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Discriminative Semantic Subspace Analysis for

Relevance Feedback
Lining Zhang, Member, IEEE, Hubert P. H. Shum, Member, IEEE, and Ling Shao, Senior Member, IEEE

Abstract—Content-based image retrieval (CBIR) has attracted
much attention during the past decades for its potential practical
applications to image database management. A variety of rele-
vance feedback (RF) schemes have been designed to bridge the
gap between low-level visual features and high-level semantic
concepts for an image retrieval task. In the process of RF, it
would be impractical or too expensive to provide explicit class
label information for each image. Instead, similar or dissimilar
pairwise constraints between two images can be acquired more
easily. However, most of the conventional RF approaches can only
deal with training images with explicit class label information. In
this paper, we propose a novel discriminative semantic subspace
analysis (DSSA) method, which can directly learn a semantic
subspace from similar and dissimilar pairwise constraints without
using any explicit class label information. In particular, DSSA
can effectively integrate the local geometry of labeled similar
images, the discriminative information between labeled similar
and dissimilar images, and the local geometry of labeled and
unlabeled images together to learn a reliable subspace. Com-
pared with the popular distance metric analysis approaches,
our method can also learn a distance metric but perform more
effectively when dealing with high-dimensional images. Extensive
experiments on both synthetic datasets and a real-world image
database demonstrate the effectiveness of the proposed scheme
in improving the performance of CBIR.

Index Terms—content-based image retrieval, relevance feed-
back, pairwise constraints, distance metric analysis

I. INTRODUCTION

C
ONTENT-based image retrieval (CBIR) has attracted

much attention during the past decades [1], [2], [3], [4],

[5]. Conventional CBIR systems usually adopt the Euclidean

distance metric in a high-dimensional low-level visual feature

space to measure the similarity between the query image and

the images in the database [1], [2], [3], [4], [6]. However,

the Euclidean distance metric in a high-dimensional space is

usually not very effective due to the gap between the low-level

visual features and the high-level semantic concepts.

Relevance feedback (RF) is one of the most powerful tools

to narrow down this semantic gap and thus to improve the

performance of a CBIR system [7], [8]. In general, RF focuses
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on the interactions between a user and a search engine by

requiring the user to label semantically similar and dissimilar

images with the query image [7], [8], which are positive

and negative feedback samples, respectively. During the past

decades, various RF approaches have been designed based on

different assumptions for the positive and negative feedback

samples [8]. One-class support vector machine (SVM) esti-

mates the density of positive feedback samples but ignores the

negative feedback samples [9]. Two-class SVM can identify

both positive and negative feedback samples but treats these

two different groups equally [10]. In [3], Tao et al. included

positive feedback samples in a single set and split negative

feedback samples into a small number of subsets, and a series

of kernel marginal convex machines were developed between

one positive group and several negative subgroups. The results

indicate that clustering the negative feedback samples into

several subgroups can indeed improve the overall retrieval

performance.

Beyond conventional RF approaches, several new schemes

have emerged to attack this semantic gap in CBIR [11],

[12], [13], [14], [15], [16]. For instance, image annotation

techniques intend to directly acquire the semantic concepts

from the low-level visual features of an image [11]. However,

major challenges still remain in image annotation. Recently,

collaborative image retrieval (CIR) was introduced to alle-

viate the labeling efforts of conventional RF approaches by

leveraging various auxiliary information [12], [13], [14], [15],

[16]. We can roughly classify the studies on CIR into two

categories. The first group of research intends to improve

the performance of conventional RF by resorting to the user

historical feedback log data or the large-scale web data [13],

[12], [15]. In [12], Hoi et al. proposed a log-based RF method,

which can integrate the user historical feedback log data into

the conventional RF and learn the correlation between the

low-level visual features and the high-level semantic concepts.

In [14], Liu et al. proposed a novel RF method for personal

image retrieval via a cross-domain learning scheme, and it can

effectively alleviate the labeling efforts of conventional RF by

leveraging a large number of loosely labeled web images. The

second group of research attempts to select a set of the most

informative samples from the image database [16], [17], [18],

[19], [20], [21], which could be labeled by the user in RF

and used as the training data to define an effective similarity

metric for image retrieval.

However, for a conventional CBIR task, the need for online

RF stems from the fact that different semantic concepts

may occur in different subspaces and the selection of such

subspaces cannot be done offline [22], and it is the goal of
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Fig. 1. Two synthetic images and the associated low-level visual features in
a high-dimensional space for concept illustration. It is not very effective to
measure the similarity between two images in the original high-dimensional
visual feature space due to the semantic gap. Two images can only be similar
in a low-dimensional semantic subspace.

RF schemes to figure out which one [22]. However, it will

be a burden for conventional RF schemes to tune the internal

parameters to adapt to the changes of such semantic subspaces.

Such difficulties have severally degraded the effectiveness of

conventional RF for an image retrieval task.

Subspace analysis approaches play an important role in

various tasks in computer vision, such as, face recognition

[23], [24], gait recognition [25], [26], [27], image classification

[28] and web image annotation [11], [29]. Let us first use a

toy example to show the importance of subspace analysis in

measuring the similarity between a pair of images, which is

usually the key issue in image retrieval. For a conventional

CBIR task, the images are usually represented by a set of

low-level visual features with various semantic concepts (e.g.,

color, shape and texture) in a high-dimensional visual feature

space. With an assumption that different semantic concepts

occupy different subspaces and each image can reside many

different subspaces, Fig.1 shows two toy images, each of

which is associated with a number of semantic concepts,

i.e., color, shape, texture and size, in a high-dimensional

visual feature space. However, in RF, it is not appropriate to

directly measure the similarity between two images based on

the Euclidean distance metric in a high-dimensional multiple

semantic concept space (e.g., color, texture and shape) due

to the semantic gap. This is mainly because there are many

different semantic concept subspaces in the original high-

dimensional visual feature space and the two images can

only be similar in one low-dimensional semantic concept

subspace, e.g., color, but dissimilar with each other in the other

semantic concept subspaces, e.g., texture and shape. Therefore,

it is more reasonable to measure the similarity between two

images in the low-dimensional semantic subspace than in the

original multiple high-dimensional semantic concept space. By

selecting a 1-D semantic subspace, measuring the similarity

between a pair of images will be easy and obvious.

Subspace analysis approaches project the original high-

dimensional feature space to a low-dimensional subspace,

where specific statistical properties can be well preserved. For

example, Fisher’s Linear Discriminant Analysis (LDA) [30],

the most traditional supervised subspace analysis method, min-

imizes the trace ratio between the within-class scatter and the

between-class scatter so that Gaussian distributed samples can

be well separated in the selected subspace; locality preserving

projections (LPP) preserve the local geometry of samples by

processing an undirected weighted graph that represents the

neighborhood relations of pairwise samples [31]. The afore-

mentioned subspace analysis methods function impressively

on both artificial datasets and practical applications, such as

face recognition. However, most of these traditional subspace

analysis approaches (e.g., LDA [30], [32]) normally need to

acquire explicit class label information. In RF, explicit class

label information for each image might be too expensive to

obtain [8]. Compared with explicit class label information

of each image, the similar or dissimilar pairwise constraints

between two images can be acquired more easily when the

user-labeled information is available. Therefore, it is more

attractive to learn a semantic concept subspace directly from

the similar and dissimilar pairwise constraints without using

the explicit image class label information. Recently, distance

metric analysis with similar and dissimilar pairwise constraints

have been actively studied in the machine learning community

[33], [34], [35], [36], [37], [38]. Despite the active research

efforts during the past few years, most of these approaches

in this area have involved a high-computational burden when

dealing with high-dimensional images and also cannot give

explicit image representations in the low-dimensional semantic

concept subspace, which are thus not appropriate and will

significantly limit their potential applications to the CBIR

research [33], [34], [35], [36].

In this paper, we propose a novel discriminative semantic

subspace analysis (DSSA) method to bridge the gap between

low-level visual features and high-level semantic concepts

by exploiting the training images with pairwise constraints

in RF. The proposed DSSA method can effectively learn a

reliable subspace both from labeled and unlabeled images

with similar and dissimilar pairwise constraints without using

any explicit class label information. Specifically, DSSA can

effectively integrate the local geometry of labeled similar

images, the discriminative information between labeled similar

and dissimilar images, and the local geometry of unlabeled

images together to learn a reliable subspace. Compared with

the popular distance metric analysis methods with pairwise

constraints, our method can also learn a distance metric but

perform more effectively when dealing with high-dimensional

images, which is more appropriate for a CBIR task.

The rest of this paper is organized as follows. Section II

reviews the related work. DSSA with similar and dissimilar

pairwise constraints are detailed in Section III. A CBIR system

based on the proposed method is introduced in Section IV.

In Section V, we first give the experimental results on both

synthetic datasets and a real-world image database, and then

show some analysis to the important parameters in DSSA.

Section VI concludes this paper.

II. RELATED WORK

To describe our method clearly, let us first review two areas

of research that are closely related to our work in this paper: 1)

RF and 2) distance metric analysis with pairwise constraints.

A. Review of RF

During the past few years, various RF methods have been

developed based on different assumptions for the positive and

negative feedback samples. One-class support vector machine

(SVM) estimates the density of positive feedback samples but
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ignores the negative feedback samples [9]. Two-class SVM

makes use of both the positive and negative feedback samples

but treat the two groups equally [10]. Biased discriminant

analysis techniques define a (1+x) class problem and find a

subspace to separate one positive class from the unknown

number of negative classes [39], [40], [41], [22].

CIR attempts to alleviate the labeling efforts of conventional

RF schemes by resorting to the user historical feedback log

data or the large-scale web data. In [12], Hoi et al. proposed

a log-based RF scheme with the SVM by engaging the user

feedback log data in a regular RF task. In [14], a textual query-

based personal image retrieval system was proposed, which

can significantly alleviate the labeling efforts of conventional

RF by leveraging millions of loosely labeled web images via

a cross-domain learning scheme. Most of the conventional RF

approaches can only deal with training images with explicit

class label information. However, in RF, explicit class label

information for each image might be too expensive to obtain.

B. Review of distance metric analysis with pairwise con-

straints

Suppose we have a database X consisting of n images

xi(1 ≤ i ≤ n) in a high-dimensional visual feature space

Rh, i.e., X = [x1, . . . , xn] ∈ Rh×n. Given prior information

that certain pairs of images are similar: S : (xi, xj) ∈ S
if xi and xj are judged as a similar pair, and dissimilar:

D : (xi, xj) ∈ D if xi and xj are judged as a dissimilar

pair. Distance metric analysis methods aim to learn a distance

metric dM (xi, xj) between images xi and xj , such that

dissimilar images are far from each other and similar images

are close to each other. The distance metric between two

images xi and xj is defined as:

dM (xi, xj) = ||xi − xj ||M =

√

(xi − xj)
T
M(xi − xj), (1)

where M ∈ Rh×h is a positive semi-definite matrix. Setting

M = I means using the Euclidean distance metric. More

generally, M represents a family of Mahalanobis distance

metrics. By adopting the eigenvalue decomposition, M can

be rewritten as M = WWT ,W ∈ Rh×l, l ≤ h, so Eq.(1) can

be rewritten as:

√

(xi − xj)
T
(WWT )(xi − xj) = ||WTxi −WTxj ||, (2)

Let y = WTx, then:

d(yi, yj) = ||WTxi −WTxj ||

=

√

(xi − xj)
T
M(xi − xj),

(3)

Therefore, learning a Mahalanobis distance metric M in the

high-dimensional visual feature space is equivalent to learning

an efficient mapping matrix W that replaces each image x with

WTx and applying the standard Euclidean distance metric to

the images in the low-dimensional space.

Distance metric analysis methods are usually accomplished

based on a set of labeled data with pairwise constraints. For

example, neighborhood component analysis (NCA) was pro-

posed to learn a Mahalanobis distance metric by directly maxi-

mizing the leave-one-out cross validation accuracy of k-nearest

neighbors. The large margin nearest neighbor (LMNN) method

was proposed to take the margin into account and separate the

samples of different classes in a large margin manner [42].

In [43], a relevant component analysis (RCA) technique was

proposed to exploit only similar pairwise constraints for dis-

tance metric analysis. In detail, given the pairwise constraints,

RCA first forms a set of chunklets, each of which is defined

as a group of samples linked together by similar pairwise

constraints. The optimal distance metric learned by RCA can

be computed as the inverse of the average covariance matrix of

the chunklets. In [33], Xing et al. proposed a distance metric

analysis approach (called Xing hereafter) and formulated the

task into a convex optimization problem, which can be solved

by an iterative projection algorithm. RCA is simple to calculate

but ignores the dissimilar pairwise constraints. Discriminative

component analysis (DCA) was proposed to incorporate the

dissimilar pairwise constraints [36], which can show slightly

better discriminative performance compared with RCA for

some datasets. Lately, an information-theoretic metric learning

approach was proposed to express the weakly supervised

learning problem as a Bregman optimization problem [44].

In [45], Guillaumin et al. offered a probabilistic view on

learning a Mahalanobis distance metric and posteriori class

probabilities were treated as similar and dissimilar measures.

A simple but effective strategy to learn a distance metric from

equivalence constraints was introduced based on a statisti-

cal inference perspective [46]. Different from the previous

metric learning methods, a Probabilistic Relative Distance

Comparison (PRDC) model was proposed to maximize the

probability of a pair of true match having a smaller distance

than that of a wrong match pair [47]. Although encouraging

performance has been shown, most of these approaches in

this area have involved a high-computational burden when

dealing with high-dimensional images and also cannot give

explicit image semantic representations in the low-dimensional

semantic concept subspace, which are thus not appropriate and

will significantly limit their potential applications to the CBIR

research [33], [34], [35], [36], [37].

III. DSSA FOR RF

In RF, the images returned for a certain query are usu-

ally represented by low-level visual features, i.e., X =
[x1, . . . , xn] ∈ Rh×n in a high-dimensional space with

xi ∈ Rh for an image. The performance of CBIR using

the Euclidean distance metric in a high-dimensional space

is usually poor because of the gap between low-level visual

features and high-level semantic concepts.

With the RF information, this semantic gap can be re-

duced significantly. By mining the user-labeled information,

we can learn a submanifold to encode the user intention.

This submanifold is embedded in the ambient space, i.e.,

the high-dimensional low-level visual feature space Rh. In

this paper, a linear subspace W is used to approximate

this submanifold such that the images can be represented as
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(a)
Fig. 2. For query “train”, labeled similar images are different from each
other in appearance. Therefore, it is not reasonable to require all labeled
similar images to be close to each other in the projected subspace.

Y = WTX = [y1, . . . , yn] ∈ Rl×n(l < h) with yi ∈ Rl for

an image xi. Therefore, in the low-dimensional subspace, an

improved image retrieval performance is expected.

To measure the similarity between two images in the low-

dimensional subspace, we adopt the widely used Euclidean

distance metric. Learning a mapping matrix W is actually

equivalent to learning an efficient Mahalanobis distance metric

M in the original high-dimensional space. In recent years, a

variety of techniques have been proposed to learn such an

optimal Mahalanobis distance metric M from training data

that are given in the form of pairwise constraints [35], [33],

[34], [36], [48], [49]. However, most of these methods are

inappropriate for CBIR, since they either require solving a

convex optimization problem with gradient decent and iterative

projections or involve solving a semidefinite programming

problem that often suffers from high computational costs,

which limits their potential applications for high-dimensional

data [33], [34], [49]. Moreover, most of these methods, which

can learn distance metrics from the training data, are unable

to explicitly give the new representations of data in the new

metric space.

Therefore, in this paper, we present a DSSA method to

learn such a mapping matrix W . Particularly, the DSSA can

effectively integrate the local geometry and the discriminative

information of labeled images, and the local geometry of la-

beled and unlabeled images together. This process is conducted

by building different kinds of local patches for each image, and

then aligning these different kinds of patches together to learn

a consistent coordinate [50], [51]. One patch is a local area,

which is formed by one image and its associated neighboring

images. Particularly, in DSSA, we build three different kinds of

patches: 1) local geometric patches for labeled similar images

to represent the local geometry of labeled similar images; 2)

local discriminative patches for labeled similar and dissimilar

images to represent the discriminative information between

labeled similar and dissimilar images; 3) local similar patches

for labeled and unlabeled images to represent the similar

information of labeled and unlabeled images.

A. DSSA for RF

1) Local geometric patches for labeled similar images:

With an observation that all labeled similar images are alike,

while each labeled dissimilar image is dissimilar in its own

way, BDA was introduced as a principled way to select a

subset of image visual features and define a suitable similarity

metric [22]. Thus, all labeled similar images are required to

be close to each other in the learned subspace. However, this

assumption is usually not reliable in conventional RF.

Labeled similar images may vary in appearance and the

corresponding visual features. For instance, for query “train”,

labeled similar images are usually different from each other,

as shown in Fig. 2. For this reason, instead of requiring

all labeled similar images to be close to each other in the

projected subspace, it is more appropriate to only retain the

local geometry of labeled similar images in RF.

Specifically, for each image xi associated with a lo-

cal geometric patch Xg(i) = [xi, xi1 . . . , xik1
], wherein

xi1 , xi2 , . . . , xik1
, i.e., the k1 nearest images with similar

constraints. This paper assumes that the new representation

yi of xi can be linearly reconstructed by its k1 nearest images

with similar constraints, i.e.,

xi = ci1xi1 + ci2xi2 + . . .+ cik1
xik1

+ εi, (4)

where ci is a k1 dimensional vector encoding the reconstruc-

tion coefficients and εi is the reconstruction error. Minimizing

the error yields

argmin
ci

||εi||
2 = argmin

ci
||xi −

k1∑

j=1

cijxij ||
2, (5)

With the sum-to-one constraint:
∑k1

j=1 (ci)j = 1, ci can be

computed in a closed form:

cij =

∑k1

t=1 G
−1
jt

∑k1

p=1

∑k1

q=1 G
−1
pq

, (6)

where Gjt =
(
xi − xij

)T
(xi − xit) is called the local Gram

matrix [52].

We assume that ci reconstructs both xi from xi1 , . . . , xik1

in the high-dimensional space and yi from yi1 , . . . , yik1
in

the low-dimensional subspace. Based on this point, the cost

function can be reformulated as

argmin
Yg(i)

||σi||
2 = argmin

Yg(i)

||yi −
k1∑

j=1

(ci)jyij ||
2

= argmin
Yg(i)

tr

(

Yg(i)

[
−1
ci

]
[
−1 cTi

]
Y T
g(i)

)

= argmin
Yg(i)

tr
(

Yg(i)Lg(i)Y
T
g(i)

)

, (7)

where Yg(i) = [yi, yi1 , . . . , yik1
]; Lg(i) =

[
−1
ci

]
[
−1 cTi

]
=

[
1 −cTi

−ci cic
T
i

]

with

c̄i = [cTi , 0, . . . , 0
︸ ︷︷ ︸

k1

]T ; g(i) is used to encode the local

geometry of labeled similar images in RF.

2) Local discriminative patches for labeled similar and

dissimilar images: In RF, given an image xi, according to

the user-labeled information, we can divide the other images

into two categories: images with similar pairwise constraints

and images with dissimilar pairwise constraints. We select k1
images with respect to xi from similar images and term them
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neighbor images with similar pairwise constraints denoted by

xi1 , . . . , xik1
. We select k2 nearest neighbors with respect to

xi from dissimilar images and term them neighbor images

with dissimilar pairwise constraints denoted by xi1 , . . . , xik2
.

By putting xi, xi1 , . . . , xik1
, and xi1 , . . . xik2

together, we

can build the local discriminative patch for an image xi as

Xd(i) = [xi, xi1 , . . . , xik1
, xi1 , . . . , xik2

].
Especially, for the new representations of

each local discriminative patch, i.e., Yd(i) =
[yi, yi1 , . . . , yik1

, yik1+1
, . . . , yik1+k2

], we expect that distances

between the given image and the neighbor similar images

are as small as possible, while distances between the given

measurement and the neighbor dissimilar images are as large

as possible.

For each patch in the low-dimensional subspace, we expect

that distances between yi and the neighbor images with similar

pairwise constraints are as small as possible, so we have

argmin
yi

k1∑

j=1

||yi − yij ||
2, (8)

Meanwhile, we expect that distances between yi and the

neighbor images with dissimilar pairwise constraints are as

large as possible, so we have

argmax
yi

k2∑

m=1

||yi − yim ||2, (9)

Since the patch formed by the local neighborhood can be

approximately regarded as linear [51], [53], we formulate the

part discriminator by using the linear manipulation as follows:

argmin
yi





k1∑

j=1

||yi − yij ||
2 − β

k2∑

m=1

||yi − yim ||2



 , (10)

where β is a scaling factor in [0, 1] to unify different measures

of the within-class distances and the between-class distances.

We define the coefficients vector as

ωi =





k1
︷ ︸︸ ︷

1, . . . , 1,

k2
︷ ︸︸ ︷

−β, . . . ,−β





T

, (11)

To rewrite Eq.(10) into a compact form, we have

argmin
yi

(
k1∑

j=1

||yi − yij ||
2(ωi)j +

k2∑

p=1
||yi − yip ||

2(ωi)p+k1

)

= argmin
yi

(
k1+k2∑

j=1

||yFi(1) − yFi(i+j)||
2(ωi)j

)

= argmin
Yd(i)

tr




Yd(i)

[
−eTk1+k2

Ik1+k2

]

diag(ωi)

×
[
−ek1+k2 Ik‘+k2

]
Y T
d(i)





= argmin
Yd(i)

tr
(

Yd(i)Ld(i)
Y T
d(i)

)

,

(12)

where Ld(i) =

[ ∑k1+k2

j=1 (ωi)j −ωT
i

−ωi diag(ωi)

]

; Fi =

{i, i1, . . . , ik1 , ik1+1, . . . , ik1+k2} is the set of indices for

images on the patch; ek1+k2 = [1, . . . , 1]T ∈ Rk1+k2 ; and

Ik1+k2 is a (k1 + k2)× (k1 + k2) identity matrix.

3) Local similar patches for labeled and unlabeled images

: Conventional RF approaches are developed based on super-

vised learning (i.e., BDA RF or SVM RF) models. However,

in RF, the efforts of requiring the user to label a large number

of images is generally laborious, although vast amounts of

unlabeled images are readily available in the database and can

also provide useful information to enhance the performance of

CBIR. Semi-supervised learning under such a scenario is often

designed to significantly improve the generalization ability of

supervised learning by leveraging abundant unlabeled images

in the database [54], [55].

Unlabeled images are valuable in improving the local

geometry of supervised learning models [54], [55]. Unla-

beled images are attached to the original data set: Xu =
[x1, . . . , xn, xn+1, . . . , xn+nu

], where the first n images are

labeled, and the remaining nu images are unlabeled. For each

image xi,= 1, . . . , n+nu, we search its k3 nearest neighbors

xi1 , . . . , xik3
in all training data including both labeled and

unlabeled images. Let Xu(i) = [xi, xi1 , . . . , xik3
] denote the

ith patch.

To preserve the local geometry of labeled and unlabeled

images, the nearby images should stay nearby in the low-

dimensional space, or yi ∈ Rl is close to yi1 , . . . , yik3
, i.e.,

argmin
yi

k3∑

j=1

||yi − yij ||
2(ωi)j , (13)

where yij , j = 1, . . . , k3 are k3 connected images of a given

image yi and ωi is the k3-dimensional vector weighted by

(ωi)j = exp(−||xi − xij ||
2/t), where t is set as a suitable

constant according to [31]. Therefore, Eq. (13) can be refor-

mulated as

argmin
k3∑

j=1

tr













(yi − yi1)
T

...

(yi − yi1)
T






[
yi − yi1 , . . . yi − yi1

]

×diag(ωi)








= arg min
Yu(i)

tr




Yu(i)

[
−eTk3

Ik3

]

diag(ωi)

×
[
−ek3 Ik3

]
Y T
i





= arg min
Yu(i)

tr
(

Yu(i)Lu(i)Y
T
u(i)

)

,

(14)

where Yu(i) = [yi, yi1 , . . . , yi1 ]; Li =
[ ∑k3

j=1 (ωi)j −ωT
i

−ωi diag(ωi)

]

; ek3 = [1, . . . , 1]T ∈ Rk3

is a k3 × k3 identity matrix; Lu(i) is used to encode the local

geometry of labeled and unlabeled images.

4) DSSA : Each patch has its own coordinate system. With

the calculated local patches, we can align them together into

a consistent coordinate [50], [51]. For each image Ii, Y =
[yi, yi1 , . . . , yik ] can be rewritten as Y = Y Si, where Y =
[y1, . . . , yN ] and Si ∈ RN×(k+1) is the selection matrix. The

Si is defined according to [50], [51] as
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Fig. 3. Framework of our CBIR system. Our system can return the most semantically similar and dissimilar images for the user to label in RF.

(Si)pq =

{
1, ifp = Fi(q)
0, else

(15)

where Fi = [i, i1, . . . , ik] is the index vector for samples in

Yi. Then, we can combine all the patches defined in Eq. (7),

Eq.(12) and Eq.(14), together as follows:

n∑

i=1

mintr
(

Yg(i)Lg(i)Y
T
g(i)

)

+
n∑

i=1

maxtr
(

Yd(i)Ld(i)Y
T
d(i)

)

+
n+nu∑

i=1

mintr
(

Yu(i)Lu(i)Y
T
u(i)

)

=
n∑

i=1

mintr
(

Yg(i)Lg(i)Y
T
g(i)

)

− γ
n∑

i=1

mintr
(

Yd(i)Ld(i)Y
T
d(i)

)

+λ
n+nu∑

i=1

mintr
(

Yu(i)Lu(i)Y
T
u(i)

)

= min tr

(

Y

(
n∑

i=1

Sg(i)Lg(i)(Sg(i))
T
− γ

n∑

i=1

Sd(i)Ld(i)(Sd(i))
T

+λ
n+nu∑

i=1

Su(i)Lu(i)(Su(i))
T

)

Y T

)

= min tr
(
WTX (G− γD + λU)XTW

)
,

(16)

where G encodes the local geometric information of la-

beled similar images and G =
n∑

i=1

Sg(i)Lg(i)(Sg(i))
T

; D

encodes the local discriminative information and D =
n∑

i=1

Sd(i)Ld(i)(Sd(i))
T

, U encodes the local information of

unlabeled images and U =
n+nu∑

i=1

Su(i)Lu(i)(Su(i))
T

, and

γ, λ > 0 are tuning parameters that are used to tradeoff the

contributions of three different terms.

By imposing WTW = I , the mapping matrix W =
[w1, . . . , wl] can be obtained by solving the standard eigen-

decomposition problem

XLXTw = λw, (17)

where W consists of the eigenvectors corresponding to the l
largest eigenvalues.

IV. CONTENT-BASED IMAGE RETRIEVAL SYSTEM

A. Overview of our CBIR Framework

In this section, we first give an overview of our CBIR

system. As shown in Fig. 3, when a query image is provided,

the low-level visual features are first extracted. Then, all image

in the database are sorted based on a predefined similarity

metric. If the user is satisfied with the results, the image

retrieval process is ended. However, in most situations, RF

is actually required because of the poor performance of the

system. The CBIR requires the user to label some semantically

similar and dissimilar images as the positive and negative

feedback samples, respectively. Using these labeled similar

and dissimilar samples as the training data, an RF model can

be obtained based on certain machine learning techniques. The

similarity metric can thus be updated together with the RF

model. Then, all images are sorted based on the recalculated

similarity metric. If the user is satisfied with the refined results,

RF is no longer required and the system gives the final results,

which are the most semantically similar images with the query

image. Otherwise, RF is performed iteratively.

B. Corel Image Database and Image Representations

Fig. 4. Some example images in the Corel image database.

To perform an empirical evaluation of the proposed method,

we first require a reliable image database with semantic

groups. The Corel photo gallery is a professionally catalogued

image database and has been widely used to evaluate the

performance of CBIR during the past few years [3], [15], [39],

[16]. To validate the effectiveness of the proposed algorithm,

we group the images into a number of classes based on

the provided ground truth. The original Corel photo gallery

includes many semantic categories, each of which contains

100 or more images. However, some of the categories are not

suitable for image retrieval, since some images with different

concepts are in the same category while many images with the

same concept are in different categories. Therefore, existing

categories of the original Corel photo gallery are ignored and

reorganized into 80 conceptual classes based on the ground

truth, such as lion, castle, aviation, dinosaur and horse. Note

that each class of the Corel photo gallery has a clearly distinct

concept and the quality of the images can be considered very

high. As a result, the Corel image database comprises totally

10,763 real-world images. This way of using the images with
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semantic categories can help evaluate the retrieval performance

automatically, which significantly reduces subjective errors

compared to manual evaluations.

To represent images in the database, we use three different

sets of low-level visual features in a 503-D space, i.e., 128-D

RGB color histogram, 75-D edge distribution histogram and

300-D Bag-of-words (BOW) [56]. For the generation of visual

words, we briefly apply the difference of Gaussians filter on

the gray scale image to detect a set of salient points; then we

compute the Scale-Invariant-Feature-Transform (SIFT) feature

over the local areas defined by the detected salient points [57];

finally we perform the vector quantization on the descriptors

to construct the visual vocabulary by using the K-means

clustering approach. In this work, 300 clusters are generated

and thus the dimension of BOW features is 300. All feature

components are normalized to a normal distribution with zero

mean and one standard deviation to represent the images.

V. EXPERIMENTAL RESULTS

A. Experiments on synthetic datasets

(a) (b) (c)

Fig. 5. RF models (i.e., the SVM hyperplane ) are diverse with different
semantic subspaces of feedback samples.

1) The RF models are diverse with different semantic

subspaces of low-level visual features: In RF, an image is

usually represented by a high-dimensional low-level visual

feature vector in the CBIR research. However, one key issue is

about which subset of visual features can reflect the semantic

properties of different groups of feedback samples and benefit

the construction of RF models. This problem can be illustrated

from some real-world samples in RF. There are five positive

feedback samples and five negative feedback samples. We

randomly select two features to construct the optimal RF

model (i.e., SVM RF) for three times. As shown in Fig. 5, we

can see that the resultant RF models are diverse with different

semantic subspaces of visual features. And thus, selecting an

effective semantic subspace and defining an effective similarity

metric for the feedback samples are important steps in RF.

2) The DSSA is effective in dealing with the feedback

samples with similar and dissimilar pairwise constraints in

RF: To visualize the effectiveness of DSSA in seeking the

discriminative semantic subspace with similar and dissimilar

pairwise constraints in RF, this experiment is conducted on six

synthetic datasets. In each round of RF, the user judges a set of

images with similar and dissimilar pairwise constraints, which

are positive and negative feedback samples, respectively. The

positive and negative feedback samples are generated with

different distributions, since the distributions of feedback

samples are usually complicated in real-world applications.

Regarding the set of positive feedback samples and the set

of negative feedback samples as two different classes, LDA

treats the two different sets of feedback samples equally. BDA

was proposed to formulate the RF as a (1+x) class subspace

analysis problem. However, it is still not very reasonable to

conclude that all positive feedback samples come from one

single class. Actually, each positive feedback sample is similar

to each of the remaining positive feedback samples, and each

negative feedback sample is dissimilar to each of the positive

feedback sample. Consequently, different from conventional

supervised subspace analysis methods (e.g., LDA and BDA),

RF is intrinsically a weakly supervised learning problem and

can only involve similar and dissimilar pairwise constraints

for feedback samples. Any unreasonable assumption for the

class label information of feedback samples will result in

performance degradation.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Performance comparison of four different subspace analysis ap-
proaches (i.e., DSSA, LDA, BDA and MFA) for feedback samples with
different distributions. (a)-(f) show the experimental results of four subspace
analysis approaches when dealing with feedback samples with various distri-
butions, respectively.

From Fig. 6, we can clearly notice that LDA can find the

best discriminative direction only when the set of positive

feedback samples and the set of the negative feedback samples

are distributed as Gaussians with similar covariance matrices,

as shown in Fig.6 (a), but may be confused when the distri-

bution of the feedback samples is more complicated, as given

in Figs. 6 (b), (c), (d), (e), (f). Regarding the RF as a (1+x)

class problem, BDA can only find the direction in which the

positive feedback samples are well separated with the negative

feedback samples when the positive feedback samples have a

Gaussian distribution, e.g., Fig. 6 (b). However, BDA may

also be confused when the distribution of positive feedback

samples is more complicated, as shown in Figs. 6 (c), (e),

(f). Marginal Fisher Analysis (MFA) defines the separation

of positive and negative feedback samples with the marginal

samples of different classes [23]. However, MFA treats the two

different classes equally. The DSSA method only involves the

local similar and dissimilar pairwise constraints of feedback

samples and does not impose any label constraints on feedback

samples, which is more appropriate for RF. Consequently, the

DSSA can effectively find the most discriminative subspace

compared with classical supervised subspace analysis methods



1057-7149 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2516947, IEEE

Transactions on Image Processing

8

(e.g., LDA, BDA, and MFA) with explicit class label infor-

mation.

B. Experiments on the CBIR system

In this subsection, we will evaluate the effectiveness of the

proposed DSSA in RF based on two experiments: first, we

investigate the DSSA method for a CIR task [15], [35] by

comparing it with a number of representative distance metric

analysis methods; then, we show the performance of our CBIR

system by comparing it with some popular RF approaches for

an image retrieval task based on a real-world image database.

We use the widely used average precision (AP) and standard

deviation (SD) to evaluate the performance of the compared

algorithms. AP refers to the percentage of similar images in

top ranked images presented to the user and is calculated as

the averaged values of all the queries. SD is used to measure

the amount of variation of APs. AP is the major evaluation

criterion, which evaluates the effectiveness of the compared

algorithms.

1) Performance evaluation on a small-scale image

database: In this part, we intend to examine whether the

proposed method is comparable to or better than previous

distance metric analysis techniques with similar and dissimilar

constraints. We compare the proposed DSSA method with the

Euclidean distance metric and three representative distance

metric analysis methods (i.e., RCA [43], DCA [36] and Xing

[33]). In our experiments, we do not compare the proposed

method with supervised learning techniques since they require

explicit class labels, which are not suitable for this task.

Moreover, in this subsection, the DSSA method does not

involve any unlabeled samples for fair comparison with RCA,

DCA, and Xing. Parameters in each method were determined

empirically to achieve its best performance in this paper. The

parameter sensitivity of the DSSA method will be analyzed

carefully in the next subsection.

In our experiments, to conduct objective evaluation and ef-

fectively investigate the performance of the proposed method,

we have to provide a reliable image database with similar

and dissimilar constraints to run these algorithms. It is not

difficult to build a user historical feedback log database based

on an existing real-world database, e.g., Corel image database.

Here, we randomly select 25 classes according to the ground

truth of images from the Corel image database and form a

user historical feedback log database, which contains 2,497

real-world images. We randomly select 20 images uniformly

from each class, and therefore, we can gather a user historical

feedback database with 500 log images. Similar constraints are

imposed on the images within the same class, while dissimilar

constraints are imposed on the images with different classes.

All 2,497 images in the 25 categories are used as the query

images to evaluate the compared algorithms.

Fig. 7 shows the experimental results of the compared

algorithms on the database with 500 log images. From the

results, we can draw several observations. First, we notice

that directly using the Euclidean distance metric in a high-

dimensional visual feature space is not proper because of the

semantic gap. All of the distance metric analysis methods

(i.e., RCA, DCA, Xing and DSSA) can perform better than

the baseline (i.e., Euclidean distance metric) by exploiting

the user historical feedback log data. In the experiments,

the optimal metric learned by RCA is computed as the

inverse of the average covariance matrix of the chunklets.

RCA will encounter the singular covariance matrix when

dealing with high-dimensional images. The RCA is preceded

by constraints-based LDA, which reduces the dimension to

that of the DSSA method. By doing this, we notice that the

RCA can show much better performance than the Euclidean

distance metric by exploiting similar pairwise constraints. The

DCA incorporates the dissimilar constraints into the RCA

and was formulated into a trace ratio problem. In [36], the

authors proposed to attack this problem by using a direct

method as in Fisher’s LDA. However, much discriminative

information in the null space of the dissimilar scatter has

been discarded in solving this problem. The DSSA can learn

a distance metric by resorting to the mapping matrix and

solve this function with a standard Eigen value decomposition

method, which is very effective and efficient when handling

high-dimensional images and never meets the problem of

numerical computation. From the results, we can see that the

proposed DSSA can significantly outperform the Euclidean

distance metric and three compared metric learning approaches

for overall evaluation.

2) Performance evaluation on a large-scale image

database: In this part, we design a slightly different scheme to

model the real-world image retrieval process. In the real-world

CBIR system, a query image is usually not in the database.

To simulate such an environment, we use a fivefold cross

validation database to evaluate the compared algorithms. More

precisely, we divide the whole image database into five subsets

with an equal size. Therefore, there are 20 percent of the

categories in each subset. At each run of cross validation, one

subset is selected as the query set, and the other four subsets

are used as the database for image retrieval. Then, 500 query

images are randomly selected from the query set, and RF is

automatically conducted by the system. For each query image,

the system retrieves and ranks the images in the database.

Finally, nine rounds of RF are automatically conducted by the

system.

To show the effectiveness of the proposed DSSA, we

compare it with the popular conventional RF methods, i.e.,

geometric optimum experimental design (GOED) [16], SV-

Mactive [17], SVM [9], BDA [22], and generalized BDA

[39]. Out of these four algorithms, GOED and SVMactive

are active learning methods, whereas SVM is a standard

classification-based scheme, both BDA and GBDA are dis-

criminant analysis-based RF schemes. BDA is one of the

most promising RF approaches to deal with the feedback

samples’ imbalance problem for CBIR. However, the singular

problem of the positive within-class scatter and the Gaussian

distribution assumption for positive samples are two main

obstacles impeding the performance of BDA RF for CBIR.

GBDA can avoid these two drawbacks of BDA within one

framework and thus significantly improve the performance of

BDA RF for CBIR. In each round of RF, 20 images are picked

from the database and examined sequentially to mark as the
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Fig. 7. APs with 25 categories in top 20 results of the compared algorithms (i.e., DSSA, DCA, RCA, Xing, and Baseline) based on the small-scale image
database.

Fig. 8. APs of DSSA compared with conventional RF approaches, i.e., GOED, SVMactive, GBDA, SVM and BDA.

Fig. 9. SDs of DSSA compared with conventional RF approaches, i.e., GOED, SVMactive, SVM, BDA and GBDA.
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TABLE I
AVERAGE PRECISIONS IN TOP N RESULTS OF THE COMPARED METHODS

(I.E., DSSA, GOED, SVMACTIVE, GBDA SVM AND BDA )

positive or negative feedback samples. In general, in a real-

world image retrieval system, the dissimilar images usually

largely outnumber the similar ones. To simulate such a case in

the system, the first three similar images are labeled as positive

feedback samples, and all other dissimilar images in the top

20 images are automatically labeled as the negative feedback

samples. The images that have been selected in previous

RF iterations are excluded from later sections. It should be

noted that, for active learning-based RF methods, the 20

images are selected from the algorithms themselves, whereas

for conventional classification-based RF methods (i.e., SVM)

and discriminant analysis-based RF methods (i.e., GDBA and

BDA), the 20 images are composed of the top 20 returned

images in the previous round of RF, which is the most popular

way to select the feedback samples in the existing research of

CBIR. In this experiment, we calculate the APs over the 500

query images at different positions from top 10 to top 60 to

obtain the APs and the SDs and all experimental results are

computed from the fivefold cross validation.

Fig. 8 and Fig. 9 show the APs and SDs of the com-

pared algorithms, respectively. As shown in Fig. 8, DSSA

consistently outperforms all the other compared algorithms on

the entire scope. SVMactive cannot show better performance,

since the optimal hyperplane of SVM is usually not very

stable and accurate with small-sized training data in a high-

dimensional space. Therefore, it is not appropriate to directly

use the optimal hyperplane of SVM to identify the most

informative samples when the number of the training data

is small. Moreover, we should indicate that SVMactive can

only be applied when there is an initial classifier. Therefore, it

cannot be applied in the first round of RF. In the experiments,

we use the standard SVM to build an initial classifier. When

considering more rounds of RF, SVMactive can get some

improvement over the standard SVM.

Regarding the stability of the compared algorithms, we can

also notice that DSSA performs best among the top 10, 20, 30,

and 40 results as shown in Fig. 9. Then, for other top results,

the performance of DSSA is similar to the other compared

algorithms. The detailed results of the compared algorithms

after nine rounds of RF are shown in Table II. As given in

Table II, DSSA achieves much better performance compared

with other approaches for all top results. Therefore, we can

conclude that the proposed DSSA has shown its effectiveness

in learning an effective discriminative semantic subspace in

RF.

In our experiments, the mapping matrix W can be obtained

by using the Eigen value decomposition. The time cost to

calculate W is O ((n+ nu))
3
. Afterwards, we project all

Fig. 10. Performance of DSSA with different γ values for the small-scale
image database.

images to this semantic subspace and then apply the new

similarity metric with respect to the query to sort all images

in the database. The time cost for calculating the Euclidean

distance in the semantic subspace L between the query and all

images in the database is O ((NL)), where N is the cardinality

of the database. Therefore, for a query image, the time cost for

the DSSA based CBIR system is O
(

(n+ nu)
3
)

+ O (NL).

And the time cost for a conventional CBIR system in the high

dimensional visual feature space H is O (NH). Usually, for a

CBIR system, the cardinality of the database N is very large

and H >> L; therefore, the proposed method is very efficient

for an image retrieval task.

C. Parameter Sensitivity

In this subsection, we study the parameter sensitivity of the

DSSA method for an image retrieval task. The analyses are

performed based on the experiments conducted on the small-

scale image database (i.e., 2,497 real-world image database).

We analyze the trade-off parameter γ in Eq. (16), and the

dimension of the projected features for DSSA. First, 500 query

images are randomly selected from the database, and then the

image retrieval process is automatically done by a computer.

The APs in top 50 results are used for the overall performance

evaluation.

1) Evaluation of the tradeoff parameter γ: Empirically, the

local geometry is useful for finding the semantic subspace.

In this part, we intend to investigate the influence of the

tradeoff parameter γ in Eq. (16) for DSSA when building the

local discriminative patches and the local geometric patches

for labeled log images. A small γ reflects the importance of

separating dissimilar samples from similar ones, i.e., the DSSA

focuses on the local geometric information and ignores the lo-

cal discriminative information. Fig. 10 shows the performance

of DSSA by varying γ, from which we can have the following

observations.

When γ is small, e.g., γ = 0, the performance is unsatis-

factory. This is because in this situation the local information
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Fig. 11. Performance of DSSA with features projected onto the subspaces
with different dimensions on the small-scale image database.

is mainly preserved while important local discriminative in-

formation within labeled images with similar and dissimilar

pairwise constraints is less considered. The performance of

the DSSA increases when γ increases its value and reaches

the optimal value at γ = 5. Then, the APs decrease when

γ is larger than this best setup, in which case the local

discriminative information dominates the local patches and the

local geometric information is ignored.

Therefore, both the local geometry and the discriminative

information can reflect the important information contained in

the local patches from different aspects and are complemen-

tary. A suitable combination of them is essential to achieve

good performance of DSSA.

2) Evaluation on the projected subspace: Different from

the distance metric analysis methods, the proposed DSSA

method aims to learn a mapping matrix that can find a

low-dimensional subspace from the original high-dimensional

space. To find an appropriate dimension of the projected se-

mantic subspace, we investigate the influence of the dimension

in this experiment. Fig. 11 shows the performance of DSSA

with features projected onto the subspaces with different

dimensions. From Fig. 11, we can notice that, when the

projected dimension is too low (e.g., less than 25), the reduced

subspace is insufficient to encode the semantic concepts of

images, which makes the retrieval performance poor. When

the dimension equals or is close to that of the original high-

dimensional space (i.e., 503 in this paper), no or less benefit

can be obtained from this subspace analysis method. From

the experimental results, we can notice that the DSSA method

achieves its best performance with the dimension of 25 for the

small-scale image database. Moreover, low-dimensional data

can lead to lower computation costs than higher-dimensional

data for an image retrieval task.

D. Discussions and future work

In the proposed CBIR system, several aspects can be

improved. For instance, a much larger image database will

be utilized in the current platform. Recently, CBIR based on a

large scale social web database (e.g., 1 million Flikr images)

has attracted much attention. In these systems, the images are

first selected from social web sites (e.g., Flickr), most of which

are accompanied by rich surrounding textual description (e.g.,

tags). And then, these images are grouped into plenty of se-

mantic groups according to the associated textual descriptions.

However, different users have different opinions on the same

image, and thus will annotate significantly different textual in-

formation. Moreover, due to the noise textual information, it is

still a problematic issue to categorize the images into semantic

groups according to their rich associated tags. Consequently,

it is interesting to objectively evaluate the performance of a

CBIR system based on a large scale noisy social web database

in future studies.

To enhance the retrieval performance, the indexing of

database is very important for a CBIR system. Generally,

there are two types of image indexing methods [1], [2].

A classification based indexing technique aims to improve

the retrieval precision of the system [58]. In this method,

each image in the database is assigned one or more distinct

labels. Then, based on these labels, indexing the database

can be constructed through their associated semantic labels.

Therefore, the search results will be more satisfactory for

most of the users. The other indexing method is the low

level visual feature based indexing [59], which can be used

to speed up the retrieval procedure. There are many low

level visual feature based indexing techniques, e.g., various

tree-based indexing structures for high dimensional data. The

two indexing methods have their respective advantages from

different aspects. As a consequence, it is promising to combine

the classification and visual feature information in the indexing

structures to improve both the retrieval precision and speed.

VI. CONCLUSION

In this paper, we have proposed a novel discriminative

semantic subspace analysis (DSSA) method to bridge the

gap between low-level visual features and high-level semantic

concepts by exploiting the training images with pairwise

constraints in RF. The proposed DSSA method can effectively

learn a reliable subspace both from labeled and unlabeled

images with similar and dissimilar pairwise constraints without

using any explicit class label information. Especially, DSSA

can effectively integrate the local geometry of labeled simi-

lar images, the discriminative information of labeled similar

and dissimilar images and the local geometry of labeled

and unlabeled images together to learn a reliable subspace.

Compared with the popular distance metric analysis methods

with pairwise constraints, our method can also learn a distance

metric but perform more effectively when dealing with high-

dimensional images. Extensive experiments on both synthetic

datasets and the real-world Corel image database have shown

the effectiveness of the proposed scheme in exploiting the

training images with pairwise constraints in RF.
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