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Abstract—Images of facial expressions are often captured
from various views as a result of either head movements or
variable camera position. Existing methods for multi-view and/or
view-invariant facial expression recognition typically perform
classification of the observed expression by using either classifiers
learned separately for each view or a single classifier learned for
all views. However, these approaches ignore the fact that different
views of a facial expression are just different manifestations of
the same facial expression. By accounting for this redundancy,
we can design more effective classifiers for the target task. To
this end, we propose a Discriminative Shared Gaussian Process
Latent Variable Model (DS-GPLVM) for multi-view and view-
invariant classification of facial expressions from multiple views.
In this model, we first learn a discriminative manifold shared by
multiple views of a facial expression. Subsequently, we perform
facial expression classification in the expression manifold. Finally,
classification of an observed facial expression is carried out
either in the view-invariant manner (using only a single view
of the expression) or in the multi-view manner (using multiple
views of the expression). The proposed model can also be used
to perform fusion of different facial features in a principled
manner. We validate the proposed DS-GPLVM on both posed and
spontaneously displayed facial expressions from three publicly
available datasets (MultiPIE, LFPW, and SFEW). We show
that this model outperforms the state-of-the-art methods for
multi-view and view-invariant facial expression classification,
and several state-of-the-art methods for multi-view learning and
feature fusion.

Index Terms—view-invariant, multi-view learning, facial ex-
pression recognition, Gaussian Processes.

I. INTRODUCTION

FACIAL expression recognition (FER) has attracted signif-

icant research attention because of its usefulness in many

applications, such as human-computer interaction, security and

analysis of social interactions, among others [1], [2]. Most

existing methods deal with imagery in which the depicted

persons are relatively still and exhibit posed expressions in a

nearly frontal pose [3]. However, many real-world applications

relate to spontaneous interactions (e.g., meeting summariza-

tion, political debates analysis, etc.), in which people tend to

move their head while being recorded. Furthermore, depending

on the camera position, facial images can be taken from

multiple views. For these reasons, there is an ever growing
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need for automated systems that can accurately perform multi-

view and view-invariant facial expression recognition.

The main challenge here is to perform decoupling of the

rigid facial changes due to the head-pose and non-rigid facial

changes due to the expression, as they are non-linearly coupled

in 2D images [4]. Another challenge is how to effectively

exploit the information from multiple views (or different facial

features) in order to facilitate the expression classification.

Thus, accounting for the fact that each view of a facial expres-

sion is just a different manifestation of the same underlying

facial expression related content is expected to result in more

effective classifiers for the target task.

To date, only a few works that deal with multi-view and/or

view-invariant FER have been proposed. These focus mainly

on recognition of facial expressions of the six basic emotions

[5]. Based on how they deal with variation in head-pose (view)

and expressions in 2D images, they can be divided into: (i)

methods that perform view-invariant, i.e., per-view, FER ([6],

[7], [8]), (ii) methods that perform the view normalization

before performing FER ([9], [10]), and (iii) methods that learn

a single classifier using data from multiple views ([11], [12]).

However, the main downside of these approaches is that they

fail to explicitly model relationships between different views.

This, in turn, results in classifiers that are less robust for the

target task, but also more complex in the case of large number

of views/expressions. All this can efficiently be ameliorated

using the modeling strategy of multi-view leaning methods

(e.g., [13], [14]).

In this work, we introduce the Discriminative Shared Gaus-

sian Process Latent Variable Model (DS-GPLVM) for multi-

view and view-invariant FER. We adopt the multi-view learn-

ing strategy in order to represent multi-view facial expression

data on a common expression manifold. To this end, we use

the notion of Shared GPs [15], [16], the generative framework

for discovering a non-linear subspace shared across different

observation spaces (e.g., the facial views or feature representa-

tions). Since our ultimate goal is the expression classification,

we place a discriminative prior, informed by the expression

labels, over the manifold. The classification of an observed

expression is then performed in the learned manifold using the

kNN classifier. The proposed model is a generalization of the

discriminative GP Latent Variable Models (D-GPLVM) [17]

for non-linear dimensionality reduction and classification of

data from a single observation space. The learning of DS-

GPLVM is carried out using the expression data from multiple

Copyright c© 2014 IEEE.
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Fig. 1. The overview of the proposed DS-GPLVM. The discriminative
shared manifold X of facial expressions captured at different views (Yi,
i = 1 . . . V ) is learned using the framework of shared GPs (GPi). The class
separation in the shared manifold is enforced by the discriminative shared prior
p(X), informed by the data labels. During inference, the facial images from
different views are projected onto the shared manifold by using the kernel-
based regression, learned for each view separately (g(Yi)) for view-invariant
approach, or simultaneously from multiple views for multi-view approach. The
classification of the query image is then performed using the kNN classifier.

views. Classification of an observed facial expression, how-

ever, can be carried out either in the view-invariant manner (in

case only a single view of the observed expression is available

at runtime) or in the multi-view manner (in case multiple

views of the observed expression are available at runtime).

The proposed model can also perform fusion of different facial

features in order to improve view-invariant facial expression

classification. In order to keep the model computationally

tractable in the presence of large number of views, we propose

a learning algorithm that splits the learning into different sub-

problems (for each view), and then employs the Alternating

Direction Method (ADM) [18] to optimize each sub-problem

separately. The outline of the proposed approach is given in

Fig. 1.

The contributions of this work can be summarized as

follows.

1) We propose the DS-GPLVM for multi-view and/or view-

invariant FER. The proposed model is a generalization of

existing discriminative dimensionality reduction meth-

ods from single to multiple observation spaces. This

is, also, the first approach that exploits the multi-view

learning strategy in the context of multi-view FER.

2) We propose a novel learning algorithm for efficient

optimization of the model parameters that is based on

the ADM strategy. This allows us to solve the model

parameters’ optimization problem for each-view, as a

separate sub-problem, to perform parameter optimiza-

tion for each view separately, resulting in the model

being computationally efficient even in the case of a

large number of views.

3) The proposed DS-GPLVM is applicable to a variety of

tasks (multi-view classification, multiple-feature fusion,

pose-wise classification, etc.). Compared to state-of-

the-art methods for multi-view learning, which employ

linear techniques to align different views on a manifold,

the DS-GPLVM is a kernel-based method, being able to

discover non-linear correlations between different views.

In contrast to state-of-the-art methods for view-invariant

and/or multi-view FER, the DS-GPLVM exploits de-

pendencies between different views, improving the FER

performance.

Note that an earlier version of this work appeared in [19].

There are two major extensions introduced: 1) in [19], the

projections of data from different views to the shared space

are learned independently of the manifold, while in the DS-

GPLVM proposed here they are learned simultaneously. We

show in our experiments that this results in improved recog-

nition of the target facial expressions. 2) Our previous work

in [19] is capable only of view-invariant FER, while here we

generalize it to the multi-view and feature fusion settings.

Finally, we use the GPs as a basis for our (non-parametric)

multi-view learning framework because, in contrast to majority

of parametric models, it allows us to capture subtle details

of facial expressions and preserve them on the expression

manifold that is largely robust to the view/subject differences.

Furthermore, due to the probabilistic nature of GPs, different

types of priors can seamlessly be integrated into the model for

multi-view learning (in our case, discriminative priors over the

expression manifold). Last but not least, GPs are known for

their ability to generalize quite well even from a small number

of training data (on the order of several hundreds) [17]. While

this may not seem a big advantage when data are abundant, it is

of crucial importance for multi-view FER due to the scarcity of

existing datasets containing annotated expressions and poses.

The remainder of the paper is organized as follows. Sec-

tion II gives an overview of the related work. In Section III

we present the theoretical background of the base GPLVM and

the D-GPLVM. In Section IV, we introduce the proposed Dis-

criminative Shared Gaussian Process Latent Variable Model

for multi-view FER. Section V describes the conducted exper-

iments and shows the results obtained. Finally, in Section VI

we conclude the paper.

II. RELATED WORK

A. Multi-view and View-invariant FER

As mentioned above, recent advances toward multi-view fa-

cial expression recogniton can be divided into three groups. A

representative of the first group is [6], where the authors used

Local Binary Patterns (LBP) [20] (and its variants) to perform

a two-step facial expression classification. In the first step, they

select the closest head-pose to the (discrete) training pose/view

by using the Support Vectors Machine (SVM) [21] classifier.

Once the view is known, they apply the view-specific SVM

to perform facial-expression classification. In [7], different

appearance features, e.g., Scale Invariant Feature Transform

(SIFT) [22], Histogram of Oriented Gradients (HOG) [23],

LBP, are extracted around the locations of characteristic facial

points, and used to train various pose-specific classifiers. Simi-

larly, [8] used per-view-trained 2D Active Appearance Models

(AAMs) [24] to locate a set of characteristic facial points, and

extract LBP, SIFT and Discrete Cosine Transform (DCT) [25]

features around them. By learning separate classifiers for each

view, these approaches ignore correlations across different

views, which makes them suboptimal for the target task. As
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shown by [6], [7], classification of some facial expressions

can be performed better in 15◦ view than in the frontal

view, for instance. Hence, the data from more discriminative

views for expression classification can be used during learning

to improve the underperforming expression classification in

the other views. In the proposed DS-GPLVM, we do so by

performing the classification in a discriminative feature space

shared across views.

The approaches in the second group ([9], [10]) first per-

form view normalization, and then apply facial expression

classification in the canonical view, usually chosen to be

the frontal. For the view normalization, the authors propose

the Coupled GP (CGP) regression model that exploits pair-

wise correlations between the views in order to learn robust

mappings for projecting facial features (i.e., a set of facial

points) from non-frontal to the frontal view. A limitation of

this approach is that the view normalization and learning of

the expression classifier are done independently, thus bounding

the accuracy of the expression classification by that of the

view normalization. Also, since the view normalization is

performed directly in the observed space, errors in the view

normalization step can adversely affect the classification. This

is even more so due to the high-dimensional noise affecting

the view normalized features. Furthermore, the canonical view

has to be selected in advance. This can further limit the

accuracy of the expression classification as such view may not

be the most discriminative for classification of certain facial

expression categories, as mentioned above. These limitations

are addressed by the proposed DS-GPLVM, which avoids the

need for a canonical view as it performs the classification on

a shared manifold of facial expressions from multiple views,

the topology of which is optimized for classification of the

target expressions.

In the third group of methods ([11], [12]), a single classifier

is learned using the expression data from multiple views.

Specifically, [11] used variants of dense SIFT [26] features

extracted from multi-view facial expression images. Likewise,

[12] used the Generic Sparse Coding scheme ([27]) to learn

a dictionary that sparsely encodes the SIFT features extracted

from facial images in different views. However, because of

high variation in appearance of facial expressions in differ-

ent views and of different subjects, the complexity of the

learned classifier increases significantly with the number of

views/expressions. This can easily lead to overfitting, and, in

turn, poor generalization of the classifier to unseen data. On

the other hand, the complexity of the classifier in DS-GPLVM

is reduced by accounting for underlying structure of the data

(e.g., the correspondences between the views) via the shared

manifold.

B. Multi-view Learning

In what follows, we make a short overview of the most

popular multi-view learning methods that can be applied to

the multi-view FER. A common approach in multi-view clas-

sification is to learn the view-specific projection using paired

samples from different views, and to project those samples

onto a common latent space, followed by their classification.

The paired samples usually refer to samples that come from the

same subject (e.g., face images of a person in two different

views). The goal here is to learn a latent space where the

paired samples are placed close if they come from the same

class/subject, and far apart otherwise.

A widely used unsupervised approach to learn such latent

spaces is Canonical Correlation Analysis (CCA) [28] and its

non-linear variant Kernel CCA (KCCA) [29]. The goal of

these methods is to find projection to a common subspace

where the correlation between the low-dimensional embed-

dings is maximized. These methods can handle data only in

the pair-wise manner (thus, only two views at the time), which

makes them unfit for multi-view classification problems with

more than two views. A generalization of CCA to the multi-

view setting, Multiview CCA (MCCA), has been proposed

in [30]. The main idea of MCCA is to find a common

subspace where the correlation between the low-dimensional

embeddings of any two views is maximized. Apart from

CCA-based methods, there are a few works that extend the

single-view subspace learning to the multi-view case. [31] is

a representative of this approach. It is a spectral clustering

approach for the multi-view setting. In particular, the spectral

embedding from one view is used to constrain the data of

the other view. Note that the methods mentioned above are

proposed for unsupervised learning. Thus, in the context of

the multi-view FER, they are not expected to perform well

as the view alignment by these methods is not optimized for

classification.

Another group of methods performs supervised multi-view

analysis. For instance, Multi-view Fisher Discriminant Anal-

ysis (MFDA) [32] learns classifiers in different views, by

maximizing the agreement between the predicted labels of

these classifiers. However, MFDA can only be used for binary

problems. In [14], the authors extended Linear Discriminant

Analysis (LDA) [33] to the multiview case, named Multi-

view Discriminant Analysis (MvDA). This model maximizes

the between-class and minimizes the within-class variations,

across all the views, in the common subspace. Generalized

Multiview Analysis (GMA) [13] has also been proposed for

extending dimensionality reduction techniques for single views

to multiple views. An instance of GMA, the Generalized Mul-

tiview LDA (GMLDA), finds a set of projections in each view

that attempt to separate the content of different classes and

unite different views of the same class in a common subspace.

Another example of GMA is the GM Locality Preserving

Projections (GMLPP), that extends the LPP [34] model, which

can be used to find a discriminative data manifold using

the labels. Although effective in some tasks, these models

are all based on linear projection functions. This can limit

their performance when dealing with high-dimensional input

features (i.e., appearance based facial features), as well as

their ability to successfully unravel non-linear manifold(s) of

multiple views. All this is addressed by the proposed DS-

GPLVM model.
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III. THEORETICAL BACKGROUND: GAUSSIAN PROCESS

LATENT VARIABLE MODELS (GPLVM)

In this section, we first give a brief overview of the

GPLVM [35] for learning a non-linear low-dimensional man-

ifold of a single observation space (e.g., the facial expression

data from a single view). We then describe two types of

discriminative priors for the manifold, which are used to obtain

the discriminative GPLVMs [17], [36] for data classification.

A. GPLVM

The GPLVM [35] is a probabilistic model for non-linear

dimensionality reduction. It learns a low dimensional manifold

X = [x1, . . . ,xN ]T ∈ RN×q , with q ≪ D, corresponding to

the high-dimensional observation space Y = [y1, . . . ,yN ]T ∈
RN×D. The learning of the manifold and its mapping to the

observation space is modeled using the framework of Gaussian

Processes (GP) [37]. Specifically, by using the covariance

function k(xi,xj) of GPs, the likelihood of the observed data,

given the manifold, is defined as

p(Y|X, θ) =
1

√

(2π)ND|K|D
exp(−

1

2
tr(K−1YYT )), (1)

where K is the kernel matrix, the elements of which are

obtained by applying the covariance function k(xi,xj), to

each training data-pair (i, j) ∈ {1 . . . N}. The covariance

function is usually chosen as the sum of the Radial Basis

Function (RBF) kernel, bias and noise terms

k(xi,xj) = θ1 exp(−
θ2
2
‖xi − xj‖

2) + θ3 +
δi,j
θ4

, (2)

where δi,j is the Kronecker delta function, and θ =
(θ1, θ2, θ3, θ4) are the kernel parameters [37]. The manifold

X is then obtained as the mean of the posterior distribution

p(X, θ|Y) ∝ p(Y|X, θ)p(X) (3)

where the spherical Gaussian prior is usually placed over

the manifold. This prior prevents the GPLVM from placing

latent points infinitely far apart, i.e. latent positions close to

the origin are preferred [17]. The learning of the manifold is

accomplished by minimizing the negative log-likelihood of the

posterior in Eq. (3), w.r.t. the latent coordinates in X, which

is given by

L =
D

2
ln |K|+

1

2
tr(K−1YYT )− log(p(X)). (4)

To enforce the latent positions to be a smooth function of

the data space, [38] proposed to back-constrain the GPLVM.

This ensures that the points that are close in the data space are

also close on the manifold. More importantly, these constraints

allow us to learn the inverse mappings, which are used during

the inference step to map the query points from the data

space onto the manifold. Specifically, each datum yi is back-

constrained so that it satisfies

xij = gj(yi;Aj) =

N
∑

m=1

amjkbc(yi,ym), (5)

where xij is the j-th dimension of xi ∈ Rq , gj is the kernel

based regression over Y, and A is the matrix that holds the

parameters for the regression. Different projection vectors Aj

are used for each feature dimension in order to be able to

learn different weights for each feature dimension, as in the

standard linear kernel regression. To obtain a smooth inverse

mapping in the back-constraints, we use the RBF kernel

kbc(yi,ym) = exp(−
γ

2
‖yi − ym‖2), (6)

where γ is the inverse width parameter. With such defined

back constraints, the model learning is accomplished either by

minimizing the likelihood in Eq.(4) s.t. the back constraints,

or by plugging the expression in Eq.(5) into the likelihood

function, and solving the unconstrained optimization problem.

B. Discriminative GPLVM (D-GPLVM)

The GPLVM is a generative model of the data, where a sim-

ple spherical Gaussian prior is placed over the manifold [17].

However, this model can be adapted for classification by using

a discriminative prior that encourages the latent positions of

the examples of the same class to be close and those of

different classes to be far on the manifold. This has firstly been

explored in [17], where a prior based on Linear Discriminant

Analysis (LDA) is proposed. LDA tries to maximize between-

class separability and minimize within-class variability by

maximizing

J(X) = tr(S−1
w Sb), (7)

where Sw and Sb are within- and between-class matrices,

respectively, defined as

Sw =

L
∑

i=1

Ni

N

[

1

Ni

Ni
∑

k=1

(x
(i)
k −Mi)(x

(i)
k −Mi)

T

]

, (8)

Sb =

L
∑

i=1

Ni

N
(Mi −M0)(Mi −M0)

T . (9)

Here, Ni training points from class i are stored in X(i) =

[x
(i)
1 , . . . , x

(i)
Ni

], Mi is the mean of examples of class i, and

M0 is the mean of examples of all the classes. The energy

function in Eq. (7) is used to define discriminative prior over

the manifold as

p(X) =
1

Zd
exp

{

−
1

σ2
d

J−1

}

, (10)

where Zd is a normalization constant, and σd represents a

global scaling of the prior. Then, the Discriminative GPLVM

(D-GPLVM) [17] is obtained by replacing the Gaussian prior

in Eq. (3) with the prior in Eq. (10). The authors also proposed

a version of the prior based on Generalized Discriminant

Analysis (GDA).

A more general prior based on the notion of the graph

Laplacian matrix [39] has been used to derive a discrimina-

tive GPLVM model named Gaussian Process Latent Random

Field (GPLRF) [36]. To define the prior, an undirected graph

G = (V, E) is first constructed, where V = {V1, V2, . . . , VN}
is the node set, with node Vi corresponding to a training

example xi, and E = {(Vi, Vj)i,j=1...N |i 6= j,xi and

xj belong to the same class} is the edge set. By pairing each

node with the random vector X∗k = (X1k,X2k, . . . ,XNk)
T
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(for k = 1, 2, . . . , q), we obtain a Gaussian Markov Random

Field (GMRF) [40] w.r.t. graph G. Next, each edge in the graph

is associated with a weight (in this case, 1), and the weights

are stored in the weight matrix defined as

Wij =

{

1 if xi and xj , i 6= j, belong to the same class

0 otherwise.

(11)

The graph Laplacian matrix is then defined as L = D −W,

where D is a diagonal matrix with Dii =
∑

j Wij . Finally,

using L, the discriminative GMRF prior is defined as

p(X) =

q
∏

k=1

p(X∗k) =
1

Zq
exp

[

−
β

2
tr(XTLX)

]

, (12)

where Zq is a normalization constant and β > 0 is a scaling

parameter. The term tr(XTLX) in the discriminative prior in

Eq. (12) reflects the sum of the distances between the latent

positions of the examples from the same class. Thus, the latent

positions from the same class that are closer will be given

higher probability. This prior can be seen as a more general

version of the LDA prior in Eq. (10), without the restriction on

the size of the manifold. Also, the weights used to compute L

can be defined using not only the labels, but also the observed

data, resulting in additional smoothing constraints. Finally, the

cost function of the GPLRF model is obtained by plugging the

prior in Eq. (12) into Eq. (4).

IV. DISCRIMINATIVE SHARED GPLVM (DS-GPLVM)

The D-GPLVM from Sec. III-B is designed for a single ob-

servation space. In this section, we generalize the D-GPLVM

so that it can simultaneously learn a discriminative manifold

of multiple observation spaces. This is attained by using the

framework of Shared GPs ([15], [16]). In our approach, we

assume that the multiple observation spaces (e.g., different

views of facial expressions) are dependent, and that they can be

aligned on a discriminative shared manifold. In what follows,

we first introduce the Shared GP model for alignment (fusion)

of multiple observation spaces in the shared manifold, and

define the discriminative shared-space prior for the manifold.

We then describe learning and inference in the proposed

model.

A. Shared-space GPLVM

Given a set of corresponding features Y =
{Y(1), . . . ,Y(V )}, extracted from V views, instead of

learning independent manifold of data from each view as

done in GPLVM, we learn a single manifold X that is

assumed to be shared among the views. Within the Shared

GPs framework, the joint likelihood of Y, given the shared

manifold X, is factorized as follows

p(Y|X, θs) = p(Y1|X, θ(1)) . . . p(YV |X, θ(V )), (13)

where θs = {θ(1), . . . , θ(V )} are the kernel parameters for

each observation space, and the kernel function is defined as

in Eq. (2). It is assumed here that each observation space

is generated from the shared manifold via separate GP. The

shared latent space X is then found by minimizing the joint

negative log-likelihood penalized with the prior placed over

the shared manifold, and is given by

Ls =
∑

v

L(v) − log(p(X)) (14)

where L(v) is the negative log-likelihood of data from view

v = 1, . . . , V , and is given by

L(v) =
D

2
ln |K(v)|+

1

2
tr[(K(v))−1Y(v)(Y(v))T ]+

ND

2
ln 2π,

(15)

where K(v) is the kernel matrix associated with the input

data Y(v). In Eq. (15), the spherical Gaussian prior is placed

over the manifold. To obtain a shared manifold for multi-

view classification, in the following we define a discriminative

shared-space prior.

B. Discriminative Shared-space Prior

To define discriminative shared-space prior for multi-view

learning, we generalize the GMRF prior for the single view

given by Eq. (11). To this end, we first construct the view-

specific weight matrices W(v), v = 1, . . . , V . Instead of using

only the class labels, we also use the data-dependent weights.

Specifically, the elements of the weight matrix are obtained

by applying the RBF kernel to the data from each view as

W
(v)
ij =







exp

(

−
‖y

(v)
i

−y
(v)
j

‖
2

t(v)

)

if i 6= j and ci = cj ,

0 otherwise.
(16)

where y
(v)
i is the i-th sample (row) in Y(v), ci is the class

label, and t(v) is the kernel width which is set to the mean

squared distance between the training inputs as in [41]. Then,

the graph Laplacian for view v is L(v) = D(v)−W(v), where

D(v) is a diagonal matrix with D
(v)
ii =

∑

j W
(v)
ij . Because

the graph Laplacians from different views vary in their scale,

we use the normalized graph Laplacian, defined as

L
(v)
N = (D(v))−1/2L(v)(D(v))−1/2, (17)

Subsequently, we define the (regularized) joint Laplacian as

L̃ = L
(1)
N + L

(2)
N + . . .+ L

(V )
N + ξI =

∑

v

L
(v)
N + ξI, (18)

with I the identity matrix, and ξ a regularization parameter

(typically set to a small value e.g., 10−4), which ensures that

L̃ is positive-definite [42]. This, in turn, allows us to define

the discriminative shared-space prior as

p(X) =

V
∏

v=1

p(X|Y(v))
1
V =

1

V · Zq
exp

[

−
β

2
tr(XT L̃X)

]

.

(19)

Here, Zq is a normalization constant and β > 0 is a scaling

parameter. The discriminative shared-space prior in (19) aims

at maximizing the class separation in the manifold learned

from data from all the views, and it can be regarded as a

multi-view kernel extension of the parametric LDA/LPP prior

defined for a single view in [17], [36]. Using this prior, the
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negative log-likelihood of the proposed DS-GPLVM model is

given by

Ls(X) =
∑

v

L(v) +
β

2
tr(XT L̃X), (20)

where L(v) is defined by Eq. (15).

C. Back-constraints

In the GPLVM from Sec.III-A, the back-constraints, defined

by the inverse mappings, ensure that topology of the output

space is preserved on the manifold. In DS-GPLVM, this is

achieved by the discriminative shared-space prior since the

weight matrix used to define the prior is built from input

data. However, to perform inference with DS-GPLVM we still

need to learn the inverse mappings that project data from

different views onto the shared manifold. For this, we consider

two scenarios. In the first, we define v sets of constraints

(one for each view), which are enforced by separate inverse

mappings from each view to the shared space. In the second,

we define one set of constraints (for all the views), and which

are enforced by a single inverse mapping from all the views

to the shared space. We refer to the former as independent

back-projections (IBP), and the latter as single back-projection

(SBP). These are given by

• IBP from each view v = 1, . . . , V

X = g(Y(v),A(v)) = K
(v)
bc A(v). (21)

• SBP from V views

X = g(Y,A) =

(

V
∑

v=1

wvK
(v)
bc

)

A = K̃A, (22)

where g(·, ·) represents the mapping function(s) learned using

the kernel regression. The elements of K
(v)
bc are given by

Eq. (6) and wv is the (scalar) weight for view v.

Note that for a single view, the model can be re-

parametrized to obtain an unconstrained optimization problem

(see Sec. III-A). Yet, in the case of multiple views, this

is not possible as it would result in different X for each

view. Therefore, we need to solve a constrained optimization

problem, the complexity of which increases with the number

of views. To efficiently solve this, in the following section

we propose an iterative learning algorithm for simultaneous

learning of the shared space and inverse mappings in the

proposed model.

D. DS-GPLVM: Learning and Inference

Learning of the model parameters X, θs and A, consists

of minimizing the negative log-likelihood given by Eq. (20)

subject to either the IBP or SBP constraints. Formally, we aim

to solve the following minimization problem:

argmin
X,θs,A

Ls(X) +R(g) (23)

s.t.

{

IBP (X,A(v)) , X−K
(v)
bc A(v) = 0 , v = 1, . . . , V

SBP (X,A) , X− K̃A = 0 ,
∑V

v=1 wv = 1, wv ≥ 0,

where R(g) is a regularization term. To obtain the function

form for R(g), we first derive the solution of the regularized

kernel regression from the mapping function of the infinite-

dimensional feature space g(xi) = φ(xi)
Tw, as in [43]. The

solution to this problem is of the form of w =
∑N

i=1 aiφ(xi).
Hence, by applying the Representer Theorem [44] on this

space, and by using the Tikhonov regularization for the

parameters w, we arrive at the optimal functional form for

R(g) as
{

∑

λ(v)

2 r(g(v)), r(g(v)) = tr((A(v))TK
(v)
bc A(v)), for IBP

λ
2 tr(AT K̃A) , for SBP

(24)

IBP: Parameter Optimization. We first present the learning

procedure for the more general case involving the IBP con-

straints, and then provide the solution for the SBP case. From

Eq. (23), we see that the back-mapping from each view is

represented by an independent set of linear constraints. We

exploit this to find the model parameters by iteratively solving

a set of sub-problems. To this end, we first incorporate the

IBP constraints into the regularized log-likelihood in Eq. (23)

by using the Lagrange multipliers. As a result, we obtain the

following augmented Lagrangian function:

LIBP (X, {A(v),Λ(v)}Vv=1) = Ls(X) +R(g) +
V
∑

v=1

〈Λ(v), IBP (X,A(v))〉+
µ

2

V
∑

v=1

‖IBP (X,A(v))‖2F ,

(25)

where Λ(v) are the Lagrange multipliers for view v, 〈·, ·〉 is the

inner product, and µ > 0 is the penalty parameter. We can see

from Eq. (25) that the linear constraint has been incorporated

into the cost function as a quadratic penalty term without

affecting the solution to the problem. The role of the Lagrange

multipliers (inner product term) is to achieve efficiency in

obtaining the solution without the requirement of sequentially

increasing the penalty parameter to infinity [18]. The standard

approach is to minimize the objective in Eq. (25) w.r.t. all the

model’s parameters simultaneously. Yet, this is impractical,

as the fact that the objective function is separable, is not

exploited to simplify the problem. To remedy this, we employ

the Alternating Direction Method (ADM) [18] to decompose

the minimization into subproblems, each of which can be

solved separately w.r.t. to a subset of the model parameters.

More specifically, we split the learning of the parameters of

the shared space and the back-mappings from each view, by

defining the iterations of ADM as follows. We first solve for

X and θs as

{X, θs}t+1 =argmin
X,θs

Ls(X) +

µt

2

V
∑

v=1

‖IBP (X,A
(v)
t ) +

Λ
(v)
t

µt
‖2F . (26)

Then, for each view v = 1, ..., V , we solve for A(v) as

A
(v)
t+1 = argmin

A(v)
r(A(v)) +

µt

2
‖IBP (Xt+1,A

(v))+
Λ

(v)
t

µt
‖2F ,

(27)
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and finally update the Lagrangian and the penalty parameter

as

Λ
(v)
t+1 = Λ

(v)
t + µtIBP (Xt+1,A

(v)
t+1) (28)

µt+1 = min(µmax, ρµt), (29)

respectively. Note that in Eq. (29), ρ is kept constant (it is

typically set to ρ = 1.1).

Since there is not a closed-form solution for the problem in

Eq. (26), we use the conjugate gradient algorithm (CG) [37]

to minimize the objective w.r.t. the latent positions X and

the kernel parameters θs
1. On the other hand, the problem in

Eq. (27) is similar to that of Kernel Ridge Regression (KRR),

and it has a closed-form solution, which is given by

A(v) = (K
(v)
bc +

λ(v)

µt
I)−1(X+

Λ
(v)
t

µt
) (30)

However, this solution depends on the parameters γ(v) and

λ(v), which need to be tuned through costly cross-validation

procedures. To alleviate this, we reformulate the optimization

problem in Eq. (27). For this, we use the notion of the Leave-

One-Out (LOO) cross-validation procedure for the KRR [45]

to define the learning of the parameters γ(v) and λ(v). Once

estimated, these parameters are used to compute A(v).

The idea of the LOO learning procedure is based on the

fact that given any training set and the corresponding learned

regression model, if we add a sample to the training set with

the target equal to the output predicted by the model, the latter

will not change since the cost function will not increase [45].

Thus, given the training set with the sample y
(v)
i left out, the

predicted outputs X̂(−i) (the superscript denotes that the i-th

sample was left out) will not change if the sample y
(v)
i with

target x̂
(−i)
i is added to the set. Then, the goal of LOO is to

minimize the difference between the predictions x̂
(−i)
i and the

actual outputs xi for all the samples. To compute this, we first

need to define the matrix

M ,

[

mii mT
i

mi Mi

]

= (K
(v)
bc +

λ(v)

µt
I), (31)

where we partitioned the inverse matrix from Eq. (36) so that

the elements corresponding to the i-th sample appear only in

the first row and column of M (the same is done for X and

Λ
(v)
t in order to place the i-th row on the top). Furthermore,

Mi is the kernel matrix formed from the remaining elements

as Mi = (K
(v)
bc\i +

λ(v)

µt
IN−1). Then, using Eq. (36), the

prediction and the actual target for sample i are given by

x̂
(−i)
i = mT

i M
−1
i miA

(v)
i +mT

i A
(v)
−i (32)

xi = miiA
(v)
i +mT

i A
(v)
−i −Λ

(v)
i /µt. (33)

We can now define the cost for the LOO procedure, which is

ELOO =
1

2

N
∑

i=1

‖xi − x̂
(−i)
i ‖2 =

1

2

N
∑

i=1

‖
A

(v)
i

[M−1]ii
−

Λ
(v)
i

µt
‖2

(34)

1The derivatives of the objective w.r.t. the model parameters are given in
the appendix

Algorithm 1 DS-GPLVM: Learning and Inference

Learning

Inputs: D = (Y(v), c), v = 1, . . . , V

Initialize µmax >> µ0 > 0, ρ = const., X0, A
(v)
0 , Λ

(v)
0 .

repeat

Step 1: Update (X, θs) by minimizing Eq. (26).

Step 2: Minimize ELOO from Eq. (34) w.r.t

(γ(v),λ(v))v=1,...,V for IBP, and (γ,λ) for SBP.

Step 3: Update (Λ(v), µ, A(v)) for IBP, and (Λ, µ, A)
for SBP, from Eq. (28), (29) and (36).

until convergence of Eq. (25)

Outputs: X, A

Inference

Inputs: y(v)∗ for IBP, and [y(1)∗, ...,y(V )∗] for SBP, k for

classification.

Step 1: Find the projection x∗ to the latent space using

Eq. (21) for IBP, and Eq. (22) for SBP.

Step 2: Apply kNN classifier to the latent space to obtain

the class prediction: c∗ = kNN(x∗,X).
Output: c∗

Minimization of ELOO w.r.t. γ(v) and λ(v) is accomplished

using the CG algorithm again.2 By plugging these parameters

into Eq. (36), we obtain A(v). Note that by adopting the LOO

learning approach, we: (i) avoid the burden of the standard

cross-validation procedures, which are time-consuming, and

(ii) reduce the chances of overfitting the model parameters by

using the additional cost defined in Eq. (34).

At this point, it is important to clarify that under the

proposed ADM-based optimization scheme we are able to

automatically learn the majority of the model’s parameters

(i.e., X θ, µ, λ, γ), avoiding the need of their tuning via

validation procedures. The only parameter learned by means

of cross-validation is the weight of the prior, β, while we

also need to explore the effect of the dimensionality, q, of the

manifold.

SBP: Parameter Optimization. Analogous to the IBP case,

we define the Augmented Lagrangian function for the SBP

case using the regularized negative log-likelihood and the

SBP constraints from Eq. (23). The resulting function has

the form as in Eq. (25), but after dropping the dependencies

on v, and replacing the IBP by SBP constraints. The model

parameters are then found by applying the proposed ADM to

the Augmented Lagrangian function. For this, the objectives

in each iteration of the ADM for the IBP case described above

are adjusted accordingly.

To achieve efficiency, when applying the CG algorithm to

the objective in each iteration of the ADM, with either IBP or

SBP constraints, we stop at the first line search of CG, update

the corresponding parameters, and go to the next iteration. The

ADM cycle is repeated until convergence of the Augmented

Lagrangian function.

Inference in the DS-GPLVM is straightforward. The test

2The exact derivation of Eq. (32)-(33) along with the gradients of Eq. (34)
w.r.t. γ(v) and λ(v) are given in the appendix.
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data y∗ (which for the view-invariant case come from a single

view v, and for the mutli-view case from all available views)

are first projected to the shared space using the back-mappings

defined by Eq. (21) for the IBP, or Eq. (22) for the SBP case. In

the second step, classification of the target facial expression

is accomplished by using a single classifier trained on the

discriminative shared manifold. For this, we use the kNN

classifier3. Alg.1 summarizes the learning and inference of

the proposed DS-GPLVM.

V. EXPERIMENTS

A. Datasets and Experimental Procedure

We evaluate the performance of the proposed DS-GPLVM

on expressive face images from three publicly available

datasets: MultiPIE [46], Labeled Face Parts in the Wild

(LFPW) [47] and Static Facial Expressions in the Wild

(SFEW) [48]. Fig. 2 shows sample images from these datasets.

From the MultiPIE dataset we used images of 270 subjects

depicting acted facial expressions of Neutral (NE), Disgust

(DI), Surprise (SU), Smile (SM), Scream (SC) and Squint

(SQ), captured at pan angles −30◦, −15◦, 0◦, 15◦ and 30◦,

resulting in 1531 images per pose. For all images, we selected

the flash from the view of the corresponding camera in order

to have the same illumination conditions. The LFPW dataset

contains images downloaded from google.com, flickr.com, and

yahoo.com, depicting spontaneous facial expressions (mainly

smiles), in large variation of poses, illumination and occlusion.

We used 200 images of NE and SM expressions from the

test set provided by [47]. We manually annotated the images

in terms of the poses used in MultiPIE. Lastly, the SFEW

dataset consists of 700 images of 95 subjects, extracted from

movies containing facial expressions with various head poses,

occlusions and illumination conditions. The images have been

labeled in terms of six basic emotion expressions, i.e., Anger

(AN), Disgust (DI), Fear (FE), Happiness (HA), Sadness (SA),

Surprise (SU) and Neutral (NE).

The images from both MultiPIE and LFPW were cropped so

as to have equal size (140×150 pixels), and annotations of the

locations of 68 facial landmark points were provided by [49],

which were used to align the facial images in each pose using

an affine transform. Similarly, the images from SFEW were

cropped (112×164 pixels) and aligned using 5 facial landmark

points (center of the eyes, tip of the nose, and corners of the

mouth) provided by [48]. For the experiments on MultiPIE, we

used three sets of features: (I) facial points, (II) LBPs [20],

and (III) DCT [25]. More specifically, from each aligned facial

image we extracted LBPs and DCT features from local patches

3In the model as defined, the resulting posterior is the manifold and not the
class information, so it cannot be used for the classification. For this reason,
we need to apply a classifier to the inputs projected onto this manifold during
inference. A reasonable choice would be to opt for the GP classifier, however,
in our case this would be impractical for two reasons: (i) in the case of more
than two classes, the computation complexity of GPC increases significantly
since we have to learn a different kernel for each class, making it less
applicable to the large number of classes/views. (ii) More importantly, since
we are not interested in the classification uncertainty, the GPC is expected to
perform similarly to the standard kernel regression, as noted in [37]. Thus,
we opt for the deterministic kNN classifier which is the commonly employed
classifier in the GPLVM discriminative models (e.g., see GPLRF [36]).

Fig. 2. Example images from MultiPIE (top), LFPW (middle) and SFEW
(bottom) datasets with the facial point annotations for the first two.

of size 15×15 around the facial landmarks. For LBPs, we used

8 neighbors with radius 2, and in the case of DCT we kept

the first 15 coefficients (zig-zag method) of each patch. We

then concatenated the results from all the patches, to form the

feature vectors. Note that LBP and DCT are complementary

features, since the former captures local information between

neighborhood of pixels, while the latter preserves the spatial

correlation of the pixels inside the neighborhood. Finally, we

applied PCA on the three feature sets, keeping 95% of the total

energy, to remove unwanted noise and artifacts and reduce the

dimensionality of the original feature vectors (especially the

appearance based). The resulting dimensionality of each set

varies among the views. The point features have around 20

dimensions, while both the appearance features have around

100 dimensions. In the experiments conducted on LFPW, we

used only feature set (I), while for SFEW we extracted the

same local texture descriptors as in [48], i.e., Local Phase

Quantization (LPQ) [50] and Pyramid of HOG (PHOG) [51].

To reduce the dimensionality, we applied again PCA by

keeping the same amount of energy, i.e., 95%. This results

in 47- and 220-dimensional feature vectors respectively.

The conducted experiments are organized as follows. In

Sec.V-B, we perform a qualitative analysis of the DS-GPLVM

using the MultiPIE dataset. In Sec.V-C, we evaluate the

effectiveness of the proposed DS-GPLVM in the task of

multi-view FER on MultiPIE. Specifically, we consider two

settings: the standard multi-view setting, where images from

all the views are available during training/inference, and view-

invariant setting, where images from all the views are available

during training but only a single view is available during

inference. Furthermore, we also evaluate the model on the

feature fusion task, where different types of features extracted

within the same view are used. In addition, we challenge the

robustness of the model under different illumination, where

we evaluate the performance of the model on images with

different lighting conditions within the same view. In Sec.V-E,

we test the ability of the DS-GPLVM to generalize to sponta-

neously displayed facial expressions. For this, we perform the

cross-dataset evaluation of the model, where images of SM

and NE class from MultiPIE are used for training, and images

of the corresponding classes from LFPW for testing. Finally,

in Sec.V-F, we evaluate DS-GPLVM on the feature fusion task



ELEFTHERIADIS et al.: DISCRIMINATIVE SHARED GAUSSIAN PROCESSES FOR MULTI-VIEW AND VIEW-INVARIANT FER 9

using real-world images from the SFEW dataset.

In the experiments mentioned above, we compare the DS-

GPLVM to the state-of-the-art view-invariant and multi-view

learning methods. As the baseline method, we use the 1-

nearest neighbor (1-NN) classifier trained/tested in the original

feature space. Similarly, we apply 1-NN classifier to the sub-

space obtained by LDA [33], supervised LPP [52], and their

kernel counterparts, the D-GPLVM [17] with the LDA-based

prior, and the GPLRF [36]. These are well-known methods

for supervised dimensionality reduction, and we show their

performance in the view-invariant version of the experiments.

We also compare to our previous work in [19], where the latent

space and the back-mappings are learned independently. We

denote this model as DS-GPLVM (ind.) to distinguish it from

the model proposed here. In the experiments conducted in the

multi-view/feature fusion settings, we compare DS-GPLVM to

the baseline methods: CCA [28] and KCCA [29]. Since they

are designed to deal with only two modalities (feature sets),

we follow the pair-wise (PW) evaluation approach, as in [14],

i.e., the methods were trained on all combinations of view

pairs, and their results were averaged. We also compared DS-

GPLVM to the state-of-the-art methods for multi-view learn-

ing, namely, the MvDA [14], and the multi-view extensions

of LDA (GMLDA), and LPP (GMLPP), proposed in [13].

In all our experiments we performed 5-fold subject inde-

pendent cross-validation. We used a separate validation set to

tune the parameters of each model. More specifically, for all

the GPLVM-based methods (i.e., DS-GPLVM, GPLRF and D-

GPLVM) the optimal weight for the prior β was set using a

grid search. For the GPLRF and D-GPLVM we performed

additionally an extra grid search to tune the parameter of the

kernel of the back-mapping (RBF kerenel was used) as in [17].

For the GMA-based methods (i.e., GMLDA and GMLPP)

we tuned the parameter that controls the alignment of the

subspaces as suggested in [13]. Finally, in KCCA the width

of the employed RBF kernel was cross-validated, while LPP,

LDA and MvDA had no parameters to tune. To report the

accuracy of FER, we use the classification rate, where the

classification was performed on the test set using the 1-NN

classifier in all the subspace-based models.

The five folds with the corresponding train, validation and

test sets have been generated once and kept fixed during all

the experiments for all the methods, in order to achieve a fair

comparison. For the experiments on MultiPIE the size of the

train, validation and test set was 600, 600, and 300 images per

view respectively. For the cross dataset experiment, since we

used only images with SM and NE expressions from MultiPIE

to train the models, the resulting train and validation sets were

slightly smaller, and in particular, 500 and 100 images per pose

respectively. The test set was the 200 images from LFPW and

it varied depending the pose from 30 − 65 images. Finally,

for the experiments on SFEW we adopted the configuration

proposed by the creators of the dataset in [48]. The data were

already split into two folds, for training and testing. Each

time the training fold was further split in 5 folds, to tune

the parameters of the models with 5-fold subject independent

cross-validation. The size of the resulting sets was 280, 70 and

350 images respectively. For this experiment, due to the small

size of the dataset, after tuning the parameters with the cross

validation, each model was re-trained on the whole train and

validation set (the one of the two original folds of the dataset)

with the optimal parameters, before reporting the results on

the test set.

B. DS-GPLVM: Qualitative Analysis

In this section, we evaluate the performance of the proposed

DS-GPLVM w.r.t. the various parameter values. For this, we

use the feature set (I), i.e., the facial points, extracted from

the MultiPIE dataset. Fig. 3 shows average classification rate

(across the views) of the DS-GPLVM for different number of

training samples per view, the size of the shared-space, and

parameter β = {1, 3, 10, 30, 100, 300, 1000, 10000}. Fig. 3(a)

shows performance of SBP and IBP versions of DS-GPLVM,

the parameters of which are learned using a varying number of

training data, while the manifold size is fixed to 5. We see that

the SBP versions of DS-GPLVM (multi-view setting) achieves

a high classification rate (∼ 87%) when using a relatively

small number of training data (i.e., 100 images per view). On

the other hand, the IBP version of DS-GPLVM (view-invariant

setting) requires more training data (∼ 500 images per view)

to achieve a similar performance. This is a consequence of not

using the images from all available views during the inference

step. However, with the increased number of training data,

the model effectively learns the correlations among the views,

rendering the information from some views redundant during

the inference. From Fig. 3(b), we see how the size of the

shared space affects the accuracy of the learned model. It is

clear that both SBP and IBP variants of the model find the

5-dimensional shared-space optimal for classification. Lower

dimensional manifolds fail to explain the correlations among

the views, while manifolds with more than 5 dimensions do

not include any additional discriminative information. Fig. 3(c)

illustrates the influence of the shared-space discriminative

prior on the classification task. In the case of both SBP and

IBP, β = 300 results in the best performance of the model,

while its further increase leads to a drop in the performance.

This is expected, as for high values of β the likelihood term in

the DS-GPLVM is fully ignored, resembling LPP. Evidently,

such model is prone to overfitting mainly because of the strong

influence of the labels during training. On the other hand, for

small values of β the shared-space is not sufficiently informed

about the class labels, resulting again in a lower performance.

In what follows, we set for both the SBP and IBP variants of

the model the number of training examples to 500, size of the

shared space to 5, and β = 300.

Fig. 3(d)-(f) illustrate the convergence properties of the DS-

GPLVM. We see from Fig. 3(d) that the regularized negative

log-likelihood of the model reaches a local minimum in less

than 25 cycles of the ADM. Fig. 3(e) shows the Frobenius

norm [33] of the constraints for the SBP and IBP variants, the

difference between the estimated shared space and the back-

mappings. Note that the DS-GPLVM is always initialized in

the −15◦ view (it is found to be the most informative view).

Hence, we can see that the norm of this view (black curve)

starts from a low value when IBP is used. However, with
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Fig. 3. DS-GPLVM. Upper row shows mean classification rate across all 5 poses from the MultiPIE dataset using feature-set (I) as a function of: (a) the number
of training data per pose, (b) the dimensionality of the latent space, and (c) the prior scale parameter β. Lower row depicts: (d) the negative Log-Likelihood,
(e) the norms of the constraints in the DS-GPLVM, and (f) the mean classification rate, as a function of the number of the ADM cycles.

more cycles of the ADM, the DS-GPLVM learns the shared

manifold by taking into account all views, and thus, the error

of back projections from the remaining views to the shared

subspace decreases, while the one from the initialized view,

i.e., the −15◦, increases slightly – the consequence of the

model trying to align the manifolds of different views. The

red curve represents the error between the learned subspace

and the back projections in the case of SBP. It is clear that

the SBP variant outperforms the IBP variant of the model,

since the former achieves a closer back-projection to the shared

discriminative manifold, resulting in a better classification per-

formance. This comes with a larger number of the ADM cycles

during learning of the DS-GPLVM with SBP since it uses

all views simultaneously to learn the back-mapping. Finally,

from Figs. 3(e)-(f), we observe strong correlation between the

norms of the model variants and the classification rate. In

all cases, the increased classification performance is achieved

by decreasing the gap between the shared-space and back-

mappings, with both measures converging synchronously.

C. Comparisons with other Multi-view Learning Methods

1) Same Facial Features in Multiple Views: We evaluate

the proposed DS-GPLVM model across views in both view-

invariant and multi-view setting. The former refers to the

scenario where data from all views are used for training, while

testing is performed using data from each view separately, and

the latent space is back-constrained using the IBP. The latter

refers to the scenario where data from all views are used during

training and testing, and the latent space back-constrained

using the SBP. The same strategy was used for evaluation of

other multi-view techniques i.e., GMLDA and GMLPP. Table I

summarizes the results for the three sets of features, averaged

across the five views from MultiPIE. We see that the facial

points (feature set (I)) result in a more discriminative descrip-

tor for all methods, although we end up with higher standard

deviation compared to the appearance features (feature sets

(II) and (III)). Evidently, DS-GPLVM outperforms the other

view-invariant and multi-view models on all three feature sets,

showing that it can successfully unravel the discriminative

shared-space that is better suited for FER. Interestingly, in

this experiment LDA- and LPP-based linear methods achieve

high accuracy, which is comparable to that of D-GPLVM and

GPLRF. Moreover, GMLDA and GMLPP perform similarly

to their single view trained counterparts, indicating that they

were not able to fully benefit from the presence of additional

views. We also observe a similar performance of the MvDA

and the standard LDA. Note that, the accuracy of DS-GPLVM

is higher by 3% than that of GPLRF, which is a special case of

DS-GPLVM. We attribute this to the ability of the DS-GPVLM

to integrate the discriminative information from multiple views

into the shared space. We draw similar conclusions from

the comparison between DS-GPLVM and DS-GPLVM (ind.),

where the latter fails to impose the view constraints on the

shared manifold.

Table II shows the performance of the models tested across

all views, when feature set (I) (the best for all the models from

Table I) is used. It is evident that the proposed DS-GPLVM

performs consistently better than the compared models across

all views. Note that all models achieve the lowest classification

rate in the frontal view. However, the DS-GPLVM significantly

improves the performance attained by the other models in this

view. We attribute this to the fact that DS-GPLVM performs

the classification in the shared space, where the classification

of the expressions from the frontal view is facilitated due to

the discriminative information learned from the other views.

Furthermore, it is worth noting that the models’ accuracy

on the negative pan angles (the left side of the face) is
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TABLE I
AVERAGE CLASSIFICATION RATE ACROSS FIVE VIEWS FROM THE

MULTIPIE DATASET FOR THREE FEATURE SETS. IBP VERSION OF

DS-GPLVM WAS TRAINED USING ALL AVAILABLE VIEWS, AND TESTED

PER VIEW. THE REPORTED STANDARD DEVIATION IS ACROSS FIVE VIEWS.

Methods
Features

I II III

kNN 76.15 ± 5.42 81.71 ± 2.86 71.80 ± 2.23

LDA 87.72 ± 6.67 86.24 ± 2.31 87.02 ± 2.59

LPP 87.81 ± 6.65 86.16 ± 2.16 86.82 ± 2.60

D-GPLVM 87.17 ± 5.80 85.92 ± 2.95 86.87 ± 3.15

GPLRF 86.93 ± 6.30 85.58 ± 2.66 86.88 ± 2.91

GMLDA 86.72 ± 6.57 85.18 ± 2.94 86.40 ± 3.40

GMLPP 87.74 ± 6.12 86.10 ± 2.13 86.21 ± 2.06

MvDA 87.84 ± 6.51 86.66 ± 2.84 86.79 ± 2.86

DS-GPLVM (ind.) 88.64 ± 5.60 87.13 ± 2.73 87.34 ± 2.91

DS-GPLVM 90.60 ± 5.40 88.44 ± 2.84 89.18 ± 2.83

higher than on the corresponding positive pan angles (the right

side of the face). Since MultiPIE contains more examples of

negative emotion expressions, this confirms recent findings

in [53] showing that the left hemisphere of the face is more

informative when it comes to expressing negative emotions

(e.g., Disgust). The right hemisphere is more informative for

positive emotions (e.g., Happiness). In other words, due to

the imbalance of the emotion categories in the used dataset,

the learned classifiers were biased toward negative emotion

expressions, and, hence, to the negative pan angles.

Table III compares the performance of the SBP variant of

DS-GPLVM with other multi-view learning methods on three

feature sets. The poor performance of KCCA can be attributed

to its inherent propensity to overfitting training data, as also

observed in, e.g., [29]. In addition, both CCA and KCCA

do not use any supervisory information during the subspace

learning, which further explains their low performance. By

comparing GPLRF (with concatenated features from different

views) and DS-GPLVM, we see that the former, although

not a multi-view method, performs comparably to our DS-

GPLVM in the case of feature set (I). We attribute this to

the fact that GPLRF can effectively explain variation in facial

points from multiple views using a single GP. Yet, because

of the large variation in the appearance of facial expressions

from different views, the same is not the case when feature

sets (II) and (III) are used. When compared to the state-of-

the-art methods for multi-view learning (GMA and MvDA),

DS-GPLVM performs similarly or better on all three feature

sets. Furthermore, the SBP version of DS-GPLVM during

inference succeeds to model complementary information from

all available views, resulting in a higher accuracy compared

to the best performing view, i.e., −15◦, of the IBP variant of

DS-GPLVM (see Table II).

2) Feature Fusion: We next evaluate DS-GPLVM in the

feature fusion task, where the goal is to augment view-

invariant facial expression classification by fusing different

feature sets. Specifically, we trained the SBP version of DS-

GPLVM using the three feature sets extracted from the frontal

view only. This choice has been made because the frontal

view is not the most informative one (−15◦ is), and hence,

there is a lot of space for improvement. From Table IV,

TABLE III
CLASSIFICATION RATE FOR THE MULTI-VIEW TESTING SCENARIO USING

THE SBP VERSION OF DS-GPLVM. THE REPORTED STANDARD

DEVIATION IS ACROSS THE 5 FOLDS.

Methods
Features

I II III

PW-CCA 72.42 ± 0.020 73.56 ± 0.025 56.07 ± 0.028

PW-KCCA 52.92 ± 0.039 69.15 ± 0.017 42.42 ± 0.026

GPLRF (conc.) 97.37 ± 0.014 89.42 ± 0.012 89.94 ± 0.012

GMLDA 96.33 ± 0.015 93.04 ± 0.011 92.15 ± 0.013

GMLPP 96.20 ± 0.014 91.37 ± 0.019 90.83 ± 0.017

MvDA 97.12 ± 0.017 93.56 ± 0.011 92.81 ± 0.015

DS-GPLVM 97.98 ± 0.008 93.96 ± 0.015 93.29 ± 0.010

TABLE IV
ACCURACY OF THE AUGMENTED CLASSIFICATION IN THE FRONTAL POSE.
FEATURE FUSION IS ATTAINED WITH THE SBP VERSION OF DS-GPLVM.

Methods
GPLRF (conc.) GMLDA GMLPP MvDA DS-GPLVM

83.16 ± 0.021 78.94 ± 0.018 85.95 ± 0.019 86.19 ± 0.014 87.13 ± 0.019

we see that the accuracy of DS-GPLVM in the frontal view

outperforms that achieved by the GPLRF by more than 3%,

where the features are simply concatenated and used as input.

This is because GPLRF cannot fully account for variation

in all three feature sets using a single GP. By contrast, DS-

GPLVM learns separate GPs for each feature set, resulting in

improved classification performance in the frontal view. It is

also important to mention that by training GPLRF using each

feature set separately, we obtained the following classification

rates: 77.6%, 81.3% and 82.1%, for feature sets (I), (II), and

(III), respectively. Compared to the accuracy of DS-GPLVM

in Table IV (87.1%), the proposed feature fusion significantly

outperforms each of the feature sets used independently. This

is expected since the appearance features (LBPs and DCT),

extracted from local patches, do not encode global information

about face geometry, which is efficiently encoded by facial

points. On the other hand, facial points are not informative

about transient changes in facial appearance (e.g., wrinkles

and bulges) which are successfully captured by the appearance

features. Thus, the combination of these features within the

proposed framework turn out to be highly effective. The rest

of multi-view methods also achieve significant increase in their

performance (apart from GMLDA). However, DS-GPLVM

outperforms (although marginally in some cases) all these

state-of-the-art models.

3) Same Facial Features in Different Illumination: Herein,

we evaluate the proposed DS-GPLVM under different illumi-

nation on MultiPIE, where the goal is to learn an illumination-

free manifold for FER. For the purposes of this experiment,

we used only images from the frontal view with two different

lighting conditions: (i) no lighting source (dark view), and (ii)

lighting from the flash of the corresponding camera (bright

view). Each lighting condition has been considered as a sepa-

rate view to train the IBP variant of DS-GPVLM with feature

set III. DCT features were selected, since they are less robust

to illumination variations than LBPs, and thus a difference in

the performance between the two illumination conditions is
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TABLE II
VIEW-INVARIANT CLASSIFICATION RATE ON MULTIPIE DATASET FOR THE BEST FEATURE SET (i.e., FACIAL POINTS (I)). IBP VERSION OF DS-GPLVM

IS TRAINED USING ALL AVAILABLE VIEWS, AND TESTED PER VIEW. THE REPORTED STANDARD DEVIATION IS ACROSS 5 FOLDS.

Methods
Poses

−30◦ −15◦ 0◦ 15◦ 30◦

kNN 80.88 ± 0.007 81.74 ± 0.014 68.36 ± 0.054 75.03 ± 0.024 74.78 ± 0.012

LDA 92.52 ± 0.015 94.37 ± 0.013 77.21 ± 0.014 87.07 ± 0.040 87.47 ± 0.007

LPP 92.42 ± 0.017 94.56 ± 0.011 77.33 ± 0.021 87.06 ± 0.045 87.68 ± 0.011

D-GPLVM 91.65 ± 0.017 93.51 ± 0.009 78.70 ± 0.021 85.96 ± 0.040 86.04 ± 0.010

GPLRF 91.65 ± 0.017 93.77 ± 0.007 77.59 ± 0.021 85.66 ± 0.026 86.01 ± 0.008

GMLDA 90.47 ± 0.012 94.18 ± 0.007 76.60 ± 0.029 86.64 ± 0.032 85.72 ± 0.015

GMLPP 91.86 ± 0.013 94.13 ± 0.002 78.16 ± 0.013 87.22 ± 0.023 87.36 ± 0.008

MvDA 92.49 ± 0.011 94.22 ± 0.014 77.51 ± 0.022 87.10 ± 0.031 87.89 ± 0.010

DS-GPLVM (ind.) 92.25 ± 0.013 94.83 ± 0.014 80.18 ± 0.025 87.63 ± 0.017 88.32 ± 0.023

DS-GPLVM 93.55 ± 0.019 96.96 ± 0.012 82.42 ± 0.018 89.97 ± 0.023 90.11 ± 0.028

TABLE V
CLASSIFICATION RATE ON THE FRONTAL VIEW UNDER DIFFERENT

ILLUMINATION FOR FEATURE SET (III). THE IBP VARIANT OF

DS-GPLVM WAS USED. THE REPORTED STANDARD DEVIATION IS

ACROSS THE 5 FOLDS.

Methods
Illumination

Frontal flash No flash

GPLRF 82.09 ± 0.015 77.00 ± 0.025

GMLDA 82.76 ± 0.017 84.01 ± 0.029

GMLPP 82.10 ± 0.029 84.75 ± 0.030

MvDA 83.80 ± 0.015 84.20 ± 0.019

DS-GPLVM 85.51 ± 0.032 85.68 ± 0.021

expected. From Table V we see that this difference is present

in the results of the single-view method, i.e., the GPLRF.

The latter was trained separately for each lighting condition,

and hence, the two learned manifolds falsely encoded the

illumination as important information, resulting in a consid-

erable gap between the performance of the bright and the

dark view. Contrary to that, the compared multi-view methods,

i.e., GMLDA, GMLPP and MvDA, managed to remove, to

some extent, the lighting condition of the views under the

common space. This is evidenced by the improvement on the

performance of the dark view, although a notable difference

between the performance of the two views still exists. On the

other hand, the proposed DS-GPLVM, not only achieved better

results under both illumination conditions, but it also managed

to align them by discarding the illumination under the shared

space. Note that the DS-GPLVM reports similar classification

rate, regardless the original lighting condition of the view.

D. Comparisons with other Multi-view Methods

We compare DS-GPLVM (with the IBP variant using feature

set (III)) to the state-of-the-art methods for view-invariant

FER. The results for the LGBP-based method, where the

LBP features are extracted from Gabor images, are obtained

from [6]. For the method in [12], we extracted the Sparse

SIFT (SSIFT) features from the same images we used from

MultiPIE. In both of the aforementioned methods, the target

features (LGBP and SSIFT) are extracted per-view, and then

fed into the view-specific SVM classifiers. We also compared

our model to the Coupled GP (CGP) model [9], where first

view-normalization is performed by projecting a set of facial

points (feature set (I)) from non-frontal views to the canonical

view. In our experiments with CGP, we set the canonical view

to the most discriminative view among the positive pan angles

(i.e., 15◦). This was followed by classification using the SVM

learned in this view. Table VI shows comparative results.

We observe first that all methods (except [12]) achieve the

best results for the 15◦ view, indicating that regardless of the

method/features employed, this view is more discriminative

(among the positive pan angles) for the target task. We also

note that DS-GPLVM outperforms on average the other two

methods, which are based on the appearance features. This

difference is in part due to the features used and in part due

to the fact that the methods in [6] and [12] both fail to model

correlations between different views. By contrast, the CGP

method accounts for the relations between the views in a pair-

wise manner, while DS-GPLVM and DS-GPLVM (ind.) do so

for all the views simultaneously. However, the proposed DS-

GPLVM shows superior performance to that of DS-GPLVM

(ind.), which in turn, outperforms CGP. This is because CGP

performs view alignment (i) directly in the observation space,

and (ii) without using any discriminative criterion during this

process. Thus, the effects of high-dimensional noise and the

errors of view-normalization adversely affect its performance

in the classification task. On the other hand, DS-GPLVM

(ind.) aligns the views directly in the shared space optimized

for expression classification, while the proposed DS-GPLVM

imposes further constraints on the shared manifold, resulting

in a better performance on the target task. This is also reflected

in the confusion matrices in Fig. 4. Note that the main source

of confusion are the facial expressions of Disgust and Squint.

This is because they are characterized by similar facial changes

in the region of the eyes. However, the proposed DS-GPLVM

improves significantly the accuracy on Squint, compared to the

other models.

E. Cross Dataset Experiments on MultiPIE and LFPW

In this section, we test the ability of DS-GPLVM (the IBP

variant) to generalize to unseen real-world spontaneous data.

To this end, we evaluate different models on the smile detec-

tion task, where the feature set (I) extracted from images from

MultiPIE is used for training. Images from LFPW are used
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(a) DS-GPLVM (b) CGP (c) SSIFT (d) LGBP

Fig. 4. Comparative confusion matrices for FER over all angles of view for the (a) DS-GPLVM, (b) CGP, (c) SSIFT and (d) LGBP.

TABLE VI
COMPARISON OF TESTED METHODS ON THE MULTIPIE DATABASE. THE

IBP VERSION OF DS-GPLVM WITH FEATURE SET (III), OUTPERFORMS

THE STATE-OF-THE-ART METHODS FOR VIEW-INVARIANT FER. THE

REPORTED STANDARD DEVIATION IS ACROSS 5 FOLDS.

Methods
Poses

0◦ 15◦ 30◦

LGBP [6] 82.1 87.3 75.6

SSIFT [12] 81.14 ± 0.009 79.25 ± 0.016 77.14 ± 0.019

CGP [9] 80.44 ± 0.017 86.41 ± 0.013 83.73 ± 0.019

DS-GPLVM (ind.) 83.73 ± 0.029 88.41 ± 0.014 87.69 ± 0.022

DS-GPLVM 84.31 ± 0.025 89.21 ± 0.015 90.26 ± 0.025

for testing. This is a rather challenging task mainly because

the test images are captured in an uncontrolled environment,

which is characterized by large variation in head-poses and

illumination, and occlusions of parts of the face. Also, the

models are trained using data of posed (deliberately displayed

as opposed to spontaneous and “in the wild”) expressions,

which can differ considerably in subtlety compared to the

spontaneous expressions used for testing. The difficulty of

the task is evidenced by the results in Table VII, where

we observe a significant drop in accuracy of all methods.

Furthermore, we observe that the most informative views for

smile detection are the ones with positive degrees (the right

side of the face). This, again, is for the reasons explained in

Sec. V-C1. However, all methods attain the higher accuracy in

the frontal pose. We attribute this to the fact that the faces with

non-frontal poses do not exactly belong to the discrete set of

poses, but rather a continuous range from 0◦ to ±30◦. Thus,

the accuracy of the pose registration significantly affects the

performance of the models. Nevertheless, the proposed DS-

GPLVM outperforms the other models by a large margin in

all poses except −30◦. To explain this, we checked the number

of test examples of smiles in this pose, and found that only

few were available (contrary to other poses, which contained

far more examples). Therefore, the misclassification of some

resulted in a significant drop in the performance of both DS-

GPLVM and DS-GPLVM (ind.).

F. Expression Recognition on Real World Images from SFEW

Finally, we evaluate the models on the feature fusion task,

where the features are extracted from images of spontaneously

displayed facial expressions in real-world environment. Specif-

ically, we used LPQ [50] and PHOG [51] features from

expressive images from the SFEW dataset. Contrary to the

TABLE VII
SMILE DETECTION IN IMAGES FROM LFPW DATASET. THE METHODS

WERE TRAINED ON MULTIPIE DATASET USING FEATURE SET (I). WE

USED THE IBP VERSION OF DS-GPLVM FOR THE VIEW-INVARIANT FER.

Method
Poses

−30◦ −15◦ 0◦ 15◦ 30◦

GMLDA 69.00 43.00 80.94 55.76 76.00

GMLPP 70.00 47.50 81.25 57.58 79.66

MvDA 70.00 50.00 81.25 51.52 80.00

DS-GPLVM (ind.) 57.20 52.50 84.00 69.38 80.00

DS-GPLVM 55.33 58.00 90.00 74.55 80.00

cross-dataset evaluation from the previous section, here both

training and testing are performed using real-world sponta-

neous expression data. Note that LPQ is a texture descriptor

that captures local information over a neighborhood of pixels,

resulting in its being robust to illumination changes. On the

other hand, PHOG is a local descriptor which is capable of

preserving the spatial layout of the local shapes in an image.

Thus, we expect the fusion of these two to achieve improved

performance on the target task. The provided images of SFEW

were originally divided into two subject independent folds, and

we report the average results over the folds.

Table VIII shows the results obtained for different methods.

We used the SBP variant of the DS-GPLVM. As the baseline

we use the results obtained by the database creators [48]. The

authors used non-linear SVM classifier on the concatenation

of the features to report the classification rate on the feature

fusion task. We see that all employed multi-view learning

methods outperform the baseline on average. This is due to

their ability to effectively exploit the discriminative infor-

mation embedded in both feature spaces. However, in most

cases, the linear multi-view learning methods are outperformed

by the proposed DS-GPLVM. We attribute this to the fact

that the linear models are unable to fully unravel the non-

linear discriminative manifold of the used feature spaces. By

contrast, this is handled better by the non-linear mappings in

the DS-GPLVM, resulting in its average performance being the

best among the tested models. Note, however, that in the case

of Surprise, Fear and Neutral, its performance is lower than

that of the linear models. By inspecting the back-projected test

examples of these two expressions on the shared manifold,

we observed that Neutral was spread around other emotion

categories. This is because the varying level of expressiveness

of different subjects, resulting in examples of Neutral being
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TABLE VIII
CLASSIFICATION RATES PER EXPRESSION CATEGORY OBTAINED BY DIFFERENT MODELS TRAINED/TESTED USING THE SFEW DATASET.

Anger Disgust Fear Happiness Neutral Sadness Surprise Average

Baseline 23.00 13.00 13.90 29.00 23.00 17.00 13.50 18.90

GMLDA 23.21 17.65 29.29 21.93 25.00 11.11 10.99 19.90

GMLPP 16.07 21.18 27.27 39.47 20.00 19.19 16.48 22.80

MvDA 23.21 17.65 27.27 40.35 27.00 10.10 13.19 22.70

DS-GPLVM 25.89 28.24 17.17 42.98 14.00 33.33 10.99 24.70

categorized as other expressions with low-intensity levels.

As for the Surprise and Fear, the learned shared manifold

indicated overfitting of these expressions. This is mainly due

to subject differences, which adversely affected the ability of

the back-mappings to correctly map these expressions onto

the shared manifold. Nevertheless, DS-GPLVM outperformed

the rest of the models on the remaining expressions, with a

considerable improvement on Disgust, Happiness and Sadness.

VI. CONCLUSION

In this paper, we proposed the DS-GPLVM model for learn-

ing a discriminative shared manifold of facial expressions from

multiple views, that is optimized for the expression classifica-

tion. This model is a generalization of latent variable models

for learning a discriminative subspace of a single observation

space. As such, it presents a complete non-parametric multi-

view learning framework that can instantiate the rest of the

compared non-linear single-view methods (i.e. D-GPLVM[17]

and GPLRF [36]). As evidenced by our results on posed and

spontaneously displayed facial expressions, when compared

to the state-of-the-art methods for supervised multi-view

learning and facial expression recognition, modeling of the

manifold shared across different views and/or features using

the proposed framework considerably improves both multi-

and per- view/feature classification of facial expressions.

APPENDIX A

DERIVATIVES

During the optimization, we need to update X and θs by

solving the problem in Eq. (26). The latter is a sum of two

terms, the negative log-likelihood given by Eq. (20), and the

norm term which, for convenience, we denote as

C =
µt

2

V
∑

v=1

‖IBP (X,A
(v)
t ) +

Λ
(v)
t

µt
‖2F (35)

Because of the likelihood term, the defined problem does

not have an exact solution, and thus, we need to apply the

CG algorithm. Hence, we have to compute the gradients of

Eq. (20),(35) w.r.t. the latent positions X and the kernel

parameters θs

•
∂Ls

∂X =
∑

v
∂L(v)

∂X + βL̃X

•
∂Ls

∂θs
=
[

∂L(1)

∂θ(1) · · · ∂L(V )

∂θ(V )

]T

•
∂C
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∑

v µt(X−A
(v)
t ) +Λ

(v)
t

•
∂C
∂θs

= 0.

The likelihood term L(v) is a function of the kernel K(v), thus,

we need to apply the chain rule in order to find the derivatives

w.r.t X and θ(v)

•
∂L(v)

∂xij
= tr

[

( ∂L(v)

∂K(v) )
T ∂K(v)

∂xij

]
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Finally, the derivatives of the selected kernel are

•
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1

= exp(− θ2
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2)

•
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APPENDIX B

LOO SOLUTION OF THE REGRESSION STEP IN ADM

Herein, we derive the solution for the more general form of

the IBP case. The same steps can be followed to arrive at the

solution of the SBP case. The optimal values of parameters

A(v) are given by the solution of the linear equation:

(K
(v)
bc +

λ(v)

µt
I)A(v) = (X+

Λ
(v)
t

µt
). (36)

The system of linear equations defined by Eq. (36) is insen-

sitive to permutations of the ordering of the equations and

the variables. Thus, at each iteration of the LOO, the i-th left

out sample and the corresponding equation can be placed on

top, without affecting the result. This enables us to define the

matrix M as in Eq. (31). By placing M back in Eq. (36), we

end up with the following linear system of equations:

[

mii mT
i

mi Mi

]

A(v) =

[

xi +Λ
(v)
i /µt

X(−i) +Λ
(v)
−i /µt

]

(37)

Now, the solution of the parameters of the regression with the

i-th sample excluded is

A
(v)
−i = M−1

i (X(−i) +
Λ

(v)
−i

µt
),
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and the LOO prediction of the i-th sample is given by

x̂
(−i)
i = mT

i A
(v)
−i = mT

i M
−1
i (X(−i) +

Λ
(v)
−i

µt
)

= mT
i M

−1
i

[

mi Mi

]

A(v)

= mT
i M

−1
i

[

mi Mi

]

[

A
(v)
i

A
(v)
−i

]

= mT
i M

−1
i miA

(v)
i +mT

i A
(v)
−i .

From Eq. (37) we have

xi +
Λ

(v)
i

µt
=
[

mii mT
i

]

[

A
(v)
i

A
(v)
−i

]

= miiA
(v)
i +mT

i A
(v)
−i

(38)

and thus, the error between the prediction x̂
(−i)
i and the actual

output xi is

xi − x̂
(−i)
i = (mii −mT

i M
−1
i mi)A

(v)
i −Λ

(v)
i /µt

=
A

(v)
i

[M−1]ii
−

Λ
(v)
i

µt
,

where on the last equation we used the Shur complement from

the block matrix inversion lemma, and Mii denotes the i-th
diagonal element of the matrix M. Finally, we end up with

the cost of the LOO for all samples, ELOO, as defined in

Eq. (34). For the SBP case we follow exact the same steps,

with the difference that we drop from all the equations the

dependencies on the view v and we replace the K
(v)
bc with

K̃ =
V
∑

v=1

wvK
(v)
bc .

Our final goal is to find the optimal parameters γ(v) and λ(v)

that minimize the error of the LOO cross validation, defined

by Eq. (34). For this, we need to calculate the derivatives of

ELOO w.r.t. γ(v) and λ(v). We first define the diagonal matrix

D =







1
[M−1]11

. . .
1

[M−1]NN







that allows us to reformulate Eq. (34) into

ELOO =
1

2
‖DA(v) −

Λ(v)

µt
‖2. (39)

Using the chain rule, the derivatives of Eq. (39) are given by

∂ELOO

∂λ(v)
= tr

[

(

∂ELOO

∂A(v)

)T
∂A(v)

∂λ(v)
+

(

∂ELOO

∂D

)T
∂D

∂λ(v)

]

and

∂ELOO

∂γ(v)
= tr

[

(

∂ELOO

∂A(v)

)T
∂A(v)

∂γ(v)
+

(

∂ELOO

∂D

)T
∂D

∂γ(v)

]

,

while the detailed derivatives inside the trace terms are

•
∂ELOO

∂A(v) = DT (DA(v) − Λ(v)

µt
)

•
∂ELOO

∂D =
[

DA(v)(A(v))T − 1
µt
Λ(v)(A(v))T

]

⊙ I

•
∂A(v)

∂λ(v) = −M−1 ∂M
∂λ(v)M

−1(X+
Λ

(v)
t

µt
) = − 1

µt
M−1A(v)

•
∂A(v)

∂γ(v) = −M−1 ∂M
∂γ(v)M

−1(X +
Λ

(v)
t

µt
) =

−M−1 ∂K
(v)
bc

∂γ(v) A
(v)

•
∂D

∂λ(v) = −(D⊙D)⊙ ∂M−1

∂λ(v) = (D⊙D)⊙ (M−1M−1)

•
∂D

∂γ(v) = −(D ⊙ D) ⊙ ∂M−1

∂γ(v) = (D ⊙ D) ⊙

(M−1 ∂K
(v)
bc

∂γ(v) M
−1)

where the value of
∂K

(v)
bc

∂γ(v) for each element of the kernel is

given in Appendix A and ⊙ denotes the Hadamard product of

two matrices. Once we have obtained the optimal parameters

γ(v) and λ(v), we can compute A(v) from Eq. (36).
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