismatches. As a result they yield

similar scores to a wide range of segmentation pairs. In

order to overcome these shortcomings, we explored the use

of a complementary measure, namely nWSD, which measures

shape discrepancies between two binary label maps based

on spectra of Laplace operator. Through different synthetic

experiments we demonstrated that nWSD is able to quantify

the shape differences other scores are indifferent to. Further-

more, theoretical and practical properties of nWSD make it

a practical measure complementary to existing scores. We

further showed that nWSD in combination with standard

metrics, such as DSC, provides higher discrimination power

in segmentation-based evaluation. nWSD has the potential to

be an important component in segmentation-based evaluation

studies that can be applied to future studies as well as to

retrospective studies for re-evaluation. We will support those

studies wanting to take advantage of nWSD by making our

MATLAB R© implementation available upon request.
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