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Abstract. A major reason leading to tracking failure is the spatial dis-
tractions that exhibit similar visual appearances as the target, because
they also generate good matches to the target and thus distract the
tracker. It is in general very difficult to handle this situation. In a selec-
tive attention tracking paradigm, this paper advocates a new approach of
discriminative spatial attention that identifies some special regions on the
target, called attentional regions (ARs). The ARs show strong discrimi-
native power in their discriminative domains where they do not observe
similar things. This paper presents an efficient two-stage method that di-
vides the discriminative domain into a local and a semi-local one. In the
local domain, the visual appearance of an attentional region is locally
linearized and its discriminative power is closely related to the prop-
erty of the associated linear manifold, so that a gradient-based search is
designed to locate the set of local ARs. Based on that, the set of semi-
local ARs are identified through an efficient branch-and-bound proce-
dure that guarantees the optimality. Extensive experiments show that
such discriminative spatial attention leads to superior performances in
many challenging target tracking tasks.

1 Introduction

Our computer vision research on target tracking always aims to develop meth-
ods that can work as good as the human. Large research efforts have been de-
voted to region-based tracking and have produced many outstanding methods,
e.g., the mean-shift tracker [17], the kernel-based tracker [3], and the ensemble
tracker [19], etc. The major research has been largely focused on effective im-
age region matching to handle large variations in images, and efficient search
to locate the target. However, many real applications in video analysis always
demand trackers that are more robust and can perform for a longer duration.

Among many reasons that lead to tracking failure, one of the most difficult
cases is due to the distractions in the environment that present similar visual
appearances as the target and thus exhibiting good matching to the target. These
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distractions can be from the background clutter or from similar objects in the
scene. As the distractions produce false positives in target detection, they lead
to wrong association to the tracker, and thus fail the tracker. Because they do
give good matches to the target, it is difficult to detect such a distraction failure
promptly based on their matching scores.

It is known that our human dynamic visual perception is selective [18], which
allows the processing in our visual system to be concentrated on relevant and
important visual information. The selection occurs in all stages in visual process-
ing, and it can be based on both innate principles as well as learned heuristics.
It is the visual selection that makes our visual system efficient and adaptive in
following moving targets. Among many possible kinds of visual selections, spatial
attention focuses the computation on some selected local image regions on the
target, called Attentional Regions or ARs. Tracking the target is fulfilled by the
tracking of these ARs. This mechanism appears to be a key in handling clutters,
distractions and occlusions in target tracking.

To introduce spatial attention to the design of tracking algorithms, in addition
to the matching and searching of ARs, the selection of ARs is a critical issue
for persistent tracking. We often observe an interesting phenomenon in various
region-based tracking methods that the initialization of the target region may
largely influence the tracking performance. A slightly different initialization of
the target region sometimes ends up with a much better or worse result. Un-
fortunately, this phenomenon has not received much attention in the literature,
although it conveys a strong message that the selection of ARs cannot be ar-
bitrary. This paper is concerned on finding ARs on the target so as to achieve
more robust and persistent tracking.

More specifically, an AR is a local image region that has the largest discrim-
inative power among others in its spatial domain. This spatial selection task is
not trivial. For a given target, the number of its candidate attentional regions
(i.e., any sub image region on the target) are enormous. Although we can ex-
amine all ARs in a brute-force way, we cannot afford its O(n2) complexity in
practice because n (i.e., the number of candidates) is huge, and thus a more
efficient method is desirable.

This paper presents a novel and efficient solution to the spatial selection of
discriminative attentional regions. In the feature space, the feature of an AR
has a large margin to its nearest neighbors, and we can use this margin in the
feature space to represent the discriminative power of an AR. The larger the
margin, the more distinctive an AR is in its spatial domain. An AR needs to be
distinctive in both its small spatial neighborhood (i.e., local) and a larger domain
(i.e., semi-local) that is determined by the possible motion of this attentional
region. In the local domain, the local neighbors of an attentional region approx-
imately span a local linear manifold, so that we recast the discriminative power
to be a condition number measure of this local linear manifold, and design an
efficient gradient-based search for all local ARs. In the semi-local domain, as the
approximation does not hold, we design an effective branch-and-bound search
that largely reduces the complexity while achieving the optimality. Our extensive
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experiments show that the selected discriminative attentional regions are more
resilient to distractions and lead to robust tracking.

The novelty of this work includes the following four aspects. (1) Because most
existing tracking methods focus on matching but spatial distractions also exhibit
good matches, these methods are challenged. This paper explicitly handles the
distractions by discovering attentional regions that are resilient to distractions.
(2) The proposed approach to locating ARs considers both local and semi-local
distractions. This new approach leads to an efficient solution that integrates a
gradient-based search and a branch-and-bound search. (3) Based on the spatial
selection, this paper presents a new robust tracking algorithm that uses multiple
ARs and is adaptive to the appearance changes of the target and the dynamic
scene.

2 Related Work

In this section, we briefly review recent approaches related to our work. Region-
based tracking has been studied in [17,3,5,7,8,13]. In [7], the spatial configuration
of the regions is done by optimizing the parameters of a set of regions for a given
class of objects. However, this optimization needs to be done off-line. In [8], a
method for a well known local maximally stable extremal region (MSER) has
been proposed. As the backward tracking is integrated, it restricts its application
to off-line tracking.

There is a vast literature on salient region selection [10,15,4,11,12,6,1,2]. In
these works, spatial selection expects the regions to be located at corner-like
points. They emphasize the repeatability of the regions in matching. The re-
peatability of the regions is related to the local discrimination introduced in this
paper. But this paper goes one step further. Beside the local discrimination, this
paper also studies the semi-local case.

It is worth mentioning that the proposed AR selection mechanism is different
from the feature selection paradigms [9]. Feature selection aims to choose global
features that best discriminate the object from the background. The target is
treated as a whole in those approaches. While in the proposed method, the
target is represented by a set of spatial attentional regions. Such a difference in
modeling leads to the difference in the selection. In feature selection methods,
discriminative features are selected to separate the target and the background,
but the AR selection chooses local distinctive image sub-regions (rather than
the features). Since the spatial distracters exhibit similar visual appearances as
the target, choosing whatever features always results in similar feature vectors.
Therefore, feature selection methods are limited in handling this case. On the
contrary, the proposed spatial selection method pinpoints to the actual spatial
distinctions, and thus is well able to cope with such spatial distracters.

The most closely related work to the proposed method may be [5]. In [5],
a general framework of spatial selective attention was advocated for tracking.
The early selection process extracts a pool of ARs that are defined as the salient
image regions which have good localization properties, and the late selection pro-
cess dynamically identifies a subset of discriminative attentional regions through
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a discriminative learning on the historical data on the fly. However, this work is
a large leap from [5], not only because this work presents a much more in-depth
study of spatial selection, but also it makes the general selective attentional
tracking framework more practical and more effective in practice. The main
differences include: (1) The tracking method in [5] is a very specific implemen-
tation, and many components in this framework need further investigation and
improvement. Moreover, it selects the ARs that are only local discriminative,
and it is quite limited in handling the semi-local distraction which is much more
common and more challenging in practice. On the contrary, the proposed method
selects the ARs that are both local and semi-local discriminative. (2) We explic-
itly define discriminative margin, which is a new concept, and consider the local
discriminative and semi-local discriminative in a unified way. On the contrary,
the late selection in [5] is not as principled as the proposed approach.

3 Attentional Region (AR)

3.1 Spatial Discrimination

An attentional region (or AR) is a local image region which has the largest
discriminative power among others in its spatial domain. At the first step, we
need to define a general discriminative measure.

Given a region R(x) located at position x in an image, we denote the set of its
neighboring regions by {R(y),y ∈ N (x)}, where N (x) is the spatial neighbor-
hood of x, and we call it the discriminative domain. The visual features of R(x)
is represented by the feature vector f(x). Denote by D(·, ·) the metric to measure
the difference of two feature vectors. Then we define the general discriminative
score ρ(x) of the AR R(x) by:

ρ(x) � min
y∈N (x)

D(f(x), f(y)). (1)

It is clear that the larger the ρ(x) is, the more discriminative the AR R(x) is
from its neighbors. If ρ(x) = 0, i.e., there is a perfect match in the neighborhood,
then this AR has no discriminative power.

However, in practice, we recognize the fact that the most similar one is very
likely to be located in a very close vicinity L(x), i.e., min

y∈N (x)
D(f(x), f(y)) is

very likely equal to min
y∈L(x)

D(f(x), f(y)). Then this discriminative score can only

reflect the local discrimination. To characterize the semi-local discrimination,
we should exclude L(x) when we define the discriminative score. Let S(x) =
N (x)\L(x). So in practice, we define the discriminative scores ρS(x) and ρL(x)
for semi-local and local domains, respectively:

ρS(x) = min
y∈S(x)

D(f(x), f(y)), (2)

ρL(x) = min
y∈L(x)

D(f(x), f(y)). (3)
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Fig. 1. The discriminative margins for a certain AR

Figure 1 illustrates this concept. In the spatial domain, the red star represents
x, the blue squares represent some y ∈ L(x), and the green triangles represent
some y ∈ S(x). We also show them in the feature space where the distance be-
tween two points is determined by the distance measure D(·, ·). The hypersphere
OL is centered at x with a radius ρL(x). Therefore, all the blue squares are out
of the hypersphere, and there is at least one blue square on the boundary of the
hypersphere. It is clear that the discriminative score ρL(x) reflects the margin
between the target and the set of its local neighbors in the feature space. The
larger the ρL(x) is, the more local discriminative the AR R(x) is. Similarly, the
hypersphere OS is centered at x with the radius ρS(x). The discriminative score
ρS(x) reflects the margin between the target and the set of its nearest semi-local
neighbors in the feature space.

3.2 Attentional Region

An AR needs to be distinctive in both its local spatial neighborhood (i.e., the
local domain) and a larger domain (i.e., the semi-local domain).

We denote the set of local ARs by XL = {x : ρL(x) > εL} where εL > 0 is
a threshold for the local domain. Similarly, denote the set of semi-local ARs by
XS = {x : ρS(x) > εS}. By definition, an AR needs to be discriminative at both
local and semi-local domains. Therefore, the set of ARs X = XL ∩ XS .

The intuitive explanation of the difference between AR and a common region
is shown in Fig. 2. In Fig. 2, three representative patches are chosen, and the
matching scores between the selected patches and their neighbors are visualized.

As shown in Fig. 2, the matching error surfaces of the AR and the common
regions behave quite differently: The region at the chin has a poor local discrim-
inative power since its neighbors along the boundary looks quite similar. The
region at the eye has a poor semi-local discriminative power, because there is a
similar eye corner in the valid semi-local domain and it acts as the distractor.
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Fig. 2. Three regions and their matching error surfaces with their corresponding neigh-
bor regions

Fig. 3. ARs are related to their associated discriminative domain. The leftmost is the
local ARs. When N (x) becomes larger, there exists a less number of ARs. As shown in
the rightmost, only three ARs survive in the largest range we specified. The positions
are at the mouth and the joint part between the leg and the body of the zebra.

The region at the mouth has both strong semi-local and local discriminative
power as good matches are only focused in a very small neighborhood. Tra-
ditional methods [10,4,11,12] may examine those local ARs but are unable to
identify the semi-local ones, because they only consider the local properties.

Whether a region is discriminative or not is related to the range of the associ-
ated discriminative domain N (x). A region is an AR in a spatial domain if and
only if there are no distractors (i.e., good matches) in this domain. When the
domain becomes larger, some distractors may be present, and thus reduce the
discriminative power of this region in the larger domain. If the discriminative
power becomes below the threshold, this region is no longer an AR. Thus, when
we keep enlarging the discriminative domain, we have fewer and fewer ARs.
Figure 3 shows one example to illustrate this situation.

4 Spatial Selection of ARs

For a given target, denote the set of its candidate regions (i.e., any sub image
region on the target) by Λ. The spatial selection task, i.e., finding the ARs in Λ,
is not trivial. Comparing all regions with all of their neighbors in a brute-force
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way is computationally infeasible, because the number of the candidate regions
is huge, and thus a more efficient method is needed.

We propose a two-step method to find ARs: (1) we first obtain all local ARs
XL based on an efficient gradient-based search. (2) Then we select a subset of
XL, whose element has strong semi-local discriminative power to be ARs through
an efficient branch-and-bound search that guarantees the optimality.

4.1 Gradient-Based Search for Local ARs

For a region located at x, assume f(x) ∈ R
d. The visual features of its local

spatial neighbors constitute a linear manifold (up to two dimensional) at f(x)
in the feature space. Assume Δx = [Δu, Δv]T , we have

f(x + Δx) ≈ f(x) + ΦΔx, (4)

where Φ � [ ∂f
∂u

∂f
∂v ] is a d × 2 matrix.

Using L2 metric for matching, the local discriminative margin ρL(x) becomes:

ρL(x)2 = min
x+Δx∈L(x)

‖f(x + Δx) − f(x)‖2 ≈ min
x+Δx∈L(x)

(Δx)T AΔx, (5)

where A � ΦT Φ is a 2×2 matrix which characterizes this local linear manifold.
Case 1: rank(A) = 1. It is clear that ρL(x) = 0.
Case 2: rank(A) = 2. The minimum is obtained at the inner boundary of

L(x) due to the discretization of x. Assume the inner boundary of L(x) to be
‖Δx‖ = 1. Then we have

ρL(x)2 = min
‖Δx‖=1

(Δx)T AΔx. (6)

We perform SVD on Φ and obtain two singular values σ1 and σ2. Without loss
of generality, we assume σ1 ≥ σ2. As A = ΦTΦ, σ2

1 and σ2
2 are the eigenvalues

of A.
We can easily see that ρL(x)2 = σ2

2 . Therefore, maximizing the margin ρL(x)
is equivalent to maximizing σ2. It is clear that when det(A) becomes larger, ρL(x)
will become larger, and then the problem becomes meaningless. But considering
the fact that det(A) is bounded, i.e., det(A) ≤ χ2, and the fact that det(A) =
(σ1σ2)2, we have

σ2
2 = χ

σ2
2

χ
≤ χ

σ2
2

σ1σ2
= χ

1
σ1/σ2

. (7)

It is clear that maximizing σ2 amounts to minimizing the condition number
σ1/σ2 of Φ.

The above analysis reveals the relation between the discriminative power of a
region and the singularity property of its local linear manifold.

In practice, only obtaining the criterion for local AR placement is insufficient,
since it is not attractive to exhaustively evaluate this criterion all over the image.
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In [4], a gradient descent algorithm has been proposed to efficiently find good
placement where the condition number of ΦTΦ is locally minimized. We follow
that algorithm in this paper. First we randomly initialize a set of AR candidates.
Following the gradient of the condition number these ARs converge to their
corresponding local minima. The set of local minima is XL.

The matrix Φ depends on the choices of the feature space and the matching
metric. In this paper we use the contextual flow [16] as the feature vector, because
it is robust to small changes on local appearance that invalidate the constancy
in brightness.1

4.2 Branch-and-Bound Selection of ARs from XL

Based on the set of local ARs XL obtained in Sect. 4.1, we obtain ARs with a
strong semi-local discriminative power from XL. We solve a more general and
flexible problem as follows:

Given the set XL = {x1, · · · ,xN} (i.e., |XL| = N), we want to choose the
ARs x̂1, · · · , x̂M ∈ XL with the M largest discriminative score ρS(·).

Since the linear approximation is invalid in the semi-local discriminative do-
main S(x), differential approaches are not appropriate. A brute-force exhaustive
method is: ∀x ∈ XL, we calculate ρS(x), and then select the most discriminative
ones. The complexity is O(|S(x)| × N), and is still intensive in practice.

Here we use a branch-and-bound search which largely reduces the complexity
while maintaining the same optimal result as by the exhaustive search.

Let S(x) = {x+ Δl1, · · · ,x+ Δln}, where n = |S(x)|, and Δli is the relative
position between the target AR and its ith neighbor in the semi-local discrimi-
native domain. Denote ρi(x) = min

y∈{x+Δl1,··· ,x+Δli}
D(f(x), f(y)). Then we have

ρi(x) = min{ρi−1(x), D(f(x), f(x+Δli))}, thus ρ1(x) ≥ · · · ≥ ρn(x) = ρS(x). In
the beginning, we initialize an empty priority queue P to store the candidates.
For each xi ∈ XL, we calculate ρ̂(xi) = ρ1(xi) as the upper bound of ρS(xi).
Then we sort {ρ̂(xi)} in the descending order and push them sequentially into
P so that the top state has the largest ρ̂(·). For each x, we associate a variable
γ(x) to count the number of elements in S(x) which has been searched around
x.

At every iteration, we retrieve the top state (x, ρ̂(x)) from P , where ρ̂(x) is
the current upper bound of ρS(x), and ρ̂(x) = ργ(x)(x). If γ(x) = n, meaning
that we have already sought all the neighbors in S(x), we output x into the set
of ARs and remove x from P .

Otherwise γ(x) < n, we increase γ(x) by 1, calculate f(x + Δlγ(x)), and up-
date the upper bound

ρ̂(x) := min{ρ̂(x), D(f(x), f(x + Δlγ(x)))}. (8)

Then we insert (x, ρ̂(x)) into P maintaining the property that P is sorted with
the descending order of ρ(·) (replace the old x). Then we retrieve the top state

1 In [16], Φ is the contextual gradient and can be computed directly in a closed form.
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Table 1. The branch-and-bound algorithm for selecting ARs

Input x1,x2, · · · ,xN , Δl1, · · · , Δln
Output x̂1, · · · , x̂M

1. FOR i = 1 TO N DO
calculate f(xi), f(xi + Δl1),
set ρ̂(xi) = D(f(xi), f(xi + Δl1)),
γ(xi) = 1

Initialize P as empty priority queue. c = 0.
2. Sort {ρ̂(xi)} in descending order.

Let ρ̂(x̄1) ≥ · · · ≥ ρ̂(x̄N),
FOR i = N TO 1 DO

push (x̄i, ρ̂(x̄i)) into P
3. Retrieve top state (x, ρ̂(x)) from P .
4. If γ(x) = n

c = c + 1, x̂c = x, goto 3.
Else goto 5.

5. If c = M , Return. Else goto 6.
6. γ(x) = γ(x) + 1

Calculate f(x + Δlγ(x))
Set ρ̂(x) = min{ρ̂(x),D(f(x), f(x + Δlγ(x))}
Insert (x, ρ̂(x)) into P so that P is still sorted
w.r.t. ρ̂(·). Goto 3.

again iteratively until a number of M ARs are found. The algorithm is summa-
rized in Table 1.

The top state x of P has the largest upper bound of ρS(x), because for the
remaining xis in P , ρS(xi) is bounded by ρ̂(x). As each time we only consider the
most promising x of P , this significantly reduce the complexity. The complexity

is O(
N∑

i=1

γ(xi)), and this method guarantees the optimality.

In practice, the complexity versus the exhaustive search is measured by the

ratio r = 1
nN

N∑

i=1

γ(xi). The value of r is 0.18 on average for our testing sequences,

e.g., for sequence zebra, r = 0.18. For sequence dolphin, r = 0.16. This means
that our method significantly reduces the complexity in searching for ARs. Extra
operations in our method (i.e., insertion and sorting) have little computational
complexity, as those operations take much less time than computing D.

5 Discriminative Attentional Visual Tracking

As the ARs are not similar to the other regions in their discriminative domain,
the tracking performance of ARs is very robust. We propose a new attentional
tracking method by using AR, and it has three important steps: At the first step,
we extract ARs from images. Secondly, the contextual flow tracking algorithm
[16] is applied to track each ARs independently. Finally, the beliefs of all the
ARs are fused to determine the target location.



Discriminative Spatial Attention for Robust Tracking 489

(a) Initialization (b) local ARs (c) ARs

Fig. 4. AR selection

5.1 AR Selection/Tracking

At the first frame, the target is initialized by the user. We evenly initialize Nmax

tentative ARs inside the target (Fig. 4(a)). The local ARs are shown in Fig.
4(b). Figure 4(c) shows top five ARs. For each AR, we record the geometrical
relation between the ARs and the target (the relative position and the scale).

For each AR, the tracking is done based on the contextual flow method [16].

5.2 Attentional Fusion and Target Estimation

After obtaining the motion of each AR, we apply a Hough-voting scheme [14]
to estimate the target location based on the matching scores of ARs and the
recorded geometry. The estimated AR location casts a probabilistic vote about
the target centroid position with respect to the AR center. The better the match-
ing performance of a certain AR, the higher the probabilistic score. After the
votes from all ARs are aggregated into a Hough image, the target location can
be estimated as the peak in this image. This scheme is appropriate to handle
occlusion. If some ARs are occluded, their matching scores will be very low, thus
the probabilistic votes from those ARs are very low, and contribute less to the
object location prediction than the ARs which are not occluded.

The scale of the target is estimated by a voting-like approach based on the
scale estimation for each AR. To obtain a robust estimation, we only count the
ARs which have high matching scores.

5.3 Model Adaptation

As the appearance changes, due to view differences, illumination variations and
shape deformation, can ruin the observation, the model adaptation mechanism
is necessary. We adapt the model by updating the ARs when necessary. The
matching score of each AR measures the variation of its appearance. If the
matching performance is good enough, we call the AR active. Otherwise, for a
certain AR, if the matching score has been low for a long period of time (e.g.,
consecutive 10 frames), we call it inactive since it probably undergoes appearance
changes or short term occlusion.

At the current frame, after target estimation, we check the matching score
for each AR to see if it remains active. When there are m inactive ARs at the
current frame, we remove them and select m new ARs from the target.
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Fig. 5. Comparison of different placement of one AR. (Top) the AR from our method
(bottom) the local AR

6 Experiments

For tracking initialization, we evenly initialize Nmax = 100 tentative ARs inside
the target. The size of the ARs is 25 × 25. For a certain AR, the size of its
discriminative domain N (x) is determined by its possible motion and the maxi-
mum search range for tracking. The larger the possible motion, the larger N (x)
we use.

Without code optimization, our C++ implementation comfortably runs at
around 15 fps on average on Pentium 3G for 320× 240 images.

We compare our method with an attentional visual tracker (AVT) [5] that
reported excellent tracking performance. For fair comparison, we use the con-
textual flow as the feature vector, and use the Hough voting scheme in the
fusion process for both methods. In addition, we have included the late selection
procedure in AVT for comparison.

6.1 Using the Most Discriminative AR

ARs are resilient to distractors, because by definition an AR is not confused
by its neighboring regions in its discriminative range. In this experiment, we
compare the tracking performance by selecting different ARs and demonstrate
the effectiveness of our method. The AR with the largest discriminative power is
shown at the top row of Fig. 5. We choose some local ARs for comparison (one
example is shown at the bottom row of Fig. 5). It is observed that at the top
row, the texture of the best AR is quite different from its neighborhood. While
at the bottom row, the texture of the AR contains stripes which is not quite
discriminative in its semi-local discriminative domain. Therefore, the tracking
performance shows that the local AR is unstable during tracking (keep drifting)
while the AR at the top row succeeds and is very stable.

6.2 Handling Local Appearance Changes

Tracking targets undergoing local deformation is difficult in practice. However, if
the local deformation only occurs in some parts of the target, the ARs on other
parts can still make the tracking robust. These stable ARs contribute more in
the fusion process as they have strong matching, so the tracking performance is
still good. The comparison result is shown in Fig. 6 and 7. In Fig. 6, although the
target appearance changes at some parts, the bottom-right AR is persistently
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Fig. 6. A comparison of DAVT and AVT [dancing]. (Top) AVT (bottom) the proposed
method

Fig. 7. A Comparison of DAVT and AVT [cheetah]. (Top) AVT (bottom) the proposed
method

robust and thus dominates the fusion and gives good tracking results. The white
ARs indicate those that have relative bad matching. Although these white ARs
sometimes do not have strong matching, in most cases they are robust, since
they are located at the boundary of the face and there are no distractors nearby.
In Fig. 7, the textures of the cheetah are very similar. The ARs found by the
proposed method are near the back and thigh of the cheetah. These regions look
different from the body of the cheetah, so they hardly drift to some other regions
inside the body. However, for AVT, it only selects some local ARs. We observe
that there are some distractors in the semi-local domain of these local ARs and
AVT fails as shown in Fig. 7.

We manually labeled the ground truth of our testing sequences to evaluate the
tracking performance. Figure 8 shows the comparison of tracking error between
DAVT and AVT in tracking error over time on the bicycle sequence (we use
a different initialization as in [5]). At the 330th Frame, AVT is distracted and
fails, but our method keeps the track persistently.

6.3 Handling Scale, Rotation and Occlusion

The scale estimation can be handled since the selected ARs are stable and rarely
distracted. As in our matching method, the contextual descriptor is rotation
invariant if we only use color contexts, the ARs give accurate matching despite
of the motion. Then we estimate the rotation by measuring the relative position
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Fig. 8. Comparison: tracking errors between DAVT and AVT

Fig. 9. Three examples of the proposed method

between the ARs. The occlusion can be handled by the fusion process. The
model adaptation is also illustrated. Three examples are shown in Fig. 9. On the
bottom row, the blue ARs indicate those that have been updated.

7 Conclusion

Spatial distraction is a major culprit for tracking failure, because distractors also
exhibit good matching. This paper presents a novel approach of discriminative
spatial attention to overcome this challenge, by selecting a set of discriminative
attentional regions on the target. The discrimination power of an attentional
region is defined by the margin of its feature from that of those in its discrim-
inative domain. By integrating local and semi-local discrimination, this paper
proposes an efficient method in finding ARs. Extensive tests demonstrate that
the proposed discriminative spatial attention scheme significantly improves the
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robustness in tracking. The further analysis [20] reveals that the existing works
on local saliency detection share the common purpose of achieving good local-
ization properties. Therefore, our AR selection scheme is very flexible so that
those methods can be alternatively adopted for finding local ARs.
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