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Abstract—Recently, there have been increasing interests in inferring mirco-expression from facial image sequences. Due to subtle

facial movement of micro-expressions, feature extraction has become an important and critical issue for spontaneous facial

micro-expression recognition. Recent works used spatiotemporal local binary pattern (STLBP) for micro-expression recognition and

considered dynamic texture information to represent face images. However, they miss the shape attribute of face images. On the other

hand, they extract the spatiotemporal features from the global face regions while ignore the discriminative information between two

micro-expression classes. The above-mentioned problems seriously limit the application of STLBP to micro-expression recognition. In

this paper, we propose a discriminative spatiotemporal local binary pattern based on an integral projection to resolve the problems of

STLBP for micro-expression recognition. Firstly, we revisit an integral projection for preserving the shape attribute of micro-expressions

by using robust principal component analysis. Furthermore, a revisited integral projection is incorporated with local binary pattern

across spatial and temporal domains. Specifically, we extract the novel spatiotemporal features incorporating shape attributes into

spatiotemporal texture features. For increasing the discrimination of micro-expressions, we propose a new feature selection based on

Laplacian method to extract the discriminative information for facial micro-expression recognition. Intensive experiments are conducted

on three availably published micro-expression databases including CASME, CASME2 and SMIC databases. We compare our method

with the state-of-the-art algorithms. Experimental results demonstrate that our proposed method achieves promising performance for

micro-expression recognition.

Index Terms—Spontaneous facial micro-expression, spatiotemporal, local binary pattern, integral projection, feature selection

✦

1 INTRODUCTION

Micro-expressions amongst nonverbal behavior like gestures

and voice have received increasing attention in recent years [1].

In situations in which people are motivated to conceal or suppress

their true emotions, their facial expressions may leak despite that

they try to conceal them. These leakages can be very useful for true

emotion analysis and many of these leakages are manifested in the

form of micro-expressions. However, micro-expressions are very

short involuntary facial expressions that reveal emotions people

try to hide. Generally, they last 1/25 to 1/3 second [2], [3]. It

is important to note that due to the visual differences of human

beings, not all people reach the same level of ability to detect

these facial expressions. Currently only highly trained individuals

are able to distinguish them, but even with proper training the

recognition accuracy is still less than 50% [4]. Therefore, this poor

performance makes an automatic micro-expression recognition

system very attractive.

Several earlier studies on automatic facial micro-expression
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analysis primarily focused on distinguishing facial micro-

expressions from macro-expressions [5] [6]. Shreve et al. [5] [6]

used an optical flow method for automatic micro-expression

spotting on their own database. However, their database contains

100 clips of posed micro-expressions, which were obtained by

asking participants to mimic some example videos that contain

micro-expressions. Polikovsky et al. in [7] proposed to use a 3D-

gradient orientation histogram for action unit recognition on their

collected database. Unfortunately, their work focused on posed

micro-expression as well, since in the collection procedure they

asked subjects to perform seven basic emotions with low intensity

and go back to neutral expression as quickly as possible. Wu et

al. in [8] combined Gentleboost and a support vector machine

classifier to recognize synthetic micro-expression samples from

the Micro Expression Training Tool. The significant problem

of posed micro-expressions is that they are different from real

naturally occurring spontaneous micro-expressions. A study in [2]

shows that spontaneous micro-expression occurs involuntarily,

and that the producers of the micro-expressions usually do not

even realize that they have presented such an emotion. Therefore,

methods trained on posed micro-expressions cannot really solve

the problem of automatic micro-expression analysis in practice.

Recently, researchers have started to conduct analysis on

spontaneous micro-expression recognition, as they can reveal

genuine emotions which people try to conceal. However, micro-

expression recognition suffers from two critical problems includ-

ing the short duration and low intensity of micro-expressions,
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because short duration makes micro-expression difficult to detect

and low intensity causes feature extraction algorithms hard to

extract the useful information. For the problem of short du-

ration, there are several available schemes to handle the short

duration change of micro-expression. In [9], they hypothesized

that dynamics in subtle occurring expressions are likely to be

sparse, and contains a significantly large number of redundant

frames. A principled approach of deconstructing motions into

several dynamic modes was utilized to much great effect than

standard temporal interpolation model. In [10], they characterized

the local movements of a micro-expression by the principal optical

flow direction of spatiotemporal cuboids extracted of a chosen

granularity. On the other hand, some researchers attempt to extract

the discriminative and useful feature from the low-intensity micro-

expression [11] [12] [13] [14]. As we know, geometry-based

and appearance-based features have been commonly employed

to analyze facial expressions [15] [16] [17]. Due to the subtle

change of micro-expression, the geometric-based features cannot

accurately capture subtle facial movements (e.g., the eye wrinkles)

of micro-expression recognition, while appearance-based features

describe the skin texture of faces, which can capture subtle

appearance changes such as wrinkles and shading changes. An

alternative way is to exploit deep features for micro-expression

recognition, which is motivated by its application of deep learning

in facial expression recognition [18] [19] [20] [21] [22]. An

interesting work proposed by Patel et al. [23] is to use feature

selection to choose the useful information of deep features for

micro-expression recognition. However, it is found that their

work [23] has still far away from the state-of-the-art work in

micro-expression recognition. Additionally, deep learning based

features require a large-scale database for training networks such

as deep convolutional neural network. Unfortunately, the small

sample size of the current available micro-expression databases

seriously limits the application of deep learning for facial micro-

expression recognition.

Amongst appearance-based features, local binary pattern

(LBP) has been commonly used in face recognition [24] and

facial expression recognition [25]. Recently, LBP is extended

to spatiotemporal domain for texture recognition and facial ex-

pression recognition [26], which is named Local binary pattern

from three orthogonal planes (LBP-TOP). LBP-TOP has shown

its promising performance for facial expression recognition [26].

Therefore, many researchers have actively focused on the potential

ability of LBP-TOP for micro-expression recognition. Pfister et

al. [13] proposed to use LBP-TOP for analyzing spontaneous

micro-expression recognition and conducted experiments on spon-

taneous micro-expression corpous (SMIC) database. The system

is the first one to automatically analyze spontaneous facial micro-

expressions. It primarily consists of a temporal interpolation model

and feature extraction based on LBP-TOP. In [12], Li et al.

continued implementing LBP-TOP on the full version of SMIC

and obtained the recognition result of 48.48%. Meanwhile, Yan et

al. [14] used the method of [12] as the baseline algorithm on the

second version of Chinese Academy of Sciences Micro-expression

(CASME2) database. Since then, LBP and its variants have often

been employed as the feature descriptors for micro-expression

recognition in many other studies. For example, Davison et al. [27]

exploited LBP-TOP to investigate whether micro-facial movement

sequences can be differentiated from neutral face sequences.

However, according to [12] [13] [14] it is observed that there

is a gap to achieve a high-performance micro-expression analy-

sis using LBP-TOP, since LBP-TOP attempts to obtain features

by exploiting the pixel information of an image. Consequently,

many works have attempted to improve the LBP-TOP. Ruiz-

Hernandez and Pietikäinen [28] used the re-parameterization of

second order Gaussian jet on the LBP-TOP achieving promising

micro-expression recognition result on the first version of SMIC

database [13]. As well, Wang et al. [29] extracted Tensor fea-

tures from Tensor Independent Colour Space (TICS) for micro-

expression recognition, but their results on the CASME2 database

showed no improvement comparing with the previous results. Fur-

thermore, Wang et al. [30] used Local Spatiotemporal Directional

Features with robust principal component analysis for micro-

expressions. Recent work in [31] reduced redundant information in

LBP-TOP by using six intersection points (LBP-SIP) and obtained

better performance than LBP-TOP. Guo et al. [32] employed

Centralized Binary Patterns from Three Orthogonal Panels with

extreme learning machine to recognize micro-expressions. Oh et

al. [33] employed Riesz wavelet transform to obtain multi-scale

monogenic wavelets for micro-expression recognition. Huang et

al. [34] proposed spatiotemporal completed local binary pattern,

namely STCLQP, to utilize magnitude and orientation as addi-

tional source and flexible encoding algorithm for improving LBP-

TOP on micro-expression recognition. Li et al. [35] proposed two

spatiotemporal feature descriptors for micro-expression recogni-

tion, where they extended histograms of oriented gradient and

histograms of image gradient to three orthogonal planes, named

HOG-TOP and HIGO-TOP, respectively.

It is noted that the most of previous methods used in micro-

expression recognition have two critical problems to be resolved.

Firstly, they exploited some variant of LBP-TOP in which dynamic

texture information is considered to represent face images. How-

ever, they missed the shape attribute of face images. Recent study

in [36] suggests that the fusion of texture and shape information

can perform better results than only using appearance features for

facial expression recognition. Moreover, the work in [37] demon-

strated that LBP enhanced by shape information can distinguish an

image with different shape from those with the same LBP feature

distributions. The method of [37] has been used for to achieve bet-

ter performance than LBP for face recognition [38] [39]. Secondly,

the methods in [12] [13] [14] [34] used a block-based approach

for spatiotemporal features. Specifically, they firstly divide a video

clip into some blocks and then concatenated features from all

blocks into one feature vector. However, we observe that the

dimensionality of feature may be huge. On the other hand, the

same contribution from all block features would decrease the

performance. Normally speaking, all spatial temporal features do

not contribute equally. Therefore, in the present paper we aim

to develop a new method simultaneously incorporating the shape

attribute with LBP and considering the discriminative information

for micro-expression recognition.

Image projection techniques are classical methods for pat-

tern analysis, widely used, e.g., in motion estimation [40] and

face tracking [41] [42], as they enhance shape properties and

increase discrimination of images. Integral projection provides

simple and efficient computation in computer vision amongst

image projection techniques. It firstly is invariant to a number

of image transformations [43]. It is also highly robust to white

noise [40]. Then it preserves the principle of locality of pixels

and sufficient information in the process of projection. Recently,

integral projection is used to incorporate with LBP for achieving

promising performance in bone texture classification [37] and face
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recognition [38] [39]. However, it was observed that the identity

information seriously destroys the discriminative capability of

integral projection for describing micro-expressions. As well,

the subtle motion information can provide discriminative infor-

mation to integral projection for describing micro-expressions,

which should be taken into account. Our previous work [44]

presented image difference-based method to extract the subtle

motion information for integral projection. However, the limitation

of the work is that we suppose that the first frame is neutral

face. Therefore, in this paper, we further extend our previous

work [44] by introducing a new method to relax this hypothesis,

and then propose a new spatiotemporal feature descriptor, which

incorporates shape attributes to dynamic texture information for

improving the performance of micro-expression recognition.

For simplicity, for extracting discriminant of feature, we

may employ dimensionality reduction methods such as Linear

Discriminative Analysis. However, these approaches may fail to

work on micro-expression recognition because of small number

of classes and high dimensionality of micro-expression. Zhao et

al. [45] proposed a novel method based on AdaBoost to select

the discriminative slices for facial expression recognition. But we

observe that AdaBoost did not consider the closeness between two

micro-expression samples and is not stable to micro-expression

recognition. Recently, Laplacian method [46] is presented to select

more compact and discriminative feature for face recognition.

It considers the discriminative information and the closeness of

two samples through a weighted graph. Therefore, based on the

framework of [45], we propose a new method based on Laplacian

algorithm to learn the discriminative group-based features for

micro-expression analysis.

Different from [44], the present work includes three new

interesting parts: (1) A robust way is proposed to resolve the

problem of integral projection. It can relax the strong hypothesis

used in [44] and be flexible to micro-expression recognition; (2) A

feature selection approach is presented to automatically select the

discriminative group-based feature for enhancing the performance

of micro-expression recognition; and (3) More parameter evalu-

ation and algorithm comparison are conducted on three micro-

expression databases.

To explain the concepts of our approach, the paper is organized

as follows. In Section 2, we explain our method of exploring

the spatiotemporal features and discriminative information for

micro-expression analysis. The results of applying our method for

recognizing micro-expressions are provided in Section 3. Finally

we summarize the paper in Section 4.

2 PROPOSED METHODOLOGY

Recently, the combination of the integral projection and texture

descriptor was applied to bone texture characterization [37] and

face recognition [38]. They demonstrate that the texture descrip-

tor is enhanced by shape information extracted by the integral

projection. However, we observe that integral projection mainly

represents subject information so that it cannot be directly used to

describe the shape attribute of micro-expressions. In this section,

we firstly resolve the problem of integral projection and then pro-

pose a new spatiotemporal feature descriptor for micro-expression

recognition.

2.1 Revisited Integral Projection

2.1.1 Problem Setting

An integral projection aims to generate a one-dimensional pattern

through the sum of a given set of pixels along a given direction.

Mathematically, given the intensity of a pixel I(x, y), its integral

projection is formulated as:

ℜ[f ](θ, s) =

∫ ∞

−∞

∫ ∞

−∞
I(x, y)δ(x cos θ + y sin θ − s)dxdy,

(1)

where δ is a Dirac’s delta function, θ and s are a projection

angle and the threshold value, respectively. Essentially, the integral

projection can capture the common underlying structure of face

images of the same face subject. In other words, it is very relative

to face identity [41], [42]. However, it is double that whether

integral projection works for micro-expression. We evaluate Equa-

tion 1 based on θ = 0◦ and θ = 90◦ on two following cases:

(1) two micro-expression images with the same class from two

different persons and (2) two images with the different class from

a person. The evaluations are shown in Fig. 1(d), in which the

left image to the right image represent the integral projections

of Figs. 1(a), 1(b) and 1(c), respectively. It demonstrates that the

integral projection cannot provide discriminative information for

different micro-expressions, such as the integral projections of

Figs. 1(a) and 1(c). In other words, the integral projection fails

to extract the shape attribute for micro-expressions. As a result,

it is necessary to change integral projection method to obtain the

class information for micro-expressions.

2.1.2 Micro-expression Augment for Integral Projection

Due to short duration and low intensity of micro-expression, the

micro-expression data are sparse in both temporal and spatial

domains [47]. Moreover, for the integral projection, our previous

work [44] and Fig. 1 demonstrate that the identity information

seriously causes the discriminant of integral projection badly

work for describing micro-expressions. Instead, the subtle motion

information can provide discriminative information to integral pro-

jection for describing micro-expressions. For a micro-expression

image It, it is assumed to contain Qt and Et, which is implicitly

represented as following:

It = Qt +Et, (2)

where Et includes the subtle motion information of micro-

expression at the t-th frame while Qt is the other information.

In our previous work [44], we used the difference-based image

method to extract the subtle motion information Et for resolving

the problem of integral projection, but it is strongly hypothesized

that the first frame should be neural face. However, this hypothesis

is not ensured for all micro-expression videos. Therefore, the key

problem for Equation 1 is how to extract the robust subtle facial

motion information which is discriminant for recognizing micro-

expression. For convenience, the subscript t for It, Qt and Et is

omitted in discussing the way of obtaining Et.

For a micro-expression video clip, other information including

illumination, pose and subject identity accounts for the great

proportion of the whole information in a clip, while the subtle

facial motion information is sparse. Equation 2 can be viewed

to extract the sparse information for a video clip. As we know,

the background modeling is popular in background subtraction for

video analysis. The robust principal component analysis (RPCA)
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Fig. 1: Integral projection on micro-expression images with ‘Disgust’ and ‘Happiness’, where the red and blue colors represent

integral projections based on θ = 0◦ and θ = 90◦, respectively.

(a)

(b)

Fig. 2: An example of extracting the subtle facial motion information from a micro-expression video with ‘surprise’. (a) indicate the

original micro-expression frames sequence, where the number below an image represents the frame index. (b) indicate the extracted

subtle facial motion information.

is widely used for face recognition [48] and facial expression [49].

It leverages on the data are characterized by low-rank subspaces.

Recently, Wang et al. [30] used the RPCA to extract subtle motion

of micro-expression. They demonstrated the subtle motion can

extract the low intensity and enhance the ability of dynamic texture

features. Therefore, we aim to extract this sparse information E
using RPCA [48] for the integral projection.

Given a micro-expression video clip, each of its frames is

vectorized as a column of matrix I ∈ ℜD . As E includes

the derived sparse subtle motion information, the optimization

problem of Equation 2 is formulated as follows:

[Q,E] = min rank(Q)+ ‖ E ‖0,w.r.t. I = Q+E, (3)

where rank(·) denotes the rank of matrix and ‖ · ‖0 means

L0 norm. Because of not-convex problem of Equation 3, it is

converted into the convex optimization problem as followed:

[Q,E] = min ‖ Q ‖∗ +λ ‖ E ‖0,w.r.t. I = Q+E, (4)

where ‖ · ‖∗ denotes the nuclear norm, which is the sum of its

singular values. λ is a positive weighting parameter.

For solving Equation 4, the iterative thresholding technique

can be used to minimize a combination of both the L0 norm and

the nuclear norm, while this scheme converges extremely slowly.

Instead, Augmented Lagrange Multipliers (ALM) is more efficient

way to solve Equation 4. Specifically, ALM is introduced for

solving the following constrained optimization problem:

X = min f(X),w.r.t. h(X) = 0, (5)

where f : ℜn → ℜ and h : ℜn → ℜm. The augmented

Lagrangian function can be defined as follows:

L(X,Y, µ) = f(X) + 〈Y, h(X)〉+
µ

2
‖ h(X) ‖2F . (6)

Let X be (Q,E), f(X) be ‖ Q ‖∗ +λ ‖ E ‖1, and h(X) be
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(a)

(b)

(c)

Fig. 3: Revisited integral projection on horizontal direction. (a)

The horizontal integral projections of 247 subtle motion images,

where n-axis describes the number of facial images and each

projection is represented as a single column. (b) The mean face

of the subtle motion images for happiness (HA), disgust (DI),

surprise (SUR), repression (REP) and others (OTH). (c) The

horizontal integral projections of the derived sparse subtle motion

information in (b), where x-axis (PH(Y)) means the value of

horizontal integral projection, and y-axis represents the height of

an image.

I−Q−E. Equation 6 is re-written as followed:

L(Q,E,Y, µ) =‖ Q ‖∗ +λ ‖ E ‖1

+ 〈Y, I−Q−E〉+
µ

2
‖ I−Q−E ‖2F .

(7)

Equation 7 can be resolved by exact ALM or inexact ALM

proposed by Lin et al. [50]. A slight improvement over the exact

ALM leads to the inexact ALM, which converges practically as

fast as the exact ALM, but the required number of partial SVDs

is significantly less. Therefore, we choose inexact ALM to extract

the subtle facial motion information E. Fig. 2 shows the subtle

motion frames of E from an micro-expression video clip, in

which it is labeled as ‘surprise’. From Fig. 2(a), it is difficult

for people to perceive the subtle facial movement. However, from

Fig. 2(b), we can easily see the obvious movement of eyebrows

(highlighted in the red rectangle). As well, it is found that identify

information is mostly reduced. These possibly further improve

integral projection for describing micro-expression. Based on E

obtained from Equation 7, we only consider the integral projection

on E instead of I, which is formulated as,

ℜ[f ](θ, s) =

∫ ∞

−∞

∫ ∞

−∞
E(x, y)δ(x cos θ + y sin θ − s)dxdy.

(8)

In this paper, we consider the horizontal and vertical di-

rections, because our pre-experimental results show these two

directions can better describe the shape of micro-expressions than

other direction. Specifically, θ on Equation 8 are 0◦ and 90◦

for horizontal and vertical directions, respectively. For evaluating

discriminant ability for micro-expressions, we investigate revisited

integral projection along horizontal direction in Fig. 3. In Fig. 3,

we choose 247 facial images of 5-class micro-expressions from

CASME2 [14], in which each image is selected at apex state of

micro-expression video clip. In Fig. 3(a), the horizontal integral

projections from 247 images capture the various structure of

signals for different micro-expressions. Additionally, they obtain

the specific structure from such regions of interest of micro-

expression as mouth region for happiness expression. Moreover,

as seen from Fig. 3(b), the subtle motion image obtained by RPCA

well characterizes the specific regions of facial movements for dif-

ferent micro-expressions. For example, disgust expression mostly

appears in eyebrows and eyes. Another finding in Fig. 3(c) argues

the improved integral projection can preserve the discriminative

structure of 1D signals for different micro-expressions. From these

observations, the improved integral projection can provide more

discriminative information for micro-expressions.

2.2 Spatiotemporal Local Binary Pattern based on Re-

visited Integral Projection

By introducing subtle motion, the revisited integral projection

(RIP) preserves the shape attribute of different micro-expressions

and has discriminative ability. But it is not robust to describe the

appearance and motion of facial images. As LBP-TOP [26] con-

siders micro-expression video clips from three orthogonal planes,

representing appearance and motion information, respectively. We

exploit the nature of LBP-TOP to obtain the appearance and

motion features from the revisited integral projections.

Based on Equation 8, we can obtain the revisited integral

projection signals along horizontal and vertical directions, respec-

tively. For convenience, we denote them as H and V for horizontal

and vertical directions, respectively. For the sake of simplification,

we only discuss the H for appearance and motion features.

In [37], Houam et al. proposed one-dimensional local binary

pattern (1DLBP) to describe the appearance information of bone

texture image. Specifically, they defined the linear mask of size W

as shown in Fig. 4, in which W can be designed as 3, 5, 7 or 9.

With the mask, the 1DLBP code is obtained by thresholding the

neighborhood values against the central element. The neighbors is

assigned the value 1 if they are greater than or equal to the current

element and 0 otherwise. Then each binary element of the resulting

vector is multiplied by a weight depending on its position. 1DLBP

can be summarized as,

1DLBPW =
∑

p

δ(Hp −Hc)2
p, (9)
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Fig. 4: Linearly symmetric neighbour sets for different values of

W: (a) W=3; (b) W=5; (c) W=7; (d) W=9.

where δ is a Dirac’s delta, Hc is the value at the center of the

mask, and Hp is the neighbors of Hc.

2.2.1 Spatial domain

The distribution of the 1D patterns of each frame is modeled by

a histogram. It characterizes the frequency of each pattern in the

1D projected signal. This encodes the local and global texture

information since the projected signal handles both cues. Fig. 5

shows the procedure to encode the integral projection by using

1DLBP. To describe the appearance of each video clip, the his-

tograms of frames are accumulated. Finally the spatial histogram

is represented by histograms fXYH and fXYV of horizontal and

vertical projections.

2.2.2 Temporal domain

Motion features are extracted from horizontal and vertical di-

rection. Firstly, we consider a simple way to extract the motion

histogram along horizontal direction, as shown in Fig. 6. We

formulate the horizontal integral projections from all difference

images in a video clip as a new texture image, which is similar

to the YT plane of LBP-TOP. It represents the motion of micro-

expression video clip along vertical direction. As seen from Fig. 6,

the change of value S(z) (z ∈ [y1, y2]) along the time t definitely

shows the motion change of shape of micro-expressions along the

vertical direction.

However, the changing rate of micro-expression video clips

might be different; it might cause unfair comparison among the

motion histograms. Bilinear interpolation is utilized to ensure

S(z) along the time t with the same size T . Here we name this

procedure “temporal normalization”. Based on the new texture

image, a gray-scale invariant texture descriptor, LBP operator [51],

which is defined as

LBPM,R =
M−1
∑

m=0

δ(gm − gc)2
m, (10)

is exploited to extract the motion histogram, where gc is the gray

value of the center pixel, gm is the gray value of M equally

spaced pixels on a circle of radius R at this center pixel. The same

procedure is applied to vertical integral projection.

Empirical experiments tell us that the procedure normaliz-

ing all images into the same size could produce a promising

performance. It also allows us to use the same value of R for

motion texture images. So far, the motion histograms, which

represent motion change along the vertical (YT) and horizontal

(XT) directions, are obtained by the process described above.

Here, we denote them as fYT and fXT.

The final feature vector of a micro-expression video clip can be

formulated by [fXYH, fXYV, fXT, fYT], where this feature preserves

shape and texture information. For convenience, we abbreviate

Spatiotemporal local binary pattern with revisited integral projec-

tion as “STLBP-RIP”.

2.3 Enhancing discriminative ability

In general, we divide micro-expression video clip into m × n
blocks in spatial domain. In the k-th block, the feature on spatial

domain contains two sub-features fXYH
k and fXYV

k obtained from

horizontal and vertical directions of XY plane, respectively, while

the feature on temporal domain consists of fXT
k and fYT

k extracted

from XT and YT planes, respectively. In practice, we concatenate

these features into one feature vector for micro-expression recog-

nition. However, all features do not contain equally discriminative

information for different micro-expressions. For simplicity, for

extracting discriminative of features, we may employ dimension-

ality reduction methods such as Linear Discriminative Analysis.

However, these approaches may fail to work on micro-expression

recognition due to few class number and high dimensionality

of micro-expression features. Instead, we aim to extract the dis-

criminative features from {fXYH
k , fXYV

k , fXT
k , fYT

k }m×n
k=1

for micro-

expression recognition. For convenience, we define one sub-

feature from XYH, XYV, XT or YT as a group feature. In our

method, we propose a group feature selection on the basis of

Laplacian method [46] and pairwise-class micro-expression to

extract the discriminative information of STLBP-RIP for micro-

expression recognition, since Laplacian method is based on the

following observation: two data points are probably related to the

same class if they are close to each other. Our method consists of

two important steps: (1) formulation of dissimilarity feature and

(2) computation of Laplacian scores of group features.

Formulation of dissimilarity feature: Given a micro-

expression video clip, we divide it into m×n blocks in spatial do-

main. For the k-th block, its feature is represented by fk = [fXYH
k ,

fXYV
k , fXT

k , fYT
k ]. Thus the dissimilarity of the i-th and j-th micro-

expression video clips Fi and Fj on the k-th block contains the

difference between group features, which is defined as followed,

dk(Fi,Fj) = [dXYH
k dXYV

k dXT
k dYT

k ], (11)

where dP
k = χ2(fP

i,k, f
P
j,k), P represents one of XYH, XYV, XT

and YT, and χ2 is Chi-square distance metric.

Based on Equation 11, the new feature from any

micro-expression-pair samples g ∈ ℜm×n×4 is formulated

as [dXYH
1

, dXYV
1

, dXT
1
, dYT

1
, . . . , dXYH

m×n, d
XYV
m×n, d

XT
m×n, d

YT
m×n], in

which one dimension describes the dissimilarity of each group

feature of two different samples. Its corresponding class informa-

tion for g is labeled as followed,

c(g) =

{

1 if c(Fi) = c(Fj)
−1 if c(Fi) 6= c(Fj),

(12)
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Fig. 5: Procedure of encoding a revisited integral projection on spatial domain. [44]

Fig. 6: Motion histogram along YT plane: The blue rectangle represents horizontal integral projection at specific range of Y-axis

direction, where t and T are the original and temporal normalization time lengths, respectively. [44]

where c(Fi) and c(Fj) are the class label of two micro-expression

video clips Fi and Fj .

Computation of Laplacian scores of group features: We

employ one-vs-one class learning strategy to obtain the discrim-

inative group feature for two micro-expression classes. Given

samples from the a-th and b-th micro-expression classes, we can

formulate the dissimilarity features G = [g1, . . . ,gN ] and their

corresponding labels C = [c1, . . . , cN ], where N is the number

of dissimilarity features, N = Na(Na − 1) +NbNb, Na and Nb

are the number of samples with the a-th and b-th micro-expression

classes, respectively. We construct a weighted graph G with edges

connecting nearby points to each other, in which Wuv evaluates

the similarity between the u-th and v-th samples. In our method,

we employ the class label and Cosine metric for constructing the

weight matrix W, which models the local structure of the data

space. The element of weight matrix W is defined as:

W =

{ gu·gv

‖gu‖‖gv‖
if c(gu) = c(gv)

0 otherwise,
(13)

where · is a dot product, gu and gv are the u-th and v-th samples

in G, respectively. A reasonable criterion for choosing a good

feature is to minimize the following object function:

Lr =

∑

uv(gr,u − gr,v)
2Wuv

V ar(gr)
, (14)

where r ∈ {1, . . . ,m × n × 4} is dimension index of feature g,

gr = [g1r , g
2

r , . . . , g
N
r ], and V ar(gr) is the estimated variance of

the r-th feature.

For a good feature, the bigger Wuv , the smaller (gr,u−gr,v).
As well, by maximizing V ar(gr), we prefer those features with

large variance which have more representative power. Thus the

Laplacian Score tends to be small. According to [46],
∑

uv(gr,u−
gr,v)

2Wuv is written as

∑

uv

(gr,u − gr,v)
2Wuv = 2gr

TDgr − 2gr
TWgr, (15)

where D = diag(W1), 1 = [1, . . . , 1]T and W is the weight

matrix containing Wuv . V ar(gr) can be estimated as follows:

V ar(gr) =
∑

u

(gru − µr)
2Duu

=
∑

u

(gru −
gr

TD1

1TD1
)2Duu,

(16)

after removing the mean from the samples, Equation 16 is rewrit-

ten as:

V ar(gr) = g̃r

TDg̃r. (17)

For each feature, its Laplacian score is computed to reflect its

locality preserving power. Therefore, the Laplacian Score of the

r-th feature as follows:

βr =
g̃r

TLg̃r

g̃r

TDg̃r

. (18)

Based on Equation 18, the Laplacian score of each group fea-

ture is calculated. The group feature with the smallest score have

the strongest discriminative ability. We sort them in ascending

order, and then choose the first P group features for pairwise

micro-expression classes. In this subsection, the group selected

features of STLBP-RIP are named as “DiSTLBP-RIP”.
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3 EXPERIMENTS

In this paper, we develop spatiotemporal local binary pattern

based on a revisited integral projection (STLBP-RIP) and its

discriminative version (DiSTLBP-RIP). In this section, we eval-

uate them on the Chinese Academy of Sciences Micro-expression

Database (CASME) [11], CASME2 [14] and Spontaneous Micro-

expression Corpus (SMIC) [12]. Due to page limitation, we refer

readers to our previous work [44] about STLBP-IP which exploits

image difference based approach for integral projection, and its

experimental results.

3.1 Database description and protocol

The CASME dataset contains spontaneous 1,500 facial move-

ments filmed with 60 fps camera. Among them, 195 micro-

expressions were coded so that the first, peak and last frames were

tagged. Referring to the work of [11], we select 171 facial micro-

expression videos that contain disgust (44 samples), surprise (20

samples), repression (38 samples) and tense (69 samples) micro-

expressions.

The CASME2 database consists of 247 spontaneous facial

micro-expression videos with 640 × 480 spatial resolution. This

database was collected by using a 200 fps camera. As well,

participants’ micro expressions were elicited in a well-controlled

laboratory environment with normal illumination. The CASME2

database includes five classes of the micro-expressions in this

database: happiness (32 samples), surprise (25 samples), disgust

(64 samples), repression (27 samples) and others (99 samples).

The SMIC database contains 164 spontaneous micro-

expressions of 16 subjects recorded in a controlled scenario by

100 fps camera with resolution of 640×480. All micro-expression

videos are categorized into positive (51 samples), negative (70

samples) and surprise (43 samples) classes.

For three databases, Active Shape Model [52] is used to track

the 68 facial landmarks for a facial image. Subsequently, each

facial image is aligned to a canonical frame. For the CASME

and CASME2 databases, the face images are cropped to 308×257

pixel size, while for the SMIC database, we crop facial images

into 170×139. In the experiments, leave-one-subject-out cross

validation protocol is implemented, where the samples from one

subject are used for testing, the rest for training. For classification,

Support Vector Machine (SVM) with Chi-Square Kernel [53] is

employed, where the optimal penalty parameter is provided using

the three-fold cross validation approach.

3.2 Evaluation of the revisited integral projection

In this scenario, we compare STLBP-RIP with the previous

method based on original integral projection (STLBP-OIP) and

our previous work (STLBP-IP) [44] on CASME, CASME2 and

SMIC databases. For three databases, we conducted a comparison

on 7× 3 spatial blocks of micro-expression video clip. We set W
as 9 and do not use temporal normalization. All comparisons are

evaluated using recognition rate.

(1) On CASME database, we list the recognition rate for three

spatiotemporal features, where the recognition rates of 35.67%,

54.39% and 56.14% for STLBP-OIP, STLBP-IP and STLBP-

RIP, respectively. Comparing with STLBP-OIP and STLBP-IP,

STLBP-RIP improves the performance by increasing substantially

recognition rate of 18.72% and 1.75%, respectively.

(2) On CASME2 database, STLBP-OIP and STLBP-IP obtain

the recognition rate of 42.51% and 52.63%, respectively, while

STLBP-RIP achieves the recognition rate of 56.68%. It is seen

that comparing with STLBP-OIP and STLBP-IP, STLBP-RIP

increases the recognition rates of 10.12% and 4.05%, respectively.

(3) On SMIC database, we obtain the recognition rates

of 34.15%, 45.73% and 54.88% for STLBP-OIP, STLBP-IP

and STLBP-RIP, respectively. Comparing with STLBP-OIP and

STLBP-IP, the performance of micro-expression recognition is

considerably increased at the recognition rate of 11.58% and

9.15% by using STLBP-RIP, respectively.

It is seen that the performance is substantially improved by

STLBP-RIP comparing with STLBP-OIP. It demonstrates that

RPCA can better reduce the influence of subject information for

integral projection. The discriminative ability of integral projec-

tion can be enhanced by our proposed method. Additionally, we

see that STLBP-RIP outperforms STLBP-IP on three databases, as

STLBP-RIP uses RPCA to obtain more stable motion information

than STLBP-IP.

3.3 Parameter evaluation

The mask size W of 1DLBP, the radius R of LBP and the

temporal normalization size T are three important parameters for

STLBP-RIP, which determine the computational complexity and

classification performance. Additionally, for DiSTLBP-RIP the

number of selected group features P decides their performance.

In this subsection, we evaluate the effects of W , R, T and P .

The mask size: We evaluate the performance of STLBP-RIP

caused by various W on CASME, CASME2 and SMIC databases.

In order to avoid bias, and to compare the performance of features

on a more general level, spatiotemporal features are extracted by

varying block number. It is noted that W relatively controls the

feature extracted on spatial domain. So temporal normalization

is not considered in comparing the performance of various W .

The results of STLBP-RIP on three databases are presented in

Table 1. It is found that the performance is boosted with increasing

W when we use small block number for three databases. It is

explained by that using more neighbors can provide compact

and much information for robust binary pattern. But for large

block number, the big W decreases the performance, since the

feature will be very sparse due to less sampling points along

horizontal/vertical integral projection for 1DLBP.

As seen from Table 1, for STLBP-RIP, 7× 3, 6× 1 and 5× 6
are the optimal block number on CASME, CASME2 and SMIC

databases, respectively. STLBP-RIP obtains the promising results

under W = 9, 9, 7 on CASME, CASME2 and SMIC databases,

respectively.

The radius of LBP: Based on the designed W and block

numbers, we evaluate the effect of R ∈ {1, 2, 3} on CASME,

CASME2 and SMIC databases. Results are presented in Table 2.

It is found that STLBP-RIP obtains the best recognition when

R = 3.

The temporal normalization size: Based on the well-

designed W , R and block number, we evaluate the influence of

T to STLBP-RIP on CASME, CASME2 and SMIC databases.

All experiments are conducted under T ∈ [0, 60], where T = 0
means no temporal normalization used for STLBP-RIP. Fig. 7

shows the effect of T to STLBP-RIP on CASME, CASME2 and

SMIC databases. It is seen that temporal normalization method

boosts the ability of STLBP-RIP on CASME and SMIC databases,

while it cannot be helpful to CASME2 database. It may be

explained by that the micro-expression video clip on CASME2
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TABLE 1: Effects of the mask size (W ) to STLBP-RIP on CASME, CASME2 and SMIC databases, where the bold number means

the best recognition rate (%).

Block Number
CASME CASME2 SMIC

Mask size W Mask size W Mask size W

3 5 7 9 3 5 7 9 3 5 7 9

6× 1 52.63 51.46 52.05 53.22 59.11 58.70 61.94 62.75 49.39 46.95 49.39 48.78

7× 3 54.97 54.39 55.56 56.14 53.44 51.82 53.04 52.23 49.39 53.05 47.56 54.88

5× 5 52.05 53.22 50.88 47.95 51.82 48.58 49.39 51.01 50.00 50.61 55.49 52.44

5× 6 54.39 54.39 50.88 52.05 54.66 52.23 52.23 54.25 57.94 56.10 59.76 58.54

8× 8 43.27 42.69 42.11 43.86 51.42 51.42 43.93 50.20 49.39 50.61 52.44 52.44

TABLE 2: Performance of STLBP-RIP using different radius of

LBP (R) on CASME, CASME2 and SMIC databases.

Database
R

1 2 3

CASME 50.88 52.05 56.14

CASME2 58.70 59.92 62.75

SMIC 50.00 53.05 59.76

database is recorded by using 200 fps camera, which provides

enough temporal information. As examined from Fig. 7, STLBP-

RIP obtains the highest performance on CASME and SMIC

databases by using T = 25.

Fig. 7: Influence evaluation of temporal normalization size to

STLBP-RIP, where the black circle means the best result.

The number of group features: We evaluate the Lapla-

cian method to STLBP-RIP on CASME, CASME2 and SMIC

databases. The effect of the number of group features on three

database is presented in Fig. 8.

(1) CASME: For two features, 84 (7 × 3 × 4) group features

are available for feature selection as micro-expression video clip

is divided into 7× 3 across spatial domain. As shown in Fig. 8(a),

the performance of STLBP-RIP is substantially improved with

increasing P . It means that more group features can provide dis-

criminative information, but no need to include all group features.

It is noted that DiSTLBP-RIP achieves 64.33% with 74 group

features. The performance is improved at increased recognition

rate of 3.04% comparing with STLBP-RIP.

(2) CASME2: Since we divide facial images into 6× 1 blocks

in spatial domain, we have 24 group features for STLBP-RIP.

From Fig. 8(b), we can see that the recognition rate is increased

with a large number of group features. DiSTLBP-RIP achieves

64.78% with 21 group features. Comparing with STLBP-RIP, the

performance is improved at increased recognition rate of 2.03%.

(3) SMIC: As we divide facial image into 5×6 for STLBP-RIP,

there exists 120 group features. As seen in Fig. 8(c), DiSTLBP-

RIP achieves 63.41% with 30 group features. Comparing with

STLBP-RIP, the performance is improved at increased recognition

rate of 3.04%.

It shows that Laplacian method can enhance the discriminative

ability of STLBP-RIP. Moreover, with promising group features,

the computational efficiency becomes better, because Laplacian

method reduces the dimensionality of spatiotemporal features.

TABLE 3: Comparison with two feature learning strategies on

CASME, CASME2 and SMIC databases.

Method
Recognition rate

CASME CASME2 SMIC

AdaBoost [45] 54.97 53.85 53.05

FLD [45] 50.06 61.94 55.49

DiSTLBP-RIP 64.33 64.78 63.41

Zhao et al. [45] presented to use AdaBoost and Fisher linear

discriminant (FLD) to select the discriminative slices for facial

expression recognition. For evaluating our method, we compare

Laplacian method with two feature learning strategies [45]. The

results are presented in Table 3. We observe that AdaBoost algo-

rithm failed to work for STLBP-RIP on three databases. Instead,

FLD substantially improves STLBP-RIP. However, its perfor-

mance is worse than Laplacian method. Comparisons demonstrate

that Laplacian method can enhance the discriminative ability of

spatiotemporal feature descriptor better than two feature selection

methods presented in [45].

3.4 Algorithm Comparison

In this subsection, we compare STLBP-RIP and DiSTLBP-RIP

with the state-of-the-art algorithms on CASME, CASME2 and

SMIC databases.

3.4.1 CASME Database

In this scenario, we firstly compare our method with LBP-TOP,

completed local binary pattern from three orthogonal planes

(CLBP-TOP) [54], local ordinary contrast pattern from three

orthogonal planes (LOCP-TOP) [55], spatiotemporal local mono-

genic binary pattern(STLMBP) [56], LBP-SIP [31], spatiotempo-

ral cuboids descriptor (Cuboids) [57] and spatiotemporal com-

pleted local quantized pattern (STCLQP) [34]. Following the pa-

rameters setup of [34], we re-implement all comparative methods

on CASME database using SVM based on linear kernel, where we

divided micro-expression video clip into 8× 8 blocks.
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Fig. 8: The influence of the number of group features to

STLBP-RIP for (a) CASME, (b) CASME2 and (c) SMIC

databases.

Results on recognition rate are reported in Table 4. As seen

from the table, LBP-TOP only achieves the recognition rate of

TABLE 4: Micro-expression recognition rates (%) in CASME

database. The text in bold means our proposed methods.

Methods Block Number Recognition rate

LBP-TOP [26] 8× 8 37.43

LBP-SIP [31] 8× 8 36.84

STCLQP [34] 8× 8 57.31

CLBP-TOP [54] 8× 8 45.31

STLMBP [56] 8× 8 46.20

LOCP-TOP [55] 8× 8 31.58

Cuboids [57] - 33.33

STLBP-RIP 7× 3 59.06

DiSTLBP-RIP 7× 3 64.33

37.43%. LOCP-TOP works worst among all methods. In the com-

parison algorithms, we see that STCLQP obtains the promising

performance on all comparison methods, followed closedly by

STLMBP and CLBP-TOP, and more distantly by Cuboids. The

reason may be that STCLQP provides more useful information

than LBP-TOP and LBP-SIP for micro-expression recognition, as

STCLQP extracts completed information through sign, magnitude

and orientation. But our proposed method STLBP-RIP works

better than STCLQP, which is increased by 1.75%. As well,

Laplacian score method further boosts STLBP-RIP, which reaches

the best recognition rate of 64.33% over all methods.

Furthermore, we compare STLBP-RIP and DiSTLBP-RIP

with the state-of-the-art works on CASME database. The compar-

ative results are reported in Table 5. Although the experimental

setups in compared algorithms are different, they still give an

indication of the discriminative power of each approach. As we

can see, MDMO [58] achieves better performance than ours.

It may be explained by that Liu et al. simplified the micro-

expression categorization proposed by [11] (Disgust, Surprise,

Repression and Tense) into four general types (Positive, Negative,

Surprise and Others). Additionally, STLBP-RIP and DiSTLBP-

RIP obtain more considerable performance than HOFF-ROI [58]

by increasing recognition rate of 3.37% and 8.65%, respectively.

As well, STLBP-RIP and DiSTLBP-RIP outperform FDM by

2.29% and 8.19%, respectively. The comparisons demonstrate

that STLBP-RIP and DiSTLBP-RIP can obtains the decent and

comparative results.

The confusion matrix of five micro-expressions is shown in

Fig. 9, where we compare our methods with STCLQP. It is found

that STLBP-RIP performs better on recognizing Surprise and

Tense classes, while it works worse than STCLQP on recognizing

Disgust and Repression. As seen from Fig. 9(c), recognition

performance on Digust and Repression classes is significantly im-

proved by considering discriminative group features for STLBP-

RIP. Additionally, we see that Repression and Tense classes are

very hard to DiSTLBP-RIP, as they are falsely classified into

opposite class. Perhaps it is because Repression and Tense samples

are quite similar on CASME database. They are more difficult to

be recognized than Disgust and Surprise.

3.4.2 CASME2 Database

We compare the recognition rate of our method with the baseline

algorithm [14], LBP-TOP [26], LBP-SIP [31], LOCP-TOP [55].

The parameter setup for each method is described as followed:

(1) Following experimental setup of [14], we implement LBP-

TOP on 5 × 5 facial blocks, using radius 3 for LBP operator

for three orthogonal planes. For classification, we employ linear-
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Fig. 9: The confusion matrix of (a) STCLQP, (b) STLBP-RIP, and (c) DiSTLBP-RIP for four micro-expression categorizations on

CASME database.

TABLE 5: Performance comparison with the state-of-the-art methods on CASME database, where LOSO and LOO represent

leave-one-subject-out and leave-one-sample-out cross validation protocols, respectively. The text in bold shows the results of our

methods.

Methods Protocol Task Recognition rate (%)

FDM [10] LOSO Contempt, Disgust, Fear, Happiness, Repression, Sadness, Surprise 56.14

MPCA [11] 20-fold Disgust, Surprise, Repression and Tense 41.01

HOOF-whole [58] LOSO Positive, Negative, Surprise and Others 49.70

HOOF-ROI [58] LOSO Positive, Negative, Surprise and Others 55.69

MDMO [58] LOSO Positive, Negative, Surprise and Others 68.26

DTCM+RF [59] LOO Positive, Negative, Surprise and Ambiguous 64.95

STLBP-RIP LOSO Disgust, Surprise, Repression and Tense 59.06

DiSTLBP-RIP LOSO Disgust, Surprise, Repression and Tense 64.33

Fig. 10: The confusion matrix of (a) STCLQP, (b) STLBP-RIP and (c) DiSTLBP-RIP for micro-expression categorizations on

CASME2 database.

TABLE 6: Comparison under micro-expression recognition rate

on CASME2 database. The text in bold means our proposed

methods and * means that we directly took the results from their

works.

Methods Block Number Recognition rate (%)

Baseline [14] 5× 5 38.87

LBP-TOP [26] 8× 8 39.68

LBP-SIP [31] 8× 8 40.08

STCLQP* [34] 8× 8 58.39

HIGO-TOP* [35] 8× 8 55.87

HOG-TOP* [35] 8× 8 57.49

LOCP-TOP [55] 8× 8 42.11

STLBP-RIP 6× 1 62.75

DiSTLBP-RIP 6× 1 64.78

kernel based SVM [53]. For convenience, we name this method as

Baseline.

(2) We implement the framework of [12] based on LBP-

TOP [26], LBP-SIP [31] and LOCP-TOP [55] as a comparison.

Features are extracted on 8 × 8 facial blocks. According to [12],

we firstly use temporal interpolation method [66] to interpolate

all videos into 15 frames. Then we implement spatiotemporal

features, where the radius and number of neighbors are 3 and

8, respectively. Support Vector Machine (SVM) with Chi-Square

Kernel [53] is used, where the optimal penalty parameter is

provided using the three-fold cross validation approach.

Comparative performance are presented in Table 6, where the

results of STCLQP [34], HIGO-TOP [35] and HOG-TOP [35] are

directly extracted from their works. As can be seen, STLBP-RIP

is shown to outperform the re-implementation of [14]. Its recog-

nition rate is increased by 23.88%. Comparing with LOCP-TOP

and LBP-SIP, STLBP-RIP increases the performance by 20.64%

and 22.67% for micro-expression recognition, respectively. These

results demonstrate that STLBP-RIP achieves better performance

than LOCP-TOP and LBP-SIP. This is explained by STLBP-RIP

preserves the shape for texture descriptor by using the improved
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TABLE 7: Performance comparison with the state-of-the-art methods on CASME2 database, where LOSO and LOO represent

leave-one-subject-out and leave-one-sample-out cross validation protocols, respectively. The text in bold indicates the results of our

methods.

Methods Protocol Task Recognition rate (%)

LBP-TOP [14] LOO Happiness, Surprise, Disgust, Repression and Others 63.41

TICS [29] LOO Happiness, Surprise, Disgust, Repression and Others 61.76

LSDF [30] LOO Happiness, Surprise, Disgust, Repression and Others 65.44

LBP-SIP [31] LOO Happiness, Surprise, Disgust, Repression and Others 67.21

CUDA based DCNN [60] LOO Happiness, Surprise, Disgust, Repression and Tense 64.9

Local LBP-TOP+Local OF statistics [61] LOO Happiness, Surprise, Disgust, Repression and Others 65.50

OSW-LBP-TOP [62] LOO Happiness, Surprise, Disgust, Repression and Others 66.40

Sparse sampling [9] LOSO Happiness, Surprise, Disgust, Repression and Others 49

FDM [10] LOSO Happiness, Surprise, Disgust, Repression, Fear, Sadness and Others 45.93

CNN+SFS [23] LOSO Happiness, Surprise, Disgust, Repression and Others 47.3

Monogenic Riesz Wavelet [33] LOSO Happiness, Surprise, Disgust, Repression and Others 46.15

STCLQP [34] LOSO Happiness, Surprise, Disgust, Repression and Others 58.39

HIGO-TOP [35] LOSO Happiness, Surprise, Disgust, Repression and Others 55.87

HOG-TOP [35] LOSO Happiness, Surprise, Disgust, Repression and Others 57.49

MDMO [58] LOSO Positive, Negative, Surprise and Others 67.37

Local LBP-TOP+RF [61] LOSO Happiness, Surprise, Disgust, Repression and Others 43.92

AdaBoost+STM [63] LOSO Happiness, Surprise, Disgust, Repression and Others 43.78

MMFL [64] LOSO Happiness, Surprise, Disgust, Repression and Others 57.61

CNN+LSTM [65] LOSO Happiness, Surprise, Disgust, Repression and Others 60.98

STLBP-RIP LOSO Happiness, Surprise, Disgust, Repression and Others 62.75

DiSTLBP-RIP LOSO Happiness, Surprise, Disgust, Repression and Others 64.78

integral projection. Additionally, STLBP-RIP achieves better than

STCLQP, HOG-TOP and HIGO-TOP in the recogntiion rate.

Comparing with LBP-TOP, DiSTLBP-RIP obtains a significant

improvement on micro-expression recognition, since DiSTLBP-

RIP extracts the discriminative ability of STLBP-RIP by using

feature selection.

Table 7 shows a comparison to some other dynamic analysis

approaches using the recognition rates given in each paper. It

should be noted that the results are not directly comparable due

to different experimental setups and so forth, but they still give an

indication of the discriminative power of each approach. It is seen

that LBP-SIP [31] obtained the best recognition rate of 67.21%

among the algorithms under leave-one-sample-out cross validation

protocol. However, it is observed from Table 6 LBP-SIP had

the recognition rate of 40.08%. It demonstrates that our methods

perform better than all the algorithms under leave-one-sample-

out cross validation protocol. Additionally, under the leave-one-

subject-out cross validation protocol, our approaches outperform

the other methods in almost all cases. Algorithm comparisons on

CASME2 database indicate that STLBP-RIP and DiSTLBP-RIP

is promisingly competitive to all methods.

The confusion matrices of STCLQP and our methods are

shown in Fig. 10. Comparing with STCLQP, STLBP-RIP achieves

better performance on three micro-expression classes (Disgust,

Repression and Other), while STLCQP outperforms it on recog-

nizing Surprise and Happiness. Our another method, DiSTLBP-

RIP outperforms STLCQP at the most of micro-expression classes

except Surprise. Unfortunately, DiSTLBP-RIP makes falsely clas-

sification of Surprise to Other class. It may be explained that

Other class includes some confused micro-expressions similar to

Surprise class. From these comparisons, we see that DiSTLBP-

RIP has a promising ability to recognize five micro-expressions

on CASME2 database, followed by STLBP-RIP and STCLQP.

TABLE 8: Micro-expression recognition rates (%) in SMIC

database. The text in bold means our proposed methods and *

means that we directly extracted the result from their work.

Methods Block number Recognition rate

Baseline* [12] 8× 8 48.78

LBP-TOP [26] 5× 6 42.07

LBP-SIP [31] 5× 6 43.29

STCLQP* [34] 8× 8 64.02

HIGO-TOP* [35] 6× 6 59.15

HOG-TOP* [35] 2× 2 57.93

LOCP-TOP [55] 5× 6 43.90

Cuboids [57] - 37.08

LCRF [67] - 33.54

GCRF [67] - 32.93

DOL [68] - 20.12

STLBP-RIP 5× 6 60.37

DiSTLBP-RIP 5× 6 63.41

3.4.3 SMIC Database

For SMIC database, we compare our methods with the commonly

used spatiotemporal features [26], [31], [55] and feature descriptor

based on temporal model [67], [68]. In our implementation, we

used temporal interpolation method (TIM) to normalize each video

into 10 frames. As comparison, we use LBP-TOP, LOCP-TOP and

LBP-SIP on 5× 6 facial blocks for micro-expression recognition.

We employ spatiotemporal cuboids feature of [57] for comparison,

where we use k-nearest-neighbor (KNN) classification. We use the

same parameter setup to [57]. Finally, we employ LBP features

with conditional random field (LCRF) [67], geometric features

with CRF (GCRF) [67], dense optical flow with hidden markov

model (DOL) [68], for comparison.

The comparison results are reported in Table 8. The tem-

poral models with appearance and shape features (LCRF [67],

GCRF [67], DOL [68]) work poorly in micro-expression recogni-

tion. Among the temporal model, LCRF [67] gets the best one
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of 33.54% for micro-expression recognition. Among all com-

parative algorithms, STCLQP [34] obtains the best recognition

rate, followed by baseline algorithm provided by [12]. Comparing

with LBP-TOP [26], STLBP-RIP increases the recognition rate of

18.3% for micro-expression recognition. Comparing with LOCP-

TOP [55], the micro-expression recognition performance is in-

creased by 16.47% for STLBP-RIP. These results demonstrate that

STLBP-RIP achieves better performance than geometric features

and three spatiotemporal features. Additionally, DiSTLBP-RIP

further improves the performance of micro-expression recognition.

TABLE 9: Performance comparison with the state-of-the-art

methods on SMIC database, where LOSO and LOO represent

leave-one-subject-out and leave-one-sample-out cross validation

protocols, respectively. The text in bold means the results of our

methods.

Methods Protocol Recognition rate (%)

FDM [10] LOSO 54.88

Baseline [12] LOSO 48.78

CNN+SFS [23] LOSO 53.60

STCLQP [34] LOSO 64.02

HOG-TOP [35] LOSO 57.93

HIGO-TOP [35] LOSO 59.15

OSW-LBP-TOP [62] LOSO 53.05

AdaBoost+STM [63] LOSO 44.34

MMFL [64] LOSO 62.33

OS+Wiener filter [69] LOSO 53.56

DLSTD [30] LOO 67.68

CUDA based DCNN [60] LOO 65.85

STLBP-RIP LOSO 60.37

DiSTLBP-RIP LOSO 63.41

Finally, we compare STLBP-RIP and DiSTLBP-RIP with

the state-of-the-art works on SMIC database. Table 9 shows

the comparative results on SMIC database, where we straight-

forwardly extracted the results and protocols from their works.

Under the subject independent protocol, i.e., leave-one-subject-

out, we can see that the STCLQP [34] achieves the highest

recognition rate among all methods, followed by our DiSTLBP-

RIP, because STLBP-RIP and DiSTLBP-RIP only used sign infor-

mation for micro-expression recognition, while STCLQP exploits

magnitude, orientation and sign information. As well, STLCQP

is very restricted by the codebook learning procedure. Instead,

STLBP-RIP and DiSTLBP-RIP have simple but efficient way for

micro-expression recognition. With easier leave-one-sample-out

protocol, the works of [30], [60] obtained the recognition rate

of 67.68% and 65.85%, respectively. From comparative results,

we can see that STLBP-RIP and DiSTLBP-RIP can obtain the

promising and competitive performance.

4 CONCLUSION

In the paper, we have shown the new spatiotemporal local binary

pattern improved by a revisited integral projection for micro-

expression recognition. Additionally, we propose the discrimi-

native method to boost the performance of this spatiotemporal

feature descriptor. The novel feature and its discriminative one

can achieve the state-of-the-art performance on three facial micro-

expression databases. Specifically, we firstly develop a revisited

integral projection method to preserve the shape property of micro-

expressions and then enhance discrimination of the features for

micro-expression recognition. Furthermore, we have presented

to use local binary pattern operators to further describe the

appearance and motion changes from horizontal and vertical

integral projections, well suited for extracting the subtle micro-

expressions. Based on Laplacian method, discriminative group

features are explored for further enhancing discriminative capabil-

ity of STLBP-RIP. Experiments on three facial micro-expression

databases demonstrate our methods outperform the state-of-the-art

methods on micro-expression recognition.

Recently, the deep learning has become popular in computer

vision, also in affective computing. Several works on [23], [60],

[65] attempted to use the deep learning framework for micro-

expression recognition. However, it is seen that their performance

is still far from that of the conventional feature descriptors. This

gap motivates us to develop promising deep learning methodology

for improving the performance of micro-expression recognition. In

future, we will focus on the deep learning and its combination with

the conventional feature descriptors.
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micro-expression database: Inducement, collection and baseline,” in
Proc. AFGR, 2013.

[13] T. Pfister, X. Li, G. Zhao, and M. Pietikäinen, “Recognising spontaneous
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