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Discriminative Transfer Learning

for General Image Restoration

Lei Xiao , Felix Heide, Wolfgang Heidrich , Bernhard Schölkopf, and Michael Hirsch

Abstract— Recently, several discriminative learning approa-
ches have been proposed for effective image restoration, achieving
convincing tradeoff between image quality and computational
efficiency. However, these methods require separate training for
each restoration task (e.g., denoising, deblurring, and demo-
saicing) and problem condition (e.g., noise level of input images).
This makes it time-consuming and difficult to encompass all
tasks and conditions during training. In this paper, we propose a
discriminative transfer learning method that incorporates formal
proximal optimization and discriminative learning for general
image restoration. The method requires a single-pass discrimi-
native training and allows for reuse across various problems and
conditions while achieving an efficiency comparable to previous
discriminative approaches. Furthermore, after being trained, our
model can be easily transferred to new likelihood terms to solve
untrained tasks, or be combined with existing priors to further
improve image restoration quality.

Index Terms— Image restoration, discriminative learning,
proximal optimization.

I. INTRODUCTION

L
OW-LEVEL vision problems, such as denoising, decon-

volution and demosaicing, have to be addressed as part

of most imaging and vision systems. Although a large body

of work covers these classical problems, low-level vision is

still a very active area. The reason is that, from a Bayesian

perspective, solving them as statistical estimation problems

does not only rely on models for the likelihood (i.e. the

reconstruction task), but also on natural image priors as a key

component.
A variety of models for natural image statistics have been

explored in the past. Traditionally, models for gradient statis-
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tics [1], [2], including total variation (TV), have been a

popular choice. Another line of works explores patch-based

image statistics, either as per-patch sparse model [3], [4]

or modeling non-local similarity between patches [5]–[7].

These prior models are general in the sense that they can

be applied for various likelihoods, with the image formation

and noise setting as parameters. However, the resulting opti-

mization problems are prohibitively expensive in many cases,

rendering them impractical for many real-time tasks especially

on mobile platforms.
Recently, a number of works [8], [9] have addressed this

issue by truncating the iterative optimization and learning

discriminative image priors, tailored to a specific reconstruc-

tion task (likelihood) and optimization approach. While these

methods allow to trade-off quality with the computational

budget for a given application, the learned models are highly

specialized for the image formation model and noise para-

meters, in contrast to optimization-based approaches. Since

each individual problem instantiation requires costly learning

and storing of the model coefficients, current proposals for

learned models are impractical for vision applications with

dynamically changing (often continuous) parameters. This

is a common scenario in most real-world image processing

settings, as well as applications in engineering and scientific

imaging that rely on the ability to rapidly prototype methods.
In this paper, we combine discriminative learning tech-

niques with formal proximal optimization methods to

learn generic models that can be truly transferred across

problem domains while achieving comparable efficiency as

previous discriminative approaches. Using proximal optimiza-

tion methods [10]–[12] allows us to decouple the likelihood

and prior, which is key to learning such shared models.

It also means that we can rely on well-researched physically-

motivated models for the likelihood, while learning priors

from example data. We verify our technique using the same

model for a variety of diverse low-level image reconstruction

tasks and problem conditions, demonstrating the effectiveness

and versatility of our approach. After training, our approach

benefits from the proximal splitting techniques, and can be

naturally transferred to new likelihood terms for untrained

restoration tasks, or it can be combined with existing state-

of-the-art priors to further improve the reconstruction quality.

This is impossible with previous discriminative methods.

In particular, we make the following contributions:

• We propose a discriminative transfer learning technique

for general image restoration. It requires a single-pass

discriminative training and transfers across different

restoration tasks and problem conditions.
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• We show that our approach is general by demonstrating

its robustness for diverse low-level problems, such as

denoising, deconvolution, inpainting, and for varying

noise settings.

• We show that, while being general, our method achieves

comparable computational efficiency as previous discrim-

inative approaches, making it suitable for processing

high-resolution images on mobile imaging systems.

• We show that our method can naturally be combined with

existing likelihood terms and priors after being trained.

This allows our method to process untrained restoration

tasks and take advantage of previous successful work on

image priors (e.g., color and non-local similarity priors).

II. RELATED WORK

Image restoration aims at computationally enhancing the

quality of images by undoing the adverse effects of image

degradation such as noise and blur. As a key area of image

and signal processing it is an extremely well studied problem

and a plethora of methods exists, see for example [13] for a

recent survey. Through the successful application of machine

learning and data-driven approaches, image restoration has

seen revived interest and much progress in recent years.

Broadly speaking, recently proposed methods can be grouped

into three classes: classical approaches that make no explicit

use of machine learning, generative approaches that aim

at probabilistic models of undegraded natural images and

discriminative approaches that try to learn a direct mapping

from degraded to clean images. Unlike classical methods,

methods belonging to the latter two classes depend on the

availability of training data.

A. Classical Models

This class of methods focus on local image statis-

tics and aim at maintaining edges. Examples include total

variation [1], bilateral filtering [14], anisotropic diffusion

models [15] and kernel regression (KR) [16]. More recent

methods exploit the non-local statistics of images with the

fundamental observation that similar patches often can be

found within an image. Representative work include the

non-local mean (NLM) method [17], block-matching and

3D filtering (BM3D) [5] and non-local variants of sparse and

low-rank representation methods [6], [7], [18]–[21]. Specifi-

cally, BM3D extends the non-local similarity idea first intro-

duced in NLM, however combines them through collaborative

patch-filtering steps instead of simple pixel averaging. The

non-local sparse representation methods, e.g. learned simulta-

neous sparse coding (LSSC), explore the patch similarity idea

while enforcing similar patches to have similar coefficients

in transform domains. The weighted nuclear norm minimiza-

tion (WNNM) method [7] filters similar patches together by

applying low-rank constraints on singular value decomposition

of patch stacks. NLR-CS [20] applies the non-local low rank

constraint to compressive sensing for image recovery. The

group-based sparse representation (GSR) [21] method models

natural images in the domain of group sparsity and exploits

the intrinsic local sparsity and non-local similarity simul-

taneously. While effective search for similar patches/pixels

is important for these non-local methods, the extensively

used mean-square-error (MSE) as a similarity metric appears

ineffective for images with high noise and distortion [22].

More recent methods use perceptually motivated similarity

metrics (e.g. structural similarity (SSIM) and gradient magni-

tude similarity deviation (GMSD)) for improved restoration

quality [23], [24].

B. Generative Learning Models

This class of methods seek to learn probabilistic models

of undegraded natural images. A simple yet powerful

subclass include models that approximate the sparse

gradient distribution of natural images, e.g. the ℓp-norm

(0 < p < 1) constraint on image derivatives [2], [25], [26].

More expressive generative models include k-singular

value decomposition (KSVD) [3], convolutional sparse

coding (CSC) [27]–[29], fields of experts (FoE) [30] and

expected patch log likelihood (EPLL) [4]. While KSVD and

CSC assume patches in an image can be approximated by

a linear combination of a few atoms from an overcomplete

dictionary that is learned from training data, FoE learns a set

of filters whose responses on an image (i.e. the convolution

of the image and the filter) are assumed to be sparse.

EPLL models image patches through Gaussian Mixture

Models (GMM) and applies this patch prior to the whole

image through half-quadratic splitting (HQS) approach [10].

Another line of research, which is closely related to our

approach, is the plug-and-play technique [31]–[34]. In these

methods, Gaussian denoisers are utilized as image regular-

izers for solving general inverse problems, through splitting

optimization methods such as ADMM [12]. The fundamental

difference between these methods and our approach is that

they utilize an existing generative Gaussian denoiser, while

our approach learns all parameters by discriminative learning

thus achieving a better trade-off between high quality and time

efficiency.

Generative models have in common that they are agnostic

to the image restoration task, i.e. they are transferable to

any image degradation and can be combined in a modular

fashion with any likelihood and additional priors at test time.

The downside is that they are typically expensive to solve,

hampering their applications in real-time tasks especially on

mobile platforms.

C. Discriminative Learning Models

This class of methods have recently become increas-

ingly popular for image restoration due to their attractive

tradeoff between high image restoration quality and effi-

ciency at test time. Some representative examples of such

methods include trainable random field models such as

separable Markov random field (MRFSepa) [35] regression

tree fields (RTF) [36], cascaded shrinkage fields (CSF) [8],

trainable nonlinear reaction diffusion (TRD) models [9] and

their extensions [37]–[39]. The state-of-the-art CSF and

TRD methods can be derived from the FoE model [30] by

unrolling corresponding optimization iterations to be feed-

forward networks, where the parameters of each network are
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TABLE I

ANALYSIS OF STATE-OF-THE-ART METHODS. IN THE TABLE,
“TRANSFERABLE” MEANS THE MODEL CAN BE USED FOR

DIFFERENT RESTORATION TASKS AND PROBLEM

CONDITIONS; “MODULAR” MEANS THE METHOD

CAN BE COMBINED WITH OTHER EXISTING PRIORS

AT TEST TIME. EPLL, PLUG-AND-PLAY (P&P), BM3D
ARE REPRESENTATIVE GENERATIVE METHODS,

AND CSF AND TRD ARE REPRESENTATIVE

DISCRIMINATIVE METHODS. OUR APPROACH

DTL IS ABLE TO COMBINE THE

STRENGTHS OF BOTH GENERATIVE

AND DISCRIMINATIVE MODELS

trained by minimizing the error between its output images and

ground truth for each specific task. Another line of research

apply neural networks for image restoration, such as multi-

layer perceptrons [40], deep convolutional networks [41]–[43]

and deep recurrent neural networks [44].

Discriminative approaches owe their computational effi-

ciency at run-time to a particular feed-forward structure whose

trainable parameters are optimized for a particular task during

training. Those learned parameters are then kept fixed at

test-time resulting in a fixed computational cost. On the

downside, discriminative models do not generalize across tasks

and typically necessitate separate feed-forward architectures

and separate training for each restoration task (denoising,

demosaicing, deblurring, etc.) as well as every possible image

degradation (noise level, Bayer pattern, blur kernel, etc.).

In this work, we propose the discriminative transfer

learning (DTL) technique that is able to combine the strengths

of both generative and discriminative models: it maintains

the flexibility of generative models, but at the same time

enjoys the computational efficiency of discriminative models.

While in spirit our approach is akin to the recently proposed

method of Rosenbaum and Weiss [45], who equipped the

successful EPLL model with a discriminative prediction step,

the key idea in our approach is to use proximal optimization

techniques [10]–[12] that allow the decoupling of likelihood

and prior and therewith share the full advantages of a Bayesian

generative modeling approach.

Table I summarizes the properties of the most prominent

state-of-the-art methods and puts our own proposed approach

into perspective.

III. PROPOSED METHOD

A. Diversity of Data Likelihood

The seminal work of fields-of-experts (FoE) [30] generalizes

the form of filter response based regularizers in the objective

function given in Eq. 1. The vectors b and x represent the

observed and latent (desired) image respectively, the matrix A

is the sensing operator, Fi represents 2D convolution with filter

fi , and φi represents the penalty function on corresponding

filter responses Fi x. The positive scalar λ controls the relative

weight between the data fidelity (likelihood) and the regular-

ization term.

λ

2
||b − Ax||22 +

N
∑

i=1

φi (Fi x) (1)

The well-known anisotropic total-variation regularizer can be

viewed as a special case of the FoE model where fi is the

derivative operator ∇, and φi the ℓ1 norm.

While there are various types of restoration tasks

(e.g., denoising, deblurring, demosaicing) and problem para-

meters (e.g., noise level of input images), each problem has

its own sensing matrix A and optimal fidelity weight λ. For

example, A is an identity matrix for denoising, a convolution

operator for deblurring, a binary diagonal matrix for demo-

saicing, and a random matrix for compressive sensing [46].

λ depends on both the task and its parameters in order to

produce the best quality results.

The state-of-the-art discriminative learning methods

(CSF [8], TRD [9]) derive an end-to-end feed-forward model

from Eq. 1 for each specific restoration task, and train this

model to map the degraded input images directly to the output.

These methods have demonstrated a great trade-off between

high-quality and time-efficiency, however, as an inherent

problem of the discriminative learning procedure, they require

separate training for each restoration task and problem

condition. Given the diversity of data likelihoods in image

restoration, this fundamental drawback of discriminative

models makes it time-consuming and difficult to encompass

all tasks and conditions during training.

B. Decoupling Likelihood and Prior

It is difficult to directly minimize Eq. 1 when the penalty

function φi is non-linear and/or non-smooth (e.g. ℓp norm,

0 ≤ p ≤ 1). Proximal algorithms [10], [12], [47] instead

relax Eq. 1 and split the original problem into several easier

subproblems that are solved alternately until convergence.

In this paper we employ the half-quadratic-splitting (HQS)

algorithm [10] to relax Eq. 1, as it typically requires much

fewer iterations to converge compared to other proximal

methods such as ADMM [12] and PD [47]. The relaxed

objective function is given in Eq. 2:

λ

2
||b − Ax||22 +

ρ

2
||z − x||22 +

N
∑

i=1

φi (Fi z), (2)

where a slack variable z is introduced to approximate x, and

ρ is a positive scalar.

With the HQS algorithm, Eq. 2 is iteratively minimized

by solving for the slack variable z and the latent image x

alternately as in Eq. 3 and 4 (t = 1, 2, . . . , T ).

Prior proximal operator:

zt = argmin
z

(

ρt

2
||z − xt−1||22 +

N
∑

i=1

φi (Fi z)

)

, (3)

Data proximal operator:

xt = argmin
x

(

λ||b − Ax||22 + ρt ||zt − x||22
)

, (4)
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Fig. 1. The architecture of our method. Input images are drawn from various restoration tasks and problem conditions. Each iteration uses the same model
parameters, forming a recurrent network.

where ρt increases as the iteration continues. This forces z to

become an increasingly good approximation of x, thus making

Eq. 2 an increasingly good proxy for Eq. 1.

Note that, while most related approaches including CSF

relax Eq. 1 by splitting on Fi x, we split on x instead.

This is critical for deriving our approach. With this new

splitting strategy, the prior term and the data likelihood term

in the original objective Eq. 1 are now separated into two

subproblems that we call the “prior proximal operator” (Eq. 3)

and the “data proximal operator” (Eq. 4), respectively.

We notice that recent plug-and-play work [31]–[33] adopt

similar proximal splitting strategy as our method though

with the ADMM framework. However, while plug-and-play

methods adopt existing generic Gaussian denoiser for the prior

proximal operator, our method trains the prior proximal oper-

ator and other parameters used in the optimization algorithm

with discriminative learning technique. This makes our method

share the advantage of discriminative restoration methods, that

is, achieving great trade-off between high quality and time

efficiency.

C. Discriminative Transfer Learning

While the data proximal operator in Eq. 4 is task-dependent

because both the sensing matrix A and fidelity weight λ are

problem-specific as explained in Sec. III-A, the prior proximal

operator (i.e. zt -update step in Eq. 3) is independent of the

original restoration tasks and problem conditions.

This leads to our main insight: Discriminative learning

models can be made transferable by using them in place of the

prior proximal operator, embedded in a proximal optimization

algorithm. This allows us to generalize a single discriminative

learning model to a very large class of problems, i.e. any linear

inverse imaging problem, while simultaneously overcoming

the need for problem-specific retraining. Moreover, it enables

learning the task-dependent parameter λ in the data proximal

operator for each problem in a single training pass, eliminating

tedious hand-tuning at test time. As will be further explained

later, we train various restoration tasks and problem conditions

simultaneously.

Benefiting from our new splitting strategy, the prior prox-

imal operator in Eq. 3 can be interpreted as a Gaussian

denoiser on the intermediate image xt−1, since the least-

squares consensus term is equivalent to a Gaussian denoising

term. This inspires us to utilize existing discriminative models

that have been successfully used for denoising (e.g. CSF,

TRD).

For convenience, we denote the prior proximal operator as

prox�, i.e.

zt := prox�(xt−1, ρt ), (5)

where the model parameter � includes a number of filters

fi and corresponding penalty functions φi . Inspired by the

state-of-the-art discriminative methods [8], [9], we propose

to learn the model prox�, and the fidelity weight scalar λ,

from training data. Recall that with our new splitting strategy

introduced in Sec. III-B, the image prior and data-fidelity

term in the original objective (Eq. 1) are contained in two

separate subproblems (Eq. 3 and 4). This makes it possible

to train together an ensemble of diverse tasks (e.g., denoising,

deblurring, or with different noise levels) each of which has

its own data proximal operator, while learning a single prior

proximal operator prox� that is shared across tasks. This is

in contrast to state-of-the-art discriminative methods such as

CSF and TRD which train separate models for each task.

For clarity, in Fig. 1 we visualize the architecture of our

method. The input images may represent various restoration

tasks and problem conditions. At each HQS iteration, each

image xt
p from problem p is updated by its own data proximal

operator in Eq. 4 which contains separate trainable fidelity

weight λp and pre-defined sensing matrix Ap; then each slack

image zt
p is updated by the same, shared prior proximal

operator implemented by a learned, discriminative model.

1) Recurrent Network: Note that in Fig. 1 each HQS

iteration uses exactly the same model parameters, forming

a recurrent network akin to [44]. This is in contrast to

previous discriminative learning methods including CSF and

TRD, which form feed-forward networks. Our recurrent

network architecture maintains the convergence property of

the proximal optimization algorithm (HQS), and is critical

for our method to transfer between various tasks and problem

conditions.
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Algorithm 1 Proposed Algorithm

2) Shared Prior Proximal Operator: While any discrimi-

native Gaussian denoising model could be used as prox� in

our framework, we specifically propose to use the multi-stage

non-linear diffusion process that is modified from the TRD

model, for its efficiency. The model is given in Eq. 6.

zt
k = zt

k−1 −
N

∑

i=1

Fk
i

T
ψk

i (Fk
i zt

k−1),

s.t . zt
0 = xt−1, k = 1, 2, . . . , K , (6)

where k is the stage index, filters Fk
i , function ψk

i are trainable

model parameters at each stage, and zt
0 is the initial value of zt

k .

Note that, different from TRD, our model does not contain the

reaction term which would be −ρtαk(z
t
k−1 − xt−1) with step

size αk . The main reasons for this modification are:
• The data constraint is contained in xt update in Eq. 4;

• More importantly, by dropping the reaction term our

model gets rid of the weight ρt which changes at

each HQS iteration. Therefore, our proximal operator

prox�(xt−1, ρt ) is simplified to be:

zt := prox�(xt−1) (7)

The set of trainable parameters 	 in our method includes

λ’s for each problem class p (restoration task and problem

condition), and � = {Fk
i , ψ

k
i } in the prior proximal operator

shared across different classes, i.e. 	 = {λp,�}. Even though

the scalar parameters λp are trained, our method allows users

to override them at test time to handle non-trained problem

classes or specific inputs as we will show in Sec. IV. This

contrasts to previous discriminative approaches whose model

parameters are all fixed at test time. The subscript p indicating

the problem class in λp is omitted below for convenience.

The values of ρt are pre-selected: ρ1 = 1 and ρt = 2ρt−1

for t > 1.

Note that a multi-stage model as in Eq. 6 is not possible

if we split on Fi x instead of x in Eq. 1 and 2. For clarity,

an overview of the proposed algorithm is given in Alg. 1.

D. Training

We consider denoising and deconvolution tasks at training,

where the sensing operator A is an identity matrix, or a

Fig. 2. Trained filters at each stage (k in Eq. 6) of the proximal operator
prox� in our model (3 stages each with 24 5 × 5 filters). (a) Filters at stage 1.
(b) Filters at stage 2. (c) Filters at stage 3.

block circulant matrix with circulant blocks that represents

2D convolution with randomly drawn blur kernels respectively.

In denoising tasks, the xt update in Eq. 4 has a closed-form

solution:

xt = (λb + ρt zt )/(λ + ρt ) (8)

In deconvolution tasks, the xt update in Eq. 4 has a closed-

form solution in the Fourier domain:

xt = F
−1

(

F(λATb + ρt zt )

F(λATA + ρt )

)

, (9)

where F and F−1 represent Fourier and inverse Fourier trans-

form respectively. Note that, compared to CSF, our method

does not require FFT computations for denoising tasks. We use

the L-BFGS solver [48] with analytic gradient computation for

training. The training loss function ℓ is defined as the negative

average Peak Signal-to-Noise Ratio (PSNR) of reconstructed

images. The gradient of ℓ w.r.t. the model parameters 	 =
{λp,�} is computed by accumulating gradients at all HQS

iterations, i.e.

∂ℓ

∂	
=

T
∑

t=1

(
∂xt

∂λ

∂ℓ

∂xt
+

∂zt

∂�

∂xt

∂zt

∂ℓ

∂xt

)

. (10)

The 1D functions ψk
i in Eq. 6 are parameterized as a linear

combination of equidistant-positioned Gaussian kernels whose

weights are trainable.

Progressive Training: A progressive scheme is proposed to

make the training more effective. First, we set the number of

HQS iterations to be 1, and train λ0s and the model � of

each stage in prox� in a greedy fashion. Then, we gradually

increase the number of HQS iterations from 1 to T where at

each step the model 	 = {λ,�} is refined from the result

of the previous step. The L-BFGS iterations are set to be

200 for the greedy training steps, and 100 for the refining steps.

Fig. 2 shows examples of learned filters in prox�. In our final

implementation, the filter size is chosen to be 5 by 5 pixels,

which yields a good trade-off between result quality and time

efficiency at test time. This observation is straightforward and

consistent with previous work CSF and TRD where detailed

experimental analysis can be found.
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Fig. 3. Results at each HQS iteration of our method on non-blind deconvolution with a 25 × 25 PSF and noise level σ = 3. (a) Ground truth. (b) Blurry
input (23.37dB). (c) Iter 1 (27.32dB). (d) Iter 2 (28.48dB). (e) Iter 3 (29.36dB).

E. Connection and Difference With Related Methods

In this section we emphasize the fundamental algorithmic

differences between our method with several closely related

prior work that are partly discussed in Section II. As given

in Table I, our method is able to combine the strengths of

both generic and discriminative methods.

1) Plug-and-Play Priors ( [31]–[33], [43]): Like the plug-

and-play work, our method uses formal optimization with a

proximal operator framework. However, while plug-and-play

methods adopt an existing generic Gaussian denoiser for the

prior proximal operator, our method trains the prior proximal

operator with discriminative learning technique. This makes

our method share the advantage of discriminative restoration

methods, that is, achieving great trade-off between high quality

and time efficiency.

2) Discriminative Learning Methods ([8], [9], [36], [40],

[41]): Previous discriminative learning methods require sepa-

rate training for each restoration task (denoise, deblur, demo-

saic) and problem condition (noise levels, blur kernels). This

makes it time-consuming and difficult to encompass all tasks

and conditions during training. In contrast, by incorporating

discriminative learning with formal proximal optimization,

our method only requires a single-pass training and allows

for reuse across various problems and conditions while

achieving an efficiency comparable to previous discriminative

approaches.

3) Cascaded Shrinkage Fields (CSF) [8]: Our method

reuses the same model parameters in each iteration, while the

splitting weight ρ is increased after each iteration. Doing so

retains the convergence properties of the proximal optimization

method. In contrast, CSF trains a different model for each

iteration, and ρ is not kept as a separate parameter. Hence,

CSF loses the convergence property of HQS. In addition,

the splitting strategy CSF adopted does not separate data

and regularizer terms (see Eq. 4-6 in [8]), which makes it

impossible to share models across different tasks. Moreover,

the splitting approach employed in CSF prohibits closed-form

solutions for masked imaging problems, e.g. demosaicking,

inpainting, joint inpainting and denoising.

IV. RESULTS

A. Denoising and Generality Analysis

We compare the proposed discriminative transfer

learning (DTL) method with state-of-the-art image denoising

techniques, including KSVD [3], FoE [30], BM3D [5],

LSSC [18], WNNM [7], EPLL [4], opt-MRF [49], ARF [50],

CSF [8] and TRD [9]. The subscript in CSF5 and TRD5

TABLE II

AVERAGE PSNR (dB) ON 68 IMAGES FROM [30] FOR DENOISING

indicates the number of cascaded stages (each stage has

different model parameters). The subscript and superscript

in our method DTL5
3 indicate the number of diffusion stages

(K = 3 in Alg. 1) in the prior proximal operator prox�, and

the number of HQS iterations (T = 5 in Alg. 1), respectively.

Note that the complexity (size) of our model is linear in K ,

but independent of T . CSF, TRD and DTL use 24 filters of

size 5×5 pixels at all stages in this section.

The compared discriminative methods, CSF5 and TRD5

both are trained at single noise level σ = 15 that is the same as

the test images. In contrast, our model is trained on 400 images

(100×100 pixels) cropped from [30] with random and discrete

noise levels (standard deviation σ ) varying between 5 and 25.

The images with the same noise level share the same data

fidelity weight λ at training.

Generality Analysis: To verify the generality of our method

on varying noise levels, we test our model DTL3
3 (trained

with varying noise levels in a single pass) and two TRD

models (trained at specific noise levels 15 and 25) on

3 sets of 68 images with noise σ = 5, 15, 25 respectively.

The average PSNR values are shown in Fig. 6. Although

performing slightly below the TRD model trained for the exact

noise level used at test time, our method is more generic and

works robustly for various noise levels. The performance of

the discriminative TRD method drops down quickly as the

problem condition (i.e. noise level) at test differs from its

training data (i.e., it either fails to remove noise or over-

smoothes textures). In sharp contrast to discriminative methods

(CSF, TRD, etc), which are inherently specialized for a

given problem setting, i.e. noise level, the proposed approach

transfers across different problem settings. In Fig. 5 we show

example images from this analysis for visual comparison.

In our model, the learned parameter λ for each noise level is

λ = 20.706 for σ = 5, λ = 2.475 for σ = 15, and λ = 0.033

for σ = 25.

All compared methods are evaluated on the 68 test images

from [30] and the averaged PSNR values are reported

in Table II. The compared discriminative methods (CSF, TRD,

etc) were trained for exactly the same noise level as the
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Fig. 4. Results at each HQS iteration of our method on image denoising with noise level σ = 25. (a) Ground truth. (b) Noisy input (20.18dB). (c) Iter 1
(22.85dB). (d) Iter 2 (25.93dB). (e) Iter 3 (28.14dB).

Fig. 5. Generality analysis. (a)-(d), (e)-(h) and (i)-(l) show the input noisy images and denoised results by each method, at noise level σ = 5, 15, 25
respectively. (a) Input, σ =5 (34.15dB/0.901). (b) σ = 5, TRD15 (32.57dB/0.908). (c) σ = 5, TRD25 (29.33dB/0.844). (d) σ = 5, DTL (37.14dB/0.963).
e) Input, σ = 15 (24.61dB/0.620). (f) σ = 15, TRD15 (31.09dB/0.902). (g) σ = 15, TRD25 (29.31dB/0.851). (h) σ = 15, DTL (31.10dB/0.896). (i) Input,
σ = 25 (20.17dB / 0.441). (j) σ = 25, TRD15 (23.74dB/0.589). (k) σ = 25, TRD25 (28.44dB/0.845). (l) σ = 25, DTL (28.45dB/0.837). Inside the bracket
of each sub-caption PSNR (dB) and SSIM values are shown. While the performance of TRD deteriorates quickly as the noise level at test differs from the
level at training (it either fails to remove noise or over-smoothes textures), the proposed method DTL is more generic and works robustly for various noise
levels. More quantitative comparisons can be found in Fig. 6.

test images (i.e. the best case for them), while our model

was trained with mixed noise levels and works robustly for

arbitrary noise levels. Our results are comparable to generic

methods such as KSVD, FoE and BM3D, and very close to

discriminative methods such as CSF5, while at the same time

being much more time-efficient.
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Fig. 6. Analysis of model generality on image denoising. “TRD15” denotes
the TRD model trained at noise σ = 15, and “TRD25” trained at noise
σ = 25. While our model DTL is trained with mixed noise levels in a single
pass and used at various noise levels, TRD has been specialized to a single
noise level matching the test images. Although it outperforms our method at
exactly matching noise levels, quality drops down quickly when the test noise
levels differs slightly from the trained ones. In contrast, our DTL model is
robust across a wide range of noise levels. Example visual results are given
in Fig. 5 and supplementary material.

B. Analysis of Convergence and Model Complexity

To better understand the convergence properties of our

method, we show the intermediate results of each HQS iter-

ation of our method DTL5
3 on the denoising task in Fig. 4.

The result image quality is progressively and significantly

improved with each HQS iteration.

In above Sec. IV-A we demonstrate the results of our

method trained with 3 and 5 HQS iterations, and 3 diffusion

stages (i.e. DTL3
3 and DTL5

3). These hyper-parameters are

chosen to balance the result quality and run-time efficiency

(discussed in following Sec. IV-C) of the trained models.

To further understand the tradeoff between model complexity

and the number of HQS iteration, we report test results

in Table IV for models trained with a varying number of HQS

iterations (T in Alg. 1) and stages in prox� (K in Alg. 1).

C. Run-Time Comparison

In Table V and Fig. 8 we compare the run-time of our

method and state-of-the-art methods. The experiments were

performed on a laptop computer with Intel i7-4720HQ CPU

and 16GB RAM. WNNM and EPLL ran out-of-memory for

images over 4 megapixels in our experiments. CSF5, TRD5

and DTL3
3 all use “parfor” setting in Matlab. DTL3

3 is signif-

icantly faster than all compared generic methods (WNNM,

EPLL, BM3D) and even the discriminative method CSF5.

Run-time of DTL3
3 is about 1.5 times that of TRD5, which

is expected as they use 5 versus 9 diffusion steps in total.

In addition, we implement our method in Halide language [53],

which has become popular recently for high-performance

image processing applications, and report the run-time on the

same CPU as mentioned above.

D. Deconvolution

In this experiment, we train a model DTL3
3 with

an ensemble of denoising and deconvolution tasks on

400 images (100×100 pixels) cropped from [30], in which

250 images are generated for denoising tasks with random

noise levels σ varying between 5 and 25, and the other

TABLE III

AVERAGE PSNR (dB) ON 32 IMAGES FROM [51]
FOR NON-BLIND DECONVOLUTION

TABLE IV

TEST WITH DIFFERENT HQS ITERATIONS (T ) AND MODEL STAGES

(K ) FOR IMAGE DENOISING. AVERAGE PSNR (dB) RESULTS

ON 68 IMAGES FROM [51] WITH NOISE σ = 15 AND

25 ARE REPORTED (BEFORE AND AFTER “/”
IN EACH CELL RESPECTIVELY)

TABLE V

RUNTIME (SECONDS) COMPARISON

Fig. 7. Our results with different fidelity weight λ for the non-blind
deconvolution experiment reported in Table III.

Fig. 8. Visualization of the runtime comparison that is reported in Table V.

150 images are generated by blurring the images with random

25×25 kernels (PSFs) and then adding Gaussian noise with σ

ranging between 1 and 5. All images are quantized to 8 bits.
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Fig. 9. Experiment on combining a non-local patch similarity prior (BM3D) with our model after being trained. (a) Ground truth. (b) Input (20.17dB /

0.333). (c) BM3D (29.62dB / 0.804). (d) DTL5
3 (29.48dB / 0.793). (e) DTL5

3 + BM3D (29.74dB / 0.809). The input noise level σ = 25. Inside the bracket of
each sub-caption PSNR (dB) and SSIM values are shown. (c) BM3D performs well in removing noise especially in smooth regions but usually over-smoothes

edges and textures. (d) DTL5
3 well preserves sharp edges however sometimes introduces artifacts in smooth regions when the input noise level is high. (e) the

hybrid method improves the result both visually and quantitatively. Please zoom in for better view.

We compare our method with state-of-the-art non-

blind deconvolution methods including Levin et al. [25],

Schmidt et al. [52] and CSF [8]. Note that TRD [9] does not

support non-blind deconvolution. We test the methods on the

benchmark dataset from [51] which contains 32 images and

report the average PSNR values in Table III.

As said in Sec. III-C, while the scalar weight λ is trained,

our method allows users to override it at test time for untrained

problem classes or specific inputs. Fig. 7 shows our results

with different λ on the experiments compared in Table III.

Within a fairly wide range of λ, our method outperforms the

previous methods.

To better understand the convergence properties of our

method, we show the intermediate deconvolution results of

our method at each HQS iteration in Fig. 3.

We further test the above model DTL3
3 trained with

ensemble tasks on the denoising experiment in Table II. The

resulting average PSNR is 30.98dB, which is comparable

to the result (30.92dB) with the model trained only on the

denoising task.

E. Modularity With Existing Priors

As shown above, even though the fidelity weight λ is

trainable, our method allows users to override its value at

test time. This property also makes it possible to combine

our model (after being trained) with existing state-of-the-art

priors at test time, in which case λ typically needs to be

adjusted. This allows our method to take advantage of previous

successful work on image priors. Again, this is not possible

with previous discriminative methods (CSF, TRD).

In Fig. 9 we show an example to incorporate a non-

local patch similarity prior (BM3D [5]) with our method to

further improve the denoising quality. BM3D performs well

in removing noise especially in smooth regions but usually

over-smoothes edges and textures. Our original model (DTL5
3)

well preserves sharp edges however sometimes introduces

artifacts in smooth regions when the input noise level is high.

By combining those two methods, which is easy with our

HQS framework, the result is improved both visually and

quantitatively.

We give the derivation of the proposed hybrid method

below. Let S(x) represents the non-local patch similarity prior.

The objective function is:

λ

2
||b − Ax||22 +

N
∑

i=1

φi (Fi x) + τS(x) (11)

Applying the HQS technique described in Sec. III, we relax

the objective to be:

λ

2
||b − Ax||22 +

ρ

2
||z − x||22 +

N
∑

i=1

φi (Fi z)

+
ρs

2
||v − x||22 + τS(v) (12)

Then we minimize Eq. 12 by alternately solving the following

3 subproblems:

zt = prox�(xt−1)

vt = argmin
v

ρt
s

2
||v − xt−1||22 + τS(v) ≈ BM3D(xt−1,

τ

ρt
s

)

xt = argmin
x

λ||b − Ax||22 + ρt ||zt − x||22 + ρt
s ||vt − x||22,

(13)

where prox� is from our previous training, and the vt

subproblem is approximated by running BM3D software on

xt−1 with noise parameter τ/ρt
s following [54].

Similarly, our method can incorporate color image priors

(e.g., cross-channel edge-concurrence prior [54]) to improve

test results on color images, despite our model being trained

on gray-scale images. Specifically, let the color image prior be

C(x) =
∑

i, j∈{R,G,B},i 6= j

||∇xi − ∇x j ||1, (14)

where the subscripts i, j represent color channel (RGB) and

xi represents the i -th channel image component. The objective
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function of the hybrid method is

λ

2
||b − Ax||22 +

N
∑

i=1

φi (Fi x) + τC(x), (15)

with the following optimization subproblems

zt = prox�(xt−1)

vt = argmin
v

ρt
s

2
||v − xt−1||22 + τC(v)

xt = argmin
x

λ||b − Ax||22+ρt ||zt − x||22+ρt
s ||v

t −x||22 (16)

An example is shown in Fig. 10. The hybrid method shares

the advantages of our original model that effectively preserves

edges and textures and the cross-channel prior that reduces

color artifacts.

Compared with Alg. 1, the hybrid method described in

this section requires extra computation of the incorporated

prior (i.e. the slack variable vt in Eq. 13 and 16) at each

HQS iteration and therefore results in additional computation

cost and run-time at test. Assuming c be the time cost of

computing vt , the total run-time increase is approximately cT ,

where T is the number of HQS iterations.

The ability of our method to easily combine a discriminative

model with other priors at test time is a key feature of our

approach: it allows our method to take advantage of existing

and future work on image priors, especially when those priors

are difficult to learn from data by training, such as the non-

local similarity and low rank priors [5], [7]. This is not possible

with previous discriminative methods.

F. Transferability to Unseen Tasks

Our method allows for new data-fidelity terms that are not

contained in training, with no need for re-training. We demon-

strate this flexibility with an experiment on the joint denoising

and inpainting task shown in Fig. 11. To clarify, in this paper

we refer “inpainting” to be the problem of pixel interpolation

rather than hole-filling. In this experiment, 60% pixels of

the input image are missing, and the measured 40% pixels

are corrupted with Gaussian noise with σ = 15. This is

a challenging problem to solve, due to the co-existence of

missing pixels and strong noise on the measured pixels.

Let vector a be the binary mask for measured pixels.

The sensing matrix A in Eq. 1, assumed to be known,

is a binary diagonal matrix (hence A = AT = ATA)

with diagonal elements a. To reuse our model trained on

denoising/deconvolution tasks, we only need to specify A

and λ. The subproblems of our HQS framework are given

in Eq. 17.

zt = prox�(xt−1),

xt = (λATb + ρt zt )/(λa + ρt ) (17)

We compare our method with the state-of-the-art methods

including kernel regression (KR) [16], NLR-CS [20],

GSR [21] and EPLL [4]. We observe that KR, NLR-CS and

GSR have limited performance on this joint denoising and

inpainting problem, which is more common in practice than

the pure (noiseless) inpainting problem. As shown in Fig. 11,

Fig. 10. Experiment on incorporating a color prior [54] with our model
after being trained. (a) Ground truth. (b) Input (20.18dB / 0.629). (c) TRD5

(28.06dB / 0.906). (d) DTL5
3 (27.80dB / 0.901). (e) TV + color prior (26.89dB

/ 0.881). (f) DTL5
3 + color prior (28.69dB / 0.917). The input noise level

σ = 25. (e,f) show the results of combining total variation (TV) denoising with
a cross-channel prior, and our method with a cross-channel prior, respectively.
PSNR (dB) and SSIM values are reported inside the bracket of each sub-
caption. Please zoom in for better view.

DTL outperforms the compared methods in both PSNR and

SSIM. Meanwhile, DTL is significantly faster (over two orders

of magnitude) than most of the compared methods. The

detailed numbers are included in Fig. 11.

As demonstrated above, our method is able to transfer

the learned discriminative model to unseen tasks without

re-training, which has not been possible with prior discrim-

inative learning methods.
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Fig. 11. Experiment on joint denoising and inpainting task. (a) Ground truth. (b) Input. (c) Classic KR (23.96dB / 0.687). (d) Steering KR (24.48dB /

0.710). (e) NLR-CS (20.85dB / 0.626). (f) GSR (24.24dB / 0.667). (g) EPLL (24.89dB / 0.725). (h) DTL5
3 (25.10dB / 0.749). The input image misses 60%

pixels, and is corrupted with noise σ = 15. Inside brackets of certain subcaptions are PSNR (dB) and SSIM values of corresponding result images. DTL
outperforms kernel regression (KR) method with either classic or steering kernels, NLR-CS, GSR and EPLL in both PSNR and SSIM. Meanwhile, DTL is
significantly faster (over two orders of magnitude) than most of the compared methods. The method run-times are 1.0 second for DTL, 2.0 seconds for classic
KR, 2.9 seconds for steering KR, 119.5 seconds for NLR-CS, 551.9 seconds for GSR, and 296.8 seconds for EPLL.

V. CONCLUSION

In this paper, we proposed a discriminative transfer learning

framework for general image restoration. By combining

advanced proximal optimization algorithms and discriminative

learning techniques, a single training process leads to a trans-

ferable model useful for a variety of image restoration tasks

and problem conditions. Furthermore, our method is flexible

and can be combined with existing priors and likelihood terms

after being trained, allowing us to improve image quality

on a task at hand. In spite of this generality, our method

achieves comparable run-time efficiency as previous discrimi-

native approaches, making it suitable for high-resolution image

restoration and mobile vision applications.

In this work we adopt a variant of the TRD model for the

prior proximal operator as an example. We believe replacing it

with future more expressive discriminative models will further

improve the results of our framework. We also believe that

our framework that incorporates advanced optimization with

discriminative learning techniques can be extended to deep

learning, for training more compact and shareable models, and

might prove useful for high-level vision problems.

The source code of our method is publicly available at

https://github.com/lxgh/DTL.

APPENDIX

DERIVATION OF ANALYTIC GRADIENTS

In this section we give the derivation for the computation

of several analytic gradients that are required for training.

The HQS iterations (t = 1, 2, . . . , T ) in our method read

as follows:

zt = prox�(xt−1)

xt =
(

λATA + ρt
)

︸ ︷︷ ︸


t

−1 (

λATb + ρt zt
)

︸ ︷︷ ︸

�t

(18)
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For both denoising and deconvolution tasks, the xt -update

in Eq. 18 has a closed-form solution, which is given in

Eq. 8 and 9. Here, we present a derivation with the more

general formula xt = 
−1
t �t .

In our method, the trainable parameters 	 = {λp,�}
include the fidelity weight λp for each problem class p, and

the model parameters � of the prior proximal operator that is

shared across all problem classes. The training loss function

ℓ is defined as the negative of the average Peak Signal-to-

Noise Ratio (PSNR) between the reconstructed and ground

truth images. The gradient of the loss ℓ w.r.t. � is computed

by averaging the gradients of all images, while the gradient

of the loss ℓ w.r.t. λp is computed by averaging the gradients

of only those images that belong to class p. For convenience,

we give the derivations for one image, and omit the class label

p below.

ℓ = −20 log10

(

255
√

M

||xT − xtrue||2

)

, (19)

where M is the number of pixels in each image, xtrue is the

ground truth image, and xT is the reconstructed image.

∂ℓ

∂	
==

T
∑

t=1

(
∂xt

∂λ
+

∂zt

∂�

∂xt

∂zt

)
∂ℓ

∂xt
(20)

Next, we provide the derivation for the partial derivative terms

in Eq. 20:

∂xt

∂λ
=

∂�t

∂λ

−1

t −
(


−1
t �t

)T ∂
t

∂λ

−1

t

=
(

ATb − ATAxt
)T


−1
t (21)

∂xt

∂zt
=

∂�t

∂zt

−1

t −
(


−1
t �t

)T ∂
t

∂zt

−1

t = ρt
−1
t (22)

∂ℓ

∂xt−1
=

∂zt

∂xt−1

∂xt

∂zt

∂ℓ

∂xt
= ρt ∂zt

∂xt−1

−1

t

∂ℓ

∂xt
(23)

To compute the gradient of zt w.r.t. xt−1 and �, i.e. ∂zt
/

∂xt−1

and ∂zt
/

∂� , we notice that in Eq. 6, xt−1 only appears at

the first stage k = 1:

zt
1 = zt

0 −
N

∑

i=1

F1
i

T
ψ1

i (F1
i zt

0)

= xt−1 −
N

∑

i=1

F1
i

T
ψ1

i (F1
i xt−1) (24)

Therefore,

∂zt

∂xt−1
=

∂zt
1

∂xt−1

∂zt
K

∂zt
1

=

(

I −
N

∑

i=1

F1
i

T
ψ 01

i (F
1
i xt−1)F1

i

)

∂zt
K

∂zt
1

, (25)

where I is an identity matrix, and ∂zt
K

/

∂zt
1 can be computed

by following the rule:

∂zt
k

∂zt
k−1

= I −
∑N

i=1 Fk
i

T
ψ 0k

i (F
k
i zt

k−1)F
k
i (26)

∂zt
/

∂� in Eq. 20 is composed of ∂zt
/

∂fk
i and ∂zt

/

∂ψk
i ,

which are computed as follows:

∂zt

∂fk
i

=
∂zt

k

∂fk
i

∂zt
K

∂zt
k

= −
∂Fk

i

T
ψk

i (Fk
i zt

k−1)

∂fk
i

∂zt
K

∂zt
k

(27)

∂zt

∂ψk
i

=
∂zt

k

∂ψk
i

∂zt
K

∂zt
k

= −
∂Fk

i

T
ψk

i (Fk
i zt

k−1)

∂ψk
i

∂zt
K

∂zt
k

(28)
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