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ABSTRACT

Topic modeling has been popularly used for data analy-
sis in various domains including text documents. Previous
topic models, such as probabilistic Latent Semantic Analysis
(pLSA) and Latent Dirichlet Allocation (LDA), have shown
impressive success in discovering low-rank hidden structures
for modeling text documents. These models, however, do
not take into account the manifold structure of data, which
is generally informative for the non-linear dimensionality
reduction mapping. More recent models, namely Lapla-
cian PLSI (LapPLSI) and Locally-consistent Topic Model
(LTM), have incorporated the local manifold structure into
topic models and have shown the resulting benefits. But
these approaches fall short of the full discriminating power
of manifold learning as they only enhance the proximity
between the low-rank representations of neighboring pairs
without any consideration for non-neighboring pairs. In this
paper, we propose Discriminative Topic Model (DTM) that
separates non-neighboring pairs from each other in addition
to bringing neighboring pairs closer together, thereby pre-
serving the global manifold structure as well as improving
the local consistency. We also present a novel model fitting
algorithm based on the generalized EM and the concept of
Pareto improvement. As a result, DTM achieves higher clas-
sification performance in a semi-supervised setting by effec-
tively exposing the manifold structure of data. We provide
empirical evidence on text corpora to demonstrate the suc-
cess of DTM in terms of classification accuracy and robust-
ness to parameters compared to state-of-the-art techniques.
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1. INTRODUCTION

Topic models are based on the notion that each data com-
ponent (e.g., a document) can be represented by a mixture
of basic components (or topics). In text analysis, topic mod-
els typically adopt the bag-of-words assumption that ignores
the information from the ordering of words. Each document
in a given corpus is thus represented by a histogram contain-
ing the occurrence of words. The histogram is modeled by a
distribution over a certain number of topics, each of which
is a distribution over words in the vocabulary. By learning
the distributions, a corresponding low-rank representation
of the high-dimensional histogram can be obtained for each
document. Topic models, such as probabilistic Latent Se-
mantic Analysis (pLSA) [11] and Latent Dirichlet Alloca-
tion (LDA) [4] have shown impressive empirical success by
improving classification accuracy through the discovery of
low-rank hidden structures. In addition, these models pro-
vide probabilistic interpretations of the generative process
of data.

According to recent research [17, 14, 2], data from texts or
images are often found to be placed on a low-rank non-linear
manifold within the high-dimensional space of the original
data. Therefore, learning the manifold structure can provide
better dimensionality reduction mapping and visualization.
Based on this assumption, several topic models were recently
developed, namely, Laplacian Probabilistic Latent Semantic
Indexing (LapPLSI) [6] and Locally-consistent Topic Mod-
eling (LTM) [7]. Both of the topic models increase the prox-
imity between the probability distributions of the data pairs
with favorable relationships (i.e., within-class pairs or neigh-
bors in manifolds) by adding the proximity as a regulariza-
tion term to the log-likelihood function of pLSA. As a result,
these models obtain probabilistic distributions concentrated
around the manifold and show higher accuracy than pLSA
and LDA for text clustering and classification tasks. How-
ever, LapPLSI and LTM fall short of the full discriminat-
ing power of manifold learning because the global manifold
structure is often not well preserved only by enhancing the
proximity between favorable pairs. The wunfavorable rela-
tionships (i.e., between-class pairs or non-neighbors in man-
ifolds) between data pairs should also be considered.

In this work, we propose a new topic model to focus more
on discriminating power, which we refer to as Discriminative
Topic Model (DTM). In order to address real-world prob-
lems in a semi-supervised setting (i.e., using a small amount
of labeled data with a large amount of unlabeled data), DTM
maintains the local consistency by considering the manifold
structure of data as do LapPLSI and LTM. However, DTM



explicitly aims not only to increase the proximity between
the probability distributions of the data pairs with favorable
relationships, but also to increase the separability between
those of the data pairs with unfavorable relationships. Due
to the effectiveness of this more refined manifold learning for-
mulation, DTM also preserves the global manifold structure,
showing better performance in real-word document classifi-
cation tasks than the previous approaches. We also present
an efficient algorithm to solve the proposed regularized log-
likelihood maximization problem based on the generalized
Expectation-Maximization algorithm [10] and the concept of
Pareto improvement [1]. Our model fitting algorithm does
not require the regularization parameter to which the clas-
sification performance can be sensitive. We offer empirical
evidence on two real world text corpora (20 newsgroups and
Yahoo! News K-series) and demonstrate the superiority of
DTM to state-of-the-art techniques.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the background and Section 3 overviews pre-
vious works. We then formulate DTM and describe how to
fit the proposed model in Section 4. The experimental re-
sults with discussions are presented in Section 5, followed by
conclusions in Section 6.

2. BACKGROUND AND NOTATIONS

We begin by describing the two basic components of our
method: probabilistic Latent Semantic Analysis (pLSA) [11]
as a topic model and Laplacian Eigenmaps [2] as a manifold
learning algorithm.

2.1 Probabilistic Latent Semantic Analysis

One of the most well-known and fundamental topic mod-
els is probabilistic Latent Semantic Analysis (pLSA) [11].
Evolved from Latent Semantic Indexing (LSA) [9], pLSA
defines a proper generative model based on a solid statisti-
cal foundation.

Suppose that we have a corpus that consists of N docu-
ments {dy,d2, -+ ,dy} with words from a vocabulary con-
taining M words {wi, w2, -+ ,wap}. In pLSA, the occur-
rence of a word w in a particular document d is associated
with one of K unobserved topic variables {z1, z2, - , 2K }.
More formally, pLSA can be defined by the following gener-
ative process:

e select a document d with probability P(d)
e pick a latent class z with probability P(z|d)
e generate a word w with probability P(w|z)

By summing out the latent variable z, the joint probability
of an observed pair (d,w) can be computed as

P(d,w) = P(d)P(w|d)

)y P(wl=)
k=1

Based on this joint probability, we can calculate the log-
likelihood as

P(zr|d) (1)

N M

L= Z Z n(d;, w;) log (P(di)

i=1 j=1

M =

P(w;|24) Pz d:))

(2)
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where n(d, w) denotes the number of times word w occurred
in document d. Following the likelihood principle, one can
determine P(w|z) and P(z|d) by maximizing the relevant
part of Eq. (2):

N M

L= ZZ (dsywy) logZPw]|zk

i=1 j=1

(zkldi)  (3)

2.2 Laplacian Eigenmaps

Traditional manifold learning algorithms [17, 14, 2] have
given way to recent graph-based semi-supervised learning
algorithms [19, 18, 3]. The goal of manifold learning is to
recover the structure of a given dataset by non-linear map-
ping into a low-dimensional space. As a manifold learning
algorithm, Laplacian Eigenmaps [2] was developed based on
spectral graph theory [8].

Suppose that we have N data points {wi,u2, -+ ,un},
each of which is an M X 1 vector. From the nearest neigh-
bor graph of these data points, we define a local similar-
ity matriz W that contains favorable pair-wise relationships
among them:

if u; € Nr(u]') or u; € ./\/‘T(U@)
: (4)
otherwise
where N (u) is the set of the r nearest neighbors of u.
Let x;, which is a K x 1 vector, be a low-rank representa-
tion of w; on the manifold (i.e., K < N). Intuitively, if two
data points u; and u; are close to each other in the original
space, the corresponding low-rank representations z; and z;
should also lie near each other. From this intuition, Lapla-
cian Eigenmaps minimize the following objective function:

N
2
> Wiz — a|

i,j=1

()

This optimization problem, however, produces trivial solu-
tions 1 = x2 - = zn. To avoid these outcomes, we
also need to somehow maintain unfavorable relationships
between data points. For example, the original Laplacian
Eigenmaps [2] impose the constraint, X DXT = I where X
is the matrix, the i-th column of which is z; and D is a
diagonal matrix such that D;; = Z?zl Wi

3. PREVIOUS WORKS

Cai et al. recently proposed two topic models, Laplacian
pLSI (LapPLSI) [6] and Locally-consistent Topic Modeling
(LTM) [7], which use manifold structure information based
on pLSA. To formalize these models, the objective of the
Laplacian Eigenmaps is added as a regularization term to
the original log-likelihood of pLSA. In LapPLSI, the Eu-
clidean distance is adopted to measure the proximity be-
tween two probability distributions:

N M
L= ZZ (dsywy) logZP wj|zk) P(zk|d;)
=1 j=1
A= o 2
- 52 Z P(zk|di) — P(zxld))) (6)
k=11i,j=1

where A is the regularization parameter and W is an N X
N matrix measuring the local similarity of document pairs
based on word occurrences.



In LTM, Kullback-Leibler Divergence is used instead of
the Euclidean distance:

L= ZZ n(ds;, w;) logZP wj|zk) P(zx|d;) (7)
2 Z WW( (2l 1P (:]ds) +D(P<z|dj>\|P<z|di>)>

By discovering the local neighborhood structure, these two
models show more discriminating power than pLSA and
LDA for document clustering and classification tasks.
However, both of the models fall short of the full discrim-
inating power of Laplacian Eigenmaps because the global
manifold structure is often not well preserved only by en-
hancing the proximity between favorable pairs without main-
taining or increasing the separability between unfavorable
pairs. In addition, these models are limited in that their per-
formance depends on the regularization parameter A; futher-
more, it is unclear how to appropriately determine its value.

4. DISCRIMINATIVE TOPIC MODEL

In this section, we formalize our proposed model, named
Discriminative Topic Model (DTM). We also present an
algorithm to solve the proposed regularized log-likelihood
maximization problem based on the generalized Expecta-
tion Maximization (EM) algorithm [10] and the concept of
Pareto improvement [1].

4.1 Regularized Model

When increasing the local consistency in manifold learning
of data, we also need to maintain or increase the separabil-
ity of the low-rank probability distributions of documents
whose word occurrences are not close to each other. More
formally, we need to minimize the proximity of the proba-
bility distributions of favorable pairs, expressed by

>y W

i,j=1k=1

(zldi) — P(z]d;))*

(8)

Simultaneously, we need to maintain or maximize the sepa-
rability of the probability distributions of unfavorable pairs,
which can be expressed by

> > a-wy

i,j=1 k=1

P(zx|ds) — P(21d)))”

9)

Putting these two objectives together, we maximize the fol-
lowing objective function:

o T (= Wo) (Pleld) = Plaldi))”
SN A, Wi (P(2klds) — P2k]dy))?
which is equivalent to
SN A, (1= W) (P(axlds) — Plaxldy))”
S R Wi (P(2kldi) — Plaxld;))
a1 Sk (Plarlds) — P(aldy)” an
SN A, Wi (P(2klds) — P2kldy))®

Our regularized model is regularized with this term to learn
the manifold structure, in addition to adopting the genera-
tive process of pLSA. Thus, the log-likelihood of our model
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is as follows:

N M
L= ZZ n(ds, w;) logZP wj|zk)P(zk|d;)
=1 j=1
g1 Dk (p<zk|d,-)_p<zk|dj))2 12)
2
Yot Soney Wis (P(zxlds) — P(zkld;))

where ) is the regularization parameter. Although this pa-
rameter is presented, due to the nature of our model fitting
algorithm, this parameter need not be considered as we will
elaborate in the following section.

4.2 Model Fitting

When a probabilistic model involves unobserved latent
variables, the EM algorithm is generally used for the max-
imum likelihood estimation of the model. Here we use the
generalized EM algorithm which in the M-step finds param-
eters that “improve” the expected value of the log-likelihood
function rather than “maximizing” it. For more details,
see [10].

Let ¢ = {P(wj|zx)} and 6 = {P(zx|d;)}, which are pa-
rameters of DTM. Thus, M K + KN parameters are needed
to be estimated, which is the same as pLSA.

E-step: The E-step of DTM is exactly the same as that
of pLSA [11]. By applying Bayes’ formula, we compute pos-
terior probabilities.

P(wjlzr) P(2k|d;)
S ey Plw;lzw ) Pz |di)

M-step: In the M-step of DTM, we improve the expected
value of the log-likelihood function which is

(13)

P(zkldi, wj) =

Q(¢,0) = Q1(¢,0) + AQ2(0) (14)
= Z Z n(di,w;) Y P(zi|ds, wy) log[P(w;|21) P2k ds)]

SNo ke (P(aaldi) = Plaxldy))”
Zi\,{jzl 25:1 Wi, (P(Zkldz) - P(zk|d]—))2

The M-step re-estimation equations for ¢ are exactly the
same as those of pLSA because the regularization term of
DTM does not include P(w;|z).

SN n(di, wy) Pzl di, wy)
iy oty nldiywyr) P(zi|di, w)r)

Before describing the M-step re-estimation algorithm for
6, we introduce the concept of Pareto improvement [1], based
on which we propose our algorithm.

Pareto improvement is defined as a change from one status
to another that can improve at least one objective without
worsening any other objectives. More formally, in our prob-
lem, an update 8% — 60D is a Pareto improvement if
either of the following two conditions is satisfied.

L. Q1,0 ) > Q1(¢,0") and Q2(0+Y)
2. Q1(¢,9(t+1)) > Ql(¢,9(t)) and QQ(G(t-H))

+ A

P(wjl|zi) =

(15)

> Q2(0)
> QQ(Q(t))

Based on the concepts of generalized EM and Pareto im-
provement, we re-estimate 6 by 1) increasing Q(¢, 0) rather
than maximizing it and 2) increasing at least one of Q1 (¢, 6)
and Q2(0) without decreasing the other.



One advantage of Pareto improvement is that Q(¢,0) is
improved regardless of the regularization parameter A\ whose
value affects the performance of previous models, and, yet
is hard to determine appropriately.

In order to present a re-estimating algorithm for 6 to in-
crease Q(¢,0) based on Pareto improvement, we first pro-
pose re-estimating equations to increase each of Q1 (¢, 8) and

Q1(0).

THEOREM 1. If 6TV is computed from 8 by applying
the following re-estimation equations

S0l n(ds, wy) Pzl di, wy)
S0y n(di, w;)

then Q1(¢,0) monotonically increases when 6 moves from
0 to 6 glong the line with fived ¢.

PROOF. Qi(¢,0) is the expected value of the log-likelihood
function of pLSA and Eq. (16) is the re-estimation equations
for P(zi|d;) of pLSA; thus, 0tV maximizes Qi (¢, 6) when
¢ is fixed. Since Qi(¢,0) is a concave function of 6 and
6¢*D is the maximum solution of Q1 (6,0), Q1(¢,0) mono-

tonically increases when 6 moves from 8®) to 64+ along
the line. [

P(zk|di) =

(16)

THEOREM 2. Let o be the estimated value of the reqular-
ization term under the current estimates of the parameters:
i.e.,

oo Zim T (Plld) = Pld)”
S oy Yl Wi (Pzeldi) = Plzildy)’

And we define B for topic id p and document id i as

[ NP(zp|di) + 372, Wi P(z]d;) 1
B =mi ~ ,
Zj:l P(zp|d;) + aDii P(zp|d;) P(zp|ds)
(18)
Then, Q2(0) is nondecreasing by the following re-estimation
equations for [P(z1|d;:), P(z2|d;), -+, P(zk|d:)]:

BP(zp|dy), ifk=p
P(zild;) = _BP(z.|d: . 19
(zxld) { 11-%5152?% P(zr|ds), otherwise (19)

PRrROOF. See Appendix A. []

It is worth mentioning that the minimum operator is in-
serted in Eq. (18) to ensure that [P(z1]d;), - - - , P(zk|ds)] be-
comes a probability distribution after re-estimation. It can
be easily verified that Zszl P(zx|d;) = 1 and Vk, P(zi|d;) >
0 after the re-estimation.

The re-estimation equations in Theorem 2 can be simpli-
fied and parallelized by matrix computation. See Appendix
B for more details.

Now we propose our re-estimating algorithm for 6. Let the
current parameters be 6. In order to maximize the discrim-
inating power, we first compute 61 by repeatedly applying
Eq. (19) to 6y with all possible pairs of (topic id, docu-
ment id). Theorem 2 guarantees that Q2(01) > Q2(6p). We
then test whether Qi(¢,01) > Qi(¢,6o), and if it is true,
re-estimating for 6 is done by setting 0 = 6;.

If Qi(¢,01) < Qi(¢,00), 0 is re-estimated through the
local search from 6; as follows. 602 is computed from 6, by
applying the E-step in Eq. (13) and the pLSA M-step in
Eq. (16). Theorem 1 ensures that Qi(¢,#) monotonically

Algorithm 1 Model fitting for DTM

Input: n(d;, w;): word occurrences in each document,

N: # of documents, M: size of vocabulary, K: # of topics,
W: similarity matrix, v: step size, MI: max # of iterations.
Output: ¢ = {P(wj|zx)} and 0 = {P(zx|d:)}.

1: Randomly initialize ¢ and 6.

2:t«—0
3: while t < MI do
4: E-STEP:
5:  Compute P(zx|d;, w;) using ¢ and 6 as in Eq. (13).
6: M-STEP:
7:  Re-estimate ¢ as in Eq. (15).
8 010
9: forp=1to K do
10: for i =1to N do
11: update P(z1|d;), -+, P(zx|d;) in 61 with topic id
p and document id ¢ as in Eq. (19).
12: end for
13:  end for
14:  if Q1(¢,01) > Q1(¢,0) then
15: Re-estimate 6 by 0 «— 0,
16:  else
17: Compute P(zr|d;, w;) using ¢ and 6; as in Eq. (13).
18: Compute 05 from 6 as in Eq. (16).
19: O3 «— 01, s 0
20: repeat
21: O3 «— 03 +~(02 —01), s — s+
22: until Q1(¢,03) > Q1(¢,0) or s+ > 1
23: if Q1 (¢, 93) Z Q1 (¢, 9) and Qz(gg) Z Qz(e) then
24: Re-estimate 6 by 0 «— 03
25: end if
26: end if

27 t—t+1
28: end while

increases when 6 moves from 6, to 62 along the line. Thus,
03 is initially set as 61 and iterate the following update until

Q1(¢,03) > Q1(e, 6o)
03 = 03 + v(02 — 61) (20)

where 7 is the step parameter such that 0 < v < 1.

We then test whether Q2(03) > Q2(6o). If it is true, re-
estimating for 6 is done by setting 8 = #3. Otherwise, we
keep 0 as 0y without updating in the M-step and continue to
the next E-step. Our model fitting algorithm is summarized
in Algorithm 1.

It is worth discussing the role of the step parameter 7 in
Eq. (20). In some sense, v plays a role in controlling the
balance of the log-likelihood term Q1(¢, ) and the regular-
ization term Q2(60); the balance control is originally the role
of the regularization parameter X in Eq. (14). If + is small,
0 tends to be relatively close to 61; thus, the gap between
two Q1(¢,0) in the consecutive iterations tends to be small,
which leads to relatively large Q1(¢,0) and small Q2(6) in
the end of the fitting. Similarly, if ~ is large, we can expect
relatively small Q1(¢,0) and large Q2(0) in the end of the
fitting. Though ~ influences the final value of Q1 and Q»,
classification performance is not sensitive to v as we will
empirically show in the following section.



S. EXPERIMENTS

In this section, we evaluate the proposed DTM on the two
widely used text corpora, 20 newsgroups and Yahoo! News
K-series, in document classification.

5.1 Datasets and Experimental setup

The 20 newsgroups corpus is a collection of approximately
20,000 newsgroup documents, partitioned almost evenly across
20 different newsgroups [12]. The preprocessed version was
downloaded from R. F. Corréa’s webpage'; this version in-
cludes 8,156 distinct words and is divided into a training set
and a test set. Among the documents in the training set, we
randomly select 100 documents from each category for each
test run so that 2,000 documents are used for classification.
Yahoo! News K-series is a collection of 2340 news articles
belonging to one of 20 different categories [5]. The pre-
processed version including 8,104 distinct words was down-
loaded from D. L. Boley’s webpage?. Among all documents,
we select the documents belonging to the category “Enter-
tainment” and its sub-categories, using 1389 documents with
15 categories for every test run; these categories have vary-
ing sizes ranging from 278 to 9.

We evaluate the performance of DTM and provide com-
parison against previous topic models (including LapPLSI
and LTM) and other traditional dimension reduction algo-
rithms:

e Probabilistic Latent Semantic Analysis (pLSA) [11]
e Latent Dirichlet Allocation (LDA) [4]

Laplacian Probabilistic Latent Semantic Indexing (Lap-
PLSI) [6]

Locally-consistent Topic Modeling (LTM) [7]

Principal Component Analysis (PCA)
e Non-negative Matrix Factorization (NMF) [13].

Additionally, the approach using raw word histograms with-
out any dimension reduction is tested.

To address real-world problems in a semi-supervised set-
ting, we randomly select a small number of documents (one
of 1, 3, 5, and 10) from each category as labeled data;
the rest are considered to be unlabeled data. For each ap-
proach, we explore several numbers of topics or dimension-
alities of the embedding space. For classification, a linear-
kernel Support Vector Machine (SVM) is trained on the low-
dimensional representations (i.e., P(zx|d;) for topic models).
After 20 test runs, the average of the accuracies is reported.

5.2 Implementation Details

The tf-idf weight scheme [15] is first applied to the word
occurrences. The histogram intersection is then computed to
measure the similarity of two documents after L1-normalization
for each document. More formally, the similarity of two doc-
uments d; and d; is calculated as

> min (M M)

where n(d,w) is the number of occurrences of word w and
n(d) is the total number of words in document d; i.e., n(d) =

(21)

! http://sites.google.com/site/renatocorrea02/textcategorizationdatasets/
2 http://www-users.cs.umn.edu/~boley/ftp/PDDPdata/
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S M n(d,wy). We found that this histogram intersection
is as effective as the Euclidean distance in discovering the
nearest neighbors of each document, which are in the same
category.

We additionally utilize class label information when con-
structing the similarity matrix W, as described in the previ-
ous work [7]. More specifically, after generating a r-nearest
neighbor graph in an unsupervised manner, we add edges
between documents belonging to the same category and re-
move edges between documents belonging to different cate-
gories.

In our experiments, we set the number of the nearest
neighbors r as 10, and the step parameter 7y as 0.1. Although
we chose these parameters, the classification performance is
not sensitive to these parameters as we will show later in
this section.

For performance comparison, we implemented the other
approaches as follows. For pLSA, the source codes were
downloaded from Peter Gehler’s code and dataset page>.
For LDA, Matlab Topic Modeling Toolbox 1.3.2% was used.
For LapPLSI and LTM, the source codes were downloaded
from the author’s webpage®. We directly implemented the
other two methods: PCA and NMF. The regularization pa-
rameters of LapPLSI and LTM were tuned to produce the
best performance among 1, 10, 100, and 1000. All the other
parameter settings and implementation details were set to
be identical to DTM.

5.3 Results and Discussions

Figures 1 and 2 demonstrate that DTM consistently out-
performs all other approaches, including the most recently
proposed LapPLSI and LTM, in terms of classification accu-
racy. From these results, we can conclude that DTM is more
successful in exposing the manifold structure inherent in 20
newsgroups and Yahoo! News K-series corpora. LapPLSI
and LTM do not show such capabilities because they are
not effective in preserving the global manifold, which is ex-
pected to be found in both the corpora since they comprise
groups of highly related categories.

Among previous approaches, LapPLSI and LTM show
higher performance than pLSA and LDA, as expected. Al-
though LapPLSI and LTM do not reach the full discriminat-
ing power of manifold learning, they can still find a low-rank
nonlinear embedding space to which documents are mapped.
On the other hand, pLSA and LDA, which do not adopt
any regularization for manifold learning, cannot find such a
nonlinear embedding space. The performance of pLSA de-
creases as the number of topics increases beyond a certain
point; it is well known that pLSA is prone to overfitting due
to the large number of parameters which grows proportion-
ally with data size. PCA and NMF also demonstrate similar
tendencies on both of the corpora.

Figure 3 shows that DTM is insensitive to the variation
in the two parameters utilized by the model: the number of
the nearest neighbors r and the step size . Additionally, in
contrast to LapPLSI and LTM, the regularization parameter
is not needed in DTM. Therefore, DTM is negligibly affected
by parameter changes.

Shttp://WWWAkyb.mpg.de/bs/people/pgehler/code/index.html
4http://psicxp.ss.uci.cdu/rcscarch/programs,data/toolbox.htm
http://www.zjucadcg.cn/dengcai/LapPLSA /index.html
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Figure 1: Classification performance on 20 newsgroups (best viewed in color)
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Figure 2: Classification performance on Yahoo! News K-series (best viewed in color)
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Figure 3: Classification performance of DTM as the parameters are varied (5 labeled data for each category
and 100 topics on 20 newsgroups, best viewed in color)

6. CONCLUSIONS

In this paper, we have proposed a topic model that incor-
porates the information from manifold structures of data by
considering unfavorable relationships in addition to favor-
able ones; the former are ignored in previous work. We have
also presented an efficient model fitting algorithm, based
on generalized EM and Pareto improvement, which enables
reliable discovery of the low-rank hidden structures by mini-
mizing the sensitivity to parameters. We empirically demon-
strated that our approach ourperforms previous topic mod-
els in terms of classification accuracy in a semi-supervised
setting on two text corpora.
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APPENDIX
A. Proof of Theorem 2

We reintroduce the concept of auxiliary function [13, 16].

DEFINITION 1. G(z,2") is an auziliary function for F(z)
if the two following conditions are satisfied.
G(z,2') < F(z), G(z,z)=

F(z) (22)

This definition is useful with the following Lemma.

LEMMA 1. If G(z,2) is an auziliary function, then F(x)
is non-increasing under the update

t+1

' = argmax G(x, z") (23)

PrOOF. F(z'™') > G(z*, 2%) > G(zt,2%) = F(2*). O

We define 7 for topic id p and document id i as

A NP(zp|di) +a Y70, Wi P(z]d;) (24)
S001 P(zpld;) + aDiiP(z|d:)

and also define

Z Z (zldi) = P(zld;)*
Z Z P(zi|di) = P(axld;))”  (25)

LEMMA 2. R(0) is nondecreasing after re-estimation of

[P(z1|d;), P(22|ds), -+ , P(zK|d;)] by the following equations
with T = 7.
TP(2p|di), ifk=p
P(zi|d;) = ~P(z . 26
(z]ds) {MP(ZMCQ), otherwise (26)

PROOF. Let F(7) be the value of R(0) at 8 = §**+Y that
is obtained by applying the update in Eq. (26) to the current
parameters Y = {P(z|d)}. Then,

O 23 (1~ W) | (rP(zpld:) — Pepld) P(aplde)
1— 7P(2p|d; ) P(zpld;)
- Z (W (zr|di) — P(Zk\dj)) = Pls|d)
(2)
Since 37, ., P(zk|d) = 1 — P(z|d),

827(7) = 2¢(NP(z|d:) — oDt P(z|di)) 7
=
N N
—2e( X Pyl - a S WoP(ldy)  (28)
j=1 j=1
where ¢ = (P(zp|ds) + %) and D;; = Zjvzl Wij.

In addition, the second order derivative of F'(7) is

O?F(r)
or?
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We define G as an auxiliary function of F(7) by replacing
the second order derivative in the Taylor series expansion of
F(r)at T=1.

OF (1)
or

G(r,1) =F(1) + (r—=1)

r=1

—¢( X Plapldy) + aDuP(zpld) ) (r ~ 1) (30)

Since G(1,1)—F (1) = *C( Z;V:l P(Zp|dj)+NP(Zp‘di))(Tf

1)? €0, G is an auxiliary function of F. Solving %:’1) =0

yields 7 in Eq. (24), which minimizes G(7, 1) because G(r, 1)
is concave with respect to 7. Therefore, by Lemma 1,

R(OUTV) = R(G(t()z))) 5

F(7) 2 G(7,1) 2 G(1,1) = F(1) =

O

LEMMA 3. R(0) is nondecreasing by the updates in Eq. (19)
with 8 in Eq. (18).

Proor. For any p such that 0 < p <1,

G(1,1) = (1= G(L, )+4G(1, 1) < (1—p)G(1, 1) +uG(#,1)
(32)

Since G(7,1) is concave,
(1 =G 1) +pG(7,1) < G((1—p) +p7,1)  (33)

Thus, G(1,1) < G(v,1) for any v that is placed between 1
and 7 (either 1 <v<fFor7<v<1).
Let 6%+ be obtained by applying the updates in Eq. (19)
to 6. Since 3 is always placed between 1 and 7,
R(E“Y) = F(B) > G(8,1) > G(1,1) = F(1) = R(")
(34)
O
Proof of Theorem 2
PROOF. Since a = Q2(0"),

N K

(P(znld:) —

i,j=1k=1

N K
— Z ZWi]‘ (P(Zk|di)(t+l) —

i,j=1k=1

R(6Y) = 0. By Lemma 3,

P(z1d)))*

6=0(t+1)

P(z1]dy))*

>0

9=g(t+1)
(35)

Therefore,

SN S (Plakldi) — Pakld))) ] ppeesen)

Qz(a(t+1)) _
SN Wi (P(zkldi) — P(kldi)) |,y

>a= Q0" (36)



B. Matrix Formulation of Re-estimation Equa-
tions in Theorem 2
Let P be a matrix such that P;; = P(z;|d;).

N K
>0 Wiy(Prs — Pyy)? = Tr(PLPT)

i,j=1k=1

where L = D — W, which is the graph Laplacian. In the
same way,

(37)

N K
Z Z (Pri — ij)2 =Tr(P(NIy — lng)PT)
i,=1k=1

= NTr(PP") — (P1x)" (Pln) (38)

where I is the N x N identity matrix and 15 is an N by
1 vector with all ones.
From Egs. (37) and (38),

_ NTr(PP") — (P1n)"(Pln)
4= Tr(PLPT)

(39)

661

Since L is a sparse matrix, « can be efficiently computed.
Now we reformalize 3 as a matrix form. For topic id p
and document id <,

(NP + aPW),; 1 > (10)

Fpi = min ((Plng Y aPD),:’ Py

Considering all the documents with the topic id p, we define
> (NP +aPW), 1%

fp = min ((131N1,TV Y aPD),’ P,

where X, is the p-th row of matrix X and division is element-
wise. Finally, for the topic id p, we obtain the following
update for P.

(41)

By ® P, ifk=p -
= T 3
k w ® Py, otherwise (42)
N ip

where ® denotes element-wise multiplication.



