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Abstract

Background: Recent genomic and bioinformatic advances have motivated the development of

numerous network models intending to describe graphs of biological, technological, and

sociological origin. In most cases the success of a model has been evaluated by how well it

reproduces a few key features of the real-world data, such as degree distributions, mean geodesic

lengths, and clustering coefficients. Often pairs of models can reproduce these features with

indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these

few target features are insufficient to distinguish which of the different models best describes real

world networks of interest; moreover, it is not clear a priori that any of the presently-existing

algorithms for network generation offers a predictive description of the networks inspiring them.

Results: We present a method to assess systematically which of a set of proposed network

generation algorithms gives the most accurate description of a given biological network. To derive

discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional

(in principle infinite-dimensional) "word space". This map defines an input space for classification

schemes which allow us to state unambiguously which models are most descriptive of a given

network of interest. Our training sets include networks generated from 17 models either drawn

from the literature or introduced in this work. We show that different duplication-mutation

schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and

the C. elegans neuronal network, out of a set of network models including a linear preferential

attachment model and a small-world model.

Conclusions: Our method is a first step towards systematizing network models and assessing

their predictability, and we anticipate its usefulness for a number of communities.
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1 Background
The post-genomic revolution has ushered in an ensemble
of novel crises and opportunities in rethinking molecular
biology. The two principal directions in genomics,
sequencing and transcriptome studies, have brought to
light a number of new questions and forced the develop-
ment of numerous computational and mathematical
tools for their resolution. The sequencing of whole organ-
isms, including homo sapiens, has shown that in fact there
are roughly the same number of genes, for example, in
mice and men. Moreover, much of the coding regions of
the chromosomes (the subsequences which are directly
translated into proteins) are highly homologous. The
complexity comes then, not from a larger number of parts,
or more complex parts, but rather through the complexity
of their interactions and interconnections.

Coincident with this biological revolution – the massive
and unprecedented volume of biological data – has blos-
somed a technological revolution with the popularization
and resulting exponential growth of the computing net-
works. Researchers studying the topology of the Internet
[1] and the World Wide Web [2] attempted to summarize
these topologies via statistical quantities, primarily the
distribution P(k) over nodes of given connectivity or
degree k, which was found to be completely unlike that of
a "random" or Erdös-Rényi graph. Instead, the distribu-
tion obeyed a power-law P(k)~k-γ. As a consequence many
mathematicians concentrated on (i) measuring the degree
distributions of many technological, sociological, and
biological graphs (which generically, it turned out,
obeyed such power-law distributions) and (ii) proposing
various models of randomly-generated graph topologies
which could reproduce these degree distributions (cf. [3]
for a thorough review). The success of these latter efforts
reveals a conundrum for mathematical modeling: a metric
which is universal (rather than discriminative) cannot be
used for choosing the model which best describes a net-
work of interest. The question posed is one of classification,
meaning the construction of an algorithm, based on train-
ing data from multiple classes, which can place data of
interest within one of the classes with small test loss.

Systematic enumeration of substructures has so far been
used to find statistically significant subgraphs or "motifs"
[4-8] by comparing the network of interest to an assumed
null model. Recently, the idea of clustering real networks
into groups based on similarity in their "significance pro-
files" has been proposed [9]. We here use and extend these
ideas to compare a given network of interest to a set of
proposed network models. Rather than unsupervised
clustering of real networks, we perform supervised classi-
fication of network models. In this paper, we present a
natural mapping from a graph to an infinite-dimensional
vector space using simple operations on the adjacency

matrix. The coordinates (called "words", see Methods)
reflect the number of various substructures in the network
(see Figures 3 and 6). We then use support vector
machines (SVMs) to build classifiers that are able to dis-
criminate different network models. The performance of
these classifiers is measured using the empirical test-loss
on a hold-out set, thus estimating the probability of mis-
classifying an unseen test network. We selected 17 differ-
ent mechanisms proposed in the literature to model
various properties of naturally occurring networks.
Among them are various biologically-inspired graph-gen-
erating algorithms which were put forward to model
genetic or protein interaction networks. We are then able
to classify naturally occurring networks into one of the
proposed classes. We here classify data sets for the E. coli
genetic network, the C. elegans neuronal network and the
yeast S. cerevisiae protein interaction network. To interpret
and understand our results further we define a measure of
robustness to estimate the confidence of the resulting clas-
sification. Moreover, we calculate p-values using Gaussian
kernel density estimation to find substructures that are
characteristic of the network model or the real network of
interest. We anticipate that this new approach will provide
general tools of network analysis useful to a number of
communities.

Results and Discussion
We apply our method to three different real data sets: the
E. coli genetic network [10] (directed), the S. cerevisiae pro-

Subgraphs associated with nnz D AUT AUT AU AUT AFigure 3
Subgraphs associated with nnz D AUT AUT AU AUT A. 
Every word can be associated with a set of subgraphs. If the 
word has a non-zero value for a given network, at least one 
of these subgraphs must appear. The figure shows the sub-
graphs associated with the word nnz D AUT AUT AU AUT A.
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tein interaction network [11] (undirected), and the C. ele-
gans neuronal network [12] (directed).

Each node in E. coli's genetic network represents an
operon coding for a putative transcriptional factor. An
edge exists from operon i to operon j if operon i directly
regulates j by binding to its operator site. This gives a
sparse adjacency matrix with a total of 423 nodes and 519
edges.

The S. cerevisiae protein interaction network has 2114
nodes and 2203 undirected edges. Its sparseness is there-
fore comparable to that of E. coli's genetic network.

The C. elegans data set represents the organism's fully
mapped neuronal network. Here, each node is a neuron
and each edge between two nodes represents a functional,
directed connection between two neurons. The network
consists of 306 neurons and 2359 edges, and is therefore
about 7 times more dense than the other two networks.
We create training data for undirected or directed models
according to the real data set. All parameters other than
the numbers of nodes and edges are drawn from a uni-
form distribution over their range. We sample 1000 exam-
ples per model for each real data set, train a pairwise
multi-class SVM on 4/5 of the sampled data and test on
the 1/5 hold-out set. We determine a prediction by count-
ing votes for the different classes. Table 1 summarizes the
main results. All three classifiers show very low test loss
and two of them a very high robustness (see Subsection
Robustness under Methods). The average number of sup-
port vectors is relatively small. Indeed, some pairwise clas-
sifiers have as few as three support vectors and more than
half of them have zero test loss. All of this suggests the
existence of a small subset of words which can distinguish
among most of these models.

The predicted models Kumar [13], Middendorf-Ziv (MZ)
[14], and Sole [15] are based on very similar mechanisms
of iterated duplication and mutation. The model by
Kumar et al. was originally meant to explain various prop-
erties of the WWW. It is based on a duplication mecha-
nism, where at every iteration a prototype for the newly
introduced node is chosen at random, and connected to
the prototype's neighbors or other randomly chosen
nodes with probability p. It is therefore built on an
imperfect copying mechanism which can also be inter-
preted as duplication-mutation, often evoked when con-
sidering genetic and protein-interaction networks. Sole is
based on a similar idea, but is an undirected model, and
allows for two free parameters, a probability controlling
the number of edges copied and a probability controlling
the number of random edges created. MZ is essentially a
directed version of Sole. Moreover, we observe that none
of the biological networks were predicted to be generated
by preferential attachment even though these networks
exhibit power-law degree distributions. The duplication-
mutation schemes arise as the most successful. However,
it is interesting to note that every duplication-mutation
model by construction gives rise to an effective preferential
attachment [16]. Our classification results therefore do
not dismiss the idea of preferential attachment, but
merely the specific model which directly implements this
idea.

Example for a word and its associated subgraphsFigure 6
Example for a word and its associated subgraphs. 
Every word can be associated with a set of subgraphs. If the 
word has a non-zero value for a given network, at least one 
of these subgraphs must appear. The figure shows the sub-
graphs associated with the word nnz AT A. The elements of 
the matrix AT A count these two walks. T A corresponds to 
one step "up" the graph, the following A to one step "down". 
The last node could be either the same as the starting node 
as in the first subgraph (accounted for by the diagonal part D 
AT A) or a different node as in the second subgraph 
(accounted for by the non-diagonal part U AT A).

Table 1: Summary of classification results. Results of multi-class 

SVM: the empirical training loss <Ltr> averaged over all pairwise 

classifiers, the average empirical test loss <Ltst>, the average 

number of support vectors <Nsv>, and the winning model (with 

the highest number of votes from all pairwise classifiers). For the 

definition of robustness see Methods.

E. coli C. elegans S. cerevisiae

Ltr 1.6% 0.5% 2.1%

Ltst 1.6% 0.5% 1.8%

Nsv 109 51 106

Winner Kumar [13] MZ [14] Sole [15]

Robustness 1.0 0.97 0.64
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Kumar and MZ were classified with almost perfect robust-
ness (see Subsection Robustness under Methods) against
500-dimensional (out of 4680 dimensions) subspace
sampling. With 26 different choices of subspaces, E. coli
was always classified as Kumar. We therefore assess with
high confidence that Kumar and MZ come closest to mod-
eling E. coli and C. elegans, respectively. In the case of Sole
and the S. cerevisiae protein network we observed fluctua-
tions in the assignment to the best model. 3 out of 22
times S. cerevisiae was classified as Vazquez (duplication-
mutation), other times as Barabasi (preferential attach-
ment), Klemm (duplication-mutation), Kim (scale-free

static), or Flammini (duplication-mutation) depending
on the subset of words chosen. This clearly indicates that
different features support different models. Therefore the
confidence in classifying S. cerevisiae to be Sole is limited.
The statistical significance of individual words in different
models is investigated using kernel density estimation
(see Methods) by finding words which maximize ηij ≡
pi(x0)/pj(x0) for two different models (i and j) at a word
value of the real data set x0. Figure 1 shows training data
for two different models used to classify the C. elegans net-
work: the MZ model [14] which wins in the classification
results, and the runner-up Grindrod model [17]. The

C. elegans: kernel density estimation for the word nnz D(AU AD AT AU A)Figure 1
C. elegans: kernel density estimation for the word nnz D(AU AD AT AU A). Data for two different models are shown: the 
Middendorf-Ziv [14] model and the Grindrod [17] model. C. elegans is robustly classified as a Middendorf-Ziv network. The 
Grindrod model is the runner-up. We here show data for a word that especially disfavors the Middendorf-Ziv model over the 
Grindrod model. The histograms of the word over the training data are shown along with their associated densities calculated 
from the data by Gaussian kernel density estimation. The densities give the following log-p-values at the word value for the C. 
elegans network: log(pMZ) = -376, log(pGrindrod) = -6.23.
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histograms for the word nnz D(AU AD AT AU A) are
shown along with their estimated densities, nnz D(AU AD
AT AU A) extremely disfavors the winning model over its
runner-up (minimizes ηij). The opposite case is shown in
Figure 2 for E. coli, where the plotted word distribution
supports the winning model (Kumar [13]) and disfavors
(maximizes ηij) the runner-up Krapivsky-Bianconi model
[18,14] (preferential attachment). More specifically we
are able to verify that the likelihood to generate a network
with E. coli's word values is highest for the Kumar model
for most of the words. Indeed, out of 1897 words taking

at least 2 integer values for all of the models, the estimated
density at the E. coli word value was highest for Kumar in
1297 cases, for Krapivsky-Bianconi [18,14] in 535 cases
and for Krapivsky [18] in only 65 cases.

Figure 2 shows the distributions for the word nnz D(AUT
AUT AU AUT A) which had a maximum ratio of probabil-
ity density of Kumar over that of Krapivsky-Bianconi at E.
coli's word value. In fact, E. coli has a zero word count,
meaning that none of the associated subgraphs shown in
Figure 3 actually occur in E. coli. Four of those subgraphs

E. coli: kernel density estimation for the word nnz D(AUT AUT AU AUT A)Figure 2
E. coli: kernel density estimation for the word nnz D(AUT AUT AU AUT A). Data for two different models are shown: the 
Kumar model [13] and the Krapivsky-Bianconi [18, 14] model. E. coli is robustly classified as a Kumar network. The Krapivsky-
Bianconi model is the runner-up. We here show data for a word that especially favors the Kumar model over the Krapivsky-
Bianconi model. The histograms of the word over the training data are shown along with their associated densities calculated 
from the data by Gaussian kernel density estimation. The densities give the following log-p-values at the word value for the E. 
coli network: log(pKumar) = -4.22, log(pKB) = -12.0.
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have a mutual edge which is absent in the E. coli network
and also impossible to generate in a Kumar graph.
Krapivsky-Bianconi graphs allow for mutual edges which
could be one of the reasons for a higher count in this
word. Another source might be that the fifth subgraph
showing a higher order feed-forward loop is more proba-
ble to be generated in a Krapivsky-Bianconi graph than in
a Kumar graph. This subgraph also has to be absent in the
E. coli network since it gives a zero word value, demon-
strating that both the Kumar and Krapivsky-Bianconi
models have a tendency to give rise to a topological struc-
ture that does not exist in E. coli. This analysis gives an
example of how these findings are useful in refining net-
work models and in deepening our understanding of real
networks. For further discussions refer to our website. [14]

The SVM results suggest that one may only need a small
subset of words to separate most of the models. The sim-
plest approach to find such a subset is to look at every
word for a given pair of models and compute the best
split, then rank words by lowest loss. We find that among
the most discriminative words some occur very often,
such as, nnz (AA) or nnz (AT A), which count the pairs of
edges attached to the same vertex and either pointing in
the same direction or pointing away from each other,
respectively. Other frequent words include nnz D(AA),
nnz D(AT A) and ΣU(AT A). Figures 4 and 5 show scatter-
plots of the training data using the most discriminative
three words.

Distributions of the E. coli training data in word spaceFigure 4
Distributions of the E. coli training data in word space. The training data for E. coli for seven directed models is visual-
ized in a 3-dimensional subspace of word space. The three chosen words were found to be most discriminative according to a 
word ranking method. Every color is associated with a different model. The point which is occupied by E. coli is also indicated. 
The axis correspond to words which can be associated with sets of subgraphs. If a network has a non-zero word value it must 
possess at least one of these subgraphs.
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Conclusions
We proposed a method to discriminate different network
topologies, and we showed how to us the resulting classi-
fier to assess which model out of a set of given network
models best describes a network of interest. Moreover, the
systematic enumeration of countably infinite features of
graphs can be successfully used to find new metrics which
are highly efficient in separating various kinds of models.
Our method is a first step towards systematizing network
models and assessing their predictability, and we antici-
pate its usefulness for a number of communities.

Methods
Network models

We sample training data for undirected graphs from six
growth models, one scale-free static model [19-21], a
small-world model [22], and the Erdös-Rényi model [23].
Among the six growth models two are based on preferen-
tial attachment [24,25], three on a duplication-mutation
mechanism [16,15], and one on purely random growth
[26]. For directed graphs we similarly train on two prefer-
ential attachment models [18], two static models
[17,27,20], three duplication-mutation models [13,28],
and the directed Erdös-Rényi model [23]. More detailed
descriptions and source code are available on our website
[14].

Distributions of the S. cerevisiae training data in word spaceFigure 5
Distributions of the S. cerevisiae training data in word space. The training data for S. cerevisiae for seven undirected 
models is visualized in a 3-dimensional subspace of word space. The three chosen words were found to be most discriminative 
according to a word ranking method. Every color is associated with a different model. The point which is occupied by S. cerevi-
siae is also indicated. The axis correspond to words which can be associated with sets of subgraphs. If a network has a non-
zero word value it must possess at least one of these subgraphs.
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For the (directed) E. coli transcriptional network and the
(directed) C. elegans neuronal network we sample training
data for all directed models; for the (undirected) S.
cerevisiae protein interaction network we sample data for
all undirected models. The set of undirected models
includes two symmetrized versions of originally directed
models [17,28]. One should note that properties of a
directed model can differ significantly from its
symmetrized version. In general, the more network classes
allowed, the more completetely word space is explored,
and therefore the more specific the classification can be.

In order to classify real data, we sample training examples
of the given models with a fixed total number of nodes
N0, and allow a small interval IM of 1–2% around the total
number of edges M0 of the considered real data set. All
additional model parameters are sampled uniformly over
a given range (which is specified by the model's authors in
most cases, and can otherwise be given reasonable
bounds). Such a generated graph is accepted if the
number of edges M falls within the specified interval IM

around M0, thereby creating a distribution of graphs asso-
ciated with each model which should best describe the
real data set with given N0 and M0.

Some of the models can be described as a generalization
of another model. Although a generalized model can
overlap with a specific one in its support, word space is
sufficiently high-dimensional that such confusing
realizations are practically impossible. To build intuition,
consider that the Erdös model itself includes all possible
network topologies. Nonetheless there is extremely low
test loss with any other models, indicating that it still
defines a particular volume in this high-dimensional
space. Similarly, very few real networks have non-negligi-
ble prediction scores for being classified as Erdös
networks.

Words

The input space used for classifying graphs was introduced
in our earlier work [6] as a technique for finding statisti-
cally significant features and subgraphs in naturally occur-
ring biological and technological networks. Given the
adjacency matrix A representing a graph (i.e., Aij = 1 iff
there exists an edge from j to i), multiplications of the
matrix count the number of walks from one node to
another (i.e., [An]ij is the number of unique walks from j to
i in n steps). Note that the adjacency matrix of an
undirected graph is symmetric. The topological structure
of a network is characterized by the number of open and
closed walks of given length. Those can be found by
calculating the diagonal or non-diagonal components of
the matrix, respectively. For this we define the projection
operation D such that

[D(A)]ij = Aijδij  (1)

and its complement U = I - D. (Note that we do not use
Einstein's summation convention. Indices i and j are not
summed over.) We define the primitive alphabet {A; T, U,
D} as the adjacency matrix A and the operations T, U, D
with the transpose operation T(M) ≡ MT, for any matrix M
. T(A) and A distinguish walks "up" the graph from walks
"down" the graph. From the letters of this alphabet we can
construct words (a series of operations) of arbitrary length.
A number of redundancies and trivial cases can be elimi-
nated (for example, the projection operations satisfy DU
= UD = 0) leading to the operational alphabet {A, AT, AU,
AD, AUT}. The resulting word is a matrix representing a
set of possible walks, which can be enumerated. An exam-
ple is shown in Figure 6.

Each word determines two relevant statistics of the net-
work: the number of distinct walks and the number of
distinct pairs of endpoints. These two statistics are
determined by either summing the entries of the matrix
(sum) or counting the number of nonzero elements (nnz)
of the matrix, respectively. Thus the two operations sum
and nnz map words to integers. This allows us to plot any
graph in a high-dimensional data space: the coordinates
are the integers resulting from these path-based function-
als of the graph's adjacency matrix.

The coordinates of the infinite-dimensional data space are
given by integer-valued functionals

F(L1L2...LnA)  (2)

where each Li is a letter of the operational alphabet and F

is an operator from the set {sum, sumD, sumU, nnz, nnz
D, nnz U}. We found it necessary only to evaluate words
with n ≤ 4 (counting all walks up to length 5) to construct
low test-loss classifiers. Therefore, our word space is a 6

 = 4680-dimensional vector space, but since the

words are not linearly independent (e.g., sumU + sumD =
sum), the dimensionality of the manifold explored is
actually much smaller. However, we continue to use the
full data space since a particular word, though it may be
expressed as a linear combination of other words, may be
a better discriminator than any of its summands.

In [6], we discuss several possible interpretations of
words, motivated by algorithms for finding subgraphs.
Previously studied metrics can sometimes be interpreted
in the context of words. For example, the transitivity of a
network can be defined as 3 times the number of 3-cycles
divided by the number of pairs of edges that are incident
on a common vertex. For a loopless graph (without self-
interactions), this can also be calculated as a simple

5
1

4 i
i=∑
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expression in word space: sum(D A A A)/sum(U AA).
Note that this expression of transitivity as the quotient of
two words implies separation in two dimensions rather
than in one. However, there are limitations to word space.
For example, a similar measure, the clustering coefficient,
defined as the average over all vertices of the number of 3-
cycles containing the vertex divided by the number of
paths of length two centered at that vertex, cannot be eas-
ily expressed in word space because vertices must be con-
sidered individually to compute this quantity. Of course,
the utility of word space is not that it encompasses previ-
ously studied metrics, but that it can elucidate new metrics
in an unbiased, systematic way.

SVMs

A standard classification algorithm which has been used
with great success in myriad fields is the support vector
machine, or SVM [29]. This technique constructs a hyper-
plane in a high-dimensional feature space separating two
classes from each other. Linear kernels are used for the
analysis presented here; extensions to appropriate nonlin-
ear kernels are possible.

We rely on a freely available C-implementation of SVM-
Light [30], which uses a working set selection method to
solve the convex programming problem with Lagrangian

with yi(w·xi + b) ≥ 1 - ξi; i = 1,..., m where f(x) = w·x + b is

the equation of the hyperplane, xi are training examples

and yi ∈ {-1, +1} their class labels. Here, C is a fixed

parameter determining the trade-off between small errors
ξi and a large margin 2/|w|. We set C to a default value

. We observe that training and test losses

have a negligible dependence on C since most test losses
are near or equal to zero even in low-dimensional projec-
tions of the data space.

Robustness

Our objective is to determine which of a set of proposed
models most accurately describes a given real data set.
After constructing a classifier enjoying low test loss, we
classify our given real data set to find a 'best' model. How-
ever, the real network may lie outside of any of the sam-
pled distributions of the proposed models in word space.
In this case we interpret our classification as a prediction
of the least erroneous model.

We distinguish between the two cases by noting the fol-
lowing: Consider building a classifier for apples and
oranges which is then faced with a grapefruit. The classi-

fier may then decide that, based on the feature size the
grapefruit is an apple. However, based on the feature taste
the grapefruit is classified as an orange. That is, if we train
our classifier on different subsets of words and always get
the same prediction, the given real network must come
closest to the predicted class based on any given choice of
features we might look at. We therefore define a robust
classifier as one which consistently classifies a test datum
in the same class, irrespective of the subset of features cho-
sen. And we measure robustness as the ratio of the number
of consistent predictions over the total number of sub-
space-classifications. In this paper we consider robustness
for a subspace dimensionality of 500, a significantly small
fraction of the total number of dimensions 4680.

Kernel density estimation

A generative model, in which one estimates the distribu-
tion from which observations are drawn, allows a quanti-
tative measure of model assignment: the probability of
observing a given word-value given the model. For a
robust classifier, in which assignment is not sensitively
dependent on the set of features chosen, the conditional
probabilities should consistently be greatest for one class.

To identify significant features we perform density estima-
tions with Gaussian kernels for each individual word,
allowing calculation of p(C = c|Xj = x), the probability of
being assigned to class c given a particular value x of word
j. By comparing ratios of likelihood values among the dif-
ferent models, it is therefore possible, for the case of non-
robust classifiers, to determine which of the features of a
grapefruit come closest to an apple and which features
come closest to an orange.

We compute the estimated density at a word value x0 from
the training data xi (i = 1,..., m) as

where we optimize the smoothing parameter λ by maxi-
mizing the average log-probability Q of a hold-out set
using 5-fold cross-validation. More precisely, we partition

the training examples into 5-folds ,

where {fi(j)}j is the set of indices associated with fold i (i

= 1...5). We then maximize

as a function of λ. In all cases we found that Q(λ) had a
well pronounced maximum as long as the data was not
oversampled. Because words can only take integer values,
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too many training examples can lead to the situation that
the data take exactly the same values with or without the
hold-out set. In this case, maximizing Q(λ) corresponds
to p(x, λ) having single peaks around the integer values, so
that λ tends to zero. Therefore, we restrict the number of
training examples to 4Nv, where Nv is the number of
unique integer values taken by the training set. With this
restriction Q(λ) showed a well-pronounced maximum at
a non-zero λ for all words and models.

Word ranking

The simplest scheme to find new metrics which can distin-
guish among given models is to take a large number of
training examples for a pair of network models and find
the optimal split between both classes for every word sep-
arately. We then test every one-dimensional classifier on a
hold-out set and rank words by lowest test loss.

Web supplement

Additional figures, more detailed description of the net-
work models, and detailed results can be found at http://
www.columbia.edu/itc/applied/wiggins/netclass.

Source code

Source code was written in MATLAB and is downloadable
from our our website http://www.columbia.edu/itc/
applied/wiggins/netclass.
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