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Abstract

High capacity classifiers, such as deep neural networks, often struggle on classes
that have very few training examples. We propose a method for improving clas-
sification performance for such classes by discovering similar classes and trans-
ferring knowledge among them. Our method learns to organize the classes into
a tree hierarchy. This tree structure imposes a prior over the classifier’s param-
eters. We show that the performance of deep neural networks can be improved
by applying these priors to the weights in the last layer. Our method combines
the strength of discriminatively trained deep neural networks, which typically re-
quire large amounts of training data, with tree-based priors, making deep neural
networks work well on infrequent classes as well. We also propose an algorithm
for learning the underlying tree structure. Starting from an initial pre-specified
tree, this algorithm modifies the tree to make it more pertinent to the task being
solved, for example, removing semantic relationships in favour of visual ones for
an image classification task. Our method achieves state-of-the-art classification
results on the CIFAR-100 image data set and the MIR Flickr image-text data set.

1 Introduction

Learning classifiers that generalize well is a hard problem when only few training examples are
available. For example, if we had only 5 images of a cheetah, it would be hard to train a classifier
to be good at distinguishing cheetahs against hundreds of other classes, working off pixels alone.
Any powerful enough machine learning model would severely overfit the few examples, unless it is
held back by strong regularizers. This paper is based on the idea that performance can be improved
using the natural structure inherent in the set of classes. For example, we know that cheetahs are
related to tigers, lions, jaguars and leopards. Having labeled examples from these related classes
should make the task of learning from 5 cheetah examples much easier. Knowing class structure
should allow us to borrow “knowledge” from relevant classes so that only the distinctive features
specific to cheetahs need to be learned. At the very least, the model should confuse cheetahs with
these animals rather than with completely unrelated classes, such as cars or lamps. Our aim is to
develop methods for transferring knowledge from related tasks towards learning a new task. In the
endeavour to scale machine learning algorithms towards AI, it is imperative that we have good ways
of transferring knowledge across related problems.

Finding relatedness is also a hard problem. This is because in the absence of any prior knowledge, in
order to find which classes are related, we should first know what the classes are - i.e., have a good
model for each one of them. But to learn a good model, we need to know which classes are related.
This creates a cyclic dependency. One way to circumvent it is to use an external knowledge source,
such as a human, to specify the class structure by hand. Another way to resolve this dependency is
to iteratively learn a model of the what the classes are and what relationships exist between them,
using one to improve the other. In this paper, we follow this bootstrapping approach.
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This paper proposes a way of learning class structure and classifier parameters in the context of
deep neural networks. The aim is to improve classification accuracy for classes with few examples.
Deep neural networks trained discriminatively with back propagation achieved state-of-the-art per-
formance on difficult classification problems with large amounts of labeled data [2, 14, 15]. The
case of smaller amounts of data or datasets which contain rare classes has been relatively less stud-
ied. To address this shortcoming, our model augments neural networks with a tree-based prior over
the last layer of weights. We structure the prior so that related classes share the same prior. This
shared prior captures the features that are common across all members of any particular superclass.
Therefore, a class with few examples, for which the model would otherwise be unable to learn good
features for, can now have access to good features just by virtue of belonging to the superclass.

Learning a hierarchical structure over classes has been extensively studied in the machine learning,
statistics, and vision communities. A large class of models based on hierarchical Bayesian models
have been used for transfer learning [20, 4, 1, 3, 5]. The hierarchical topic model for image features
of Bart et.al. [1] can discover visual taxonomies in an unsupervised fashion from large datasets but
was not designed for rapid learning of new categories. Fei-Fei et.al. [5] also developed a hierarchi-
cal Bayesian model for visual categories, with a prior on the parameters of new categories that was
induced from other categories. However, their approach is not well-suited as a generic approach
to transfer learning because they learned a single prior shared across all categories. A number of
models based on hierarchical Dirichlet processes have also been used for transfer learning [23, 17].
However, almost all of the the above-mentioned models are generative by nature. These models
typically resort to MCMC approaches for inference, that are hard to scale to large datasets. Fur-
thermore, they tend to perform worse than discriminative approaches, particularly as the number of
labeled examples increases.

A large class of discriminative models [12, 25, 11] have also been used for transfer learning that
enable discovering and sharing information among related classes. Most similar to our work is [18]
which defined a generative prior over the classifier parameters and a prior over the tree structures to
identify relevant categories. However, this work focused on a very specific object detection task and
used an SVM model with pre-defined HOG features as its input. In this paper, we demonstrate our
method on two different deep architectures (1) convolutional nets with pixels as input and single-
label softmax outputs and (2) fully connected nets pretrained using deep Boltzmann machines with
image features and text tokens as input and multi-label logistic outputs. Our model improves perfor-
mance over strong baselines in both cases, lending some measure of universality to the approach. In
essence, our model learns low-level features, high-level features, as well as a hierarchy over classes
in an end-to-end way.

2 Model Description

Let X = {x1,x2, . . . ,xN} be a set of N data points and Y = {y1,y2, . . . ,yN} be the set of
corresponding labels, where each label yi is a K dimensional vector of targets. These targets could
be binary, one-of-K, or real-valued. In our setting, it is useful to think of each x

i as an image and
y
i as a one-of-K encoding of the label. The model is a multi-layer neural network (see Fig. 1a). Let

w denote the set of all parameters of this network (weights and biases for all the layers), excluding
the top-level weights, which we denote separately as β ∈ R

D×K . Here D represents the number of
hidden units in the last hidden layer. The conditional distribution over Y can be expressed as

P (Y|X ) =

∫

w,β

P (Y|X ,w, β)P (w)P (β)dwdβ. (1)

In general, this integral is intractable, and we typically resort to MAP estimation to determine the
values of the model parameters w and β that maximize

logP (Y|X ,w, β) + logP (w) + logP (β).

Here, logP (Y|X ,w, β) is the log-likelihood function and the other terms are priors over the model’s
parameters. A typical choice of prior is a Gaussian distribution with diagonal covariance:

βk ∼ N

(

0,
1

λ
ID

)

, ∀k ∈ {1, . . . ,K}.

Here βk ∈ R
D denotes the classifier parameters for class k. Note that this prior assumes that each βk

is independent of all other βi’s. In other words, a-priori, the weights for label k are not related to any
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ŷ

• • •
Low level
features

Input

High level
features

Predictions • • •

βcar βtiger

K

D

(a)

• • •

βcar βtruck βtiger βcheetah

θvehicle θanimal

(b)

Figure 1: Our model: A deep neural network with priors over the classification parameters. The priors are
derived from a hierarchy over classes.

other label’s weights. This is a reasonable assumption when nothing is known about the labels. It
works quite well for most applications with large number of labeled examples per class. However, if
we know that the classes are related to one another, priors which respect these relationships may be
more suitable. Such priors would be crucial for classes that only have a handful of training examples,
since the effect of the prior would be more pronounced. In this work, we focus on developing such
a prior.

2.1 Learning With a Fixed Tree Hierarchy

Let us first assume that the classes have been organized into a fixed tree hierarchy which is available
to us. We will relax this assumption later by placing a hierarchical non-parametric prior over the tree
structures. For ease of exposition, consider a two-level hierarchy1, as shown in Fig. 1b. There are
K leaf nodes corresponding to the K classes. They are connected to S super-classes which group
together similar basic-level classes. Each leaf node k is associated with a weight vector βk ∈ R

D.
Each super-class node s is associated with a vector θs ∈ R

D, s = 1, ..., S. We define the following
generative model for β

θs ∼ N

(

0,
1

λ1
ID

)

, βk ∼ N

(

θparent(k),
1

λ2
ID

)

. (2)

This prior expresses relationships between classes. For example, it asserts that βcar and βtruck are
both deviations from θvehicle. Similarly, βcat and βdog are deviations from θanimal. Eq. 1 can now be
re-written to include θ as follows

P (Y|X ) =

∫

w,β,θ

P (Y|X ,w, β)P (w)P (β|θ)P (θ)dwdβdθ. (3)

We can perform MAP inference to determine the values of {w, β, θ} that maximize

logP (Y|X ,w, β) + logP (w) + logP (β|θ) + logP (θ).

In terms of a loss function, we wish to minimize

L(w, β, θ) = − logP (Y|X ,w, β)− logP (w)− logP (β|θ)− logP (θ)

= − logP (Y|X ,w, β) +
λ2

2
||w||2 +

λ2

2

K
∑

k=1

||βk − θparent(k)||
2 +

λ1

2
||θ||2. (4)

Note that by fixing the value of θ = 0, this loss function recovers our standard loss function. The
choice of normal distributions in Eq. 2 leads to a nice property that maximization over θ, given β can
be done in closed form. It just amounts to taking a (scaled) average of all βk’s which are children of
θs. Let Cs = {k|parent(k) = s}, then

θ∗s =
1

|Cs|+ λ1/λ2

∑

k∈Cs

.βk (5)

1The model can be easily generalized to deeper hierarchies.
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1: Given: X ,Y , classes K, superclasses S, initial z, L, M.
2: Initialize w, β.
3: repeat
4: // Optimize w, β with fixed z.
5: w, β ← SGD (X ,Y,w, β, z) for L steps.
6: // Optimize z, β with fixed w.
7: RandomPermute(K)
8: for k in K do
9: for s in S ∪ {snew} do

10: zk ← s
11: βs ← SGD (fw(X ),Y, β, z) for M steps.
12: end for
13: s′ ← ChooseBestSuperclass(β1, β2, . . .)

14: β ← βs
′

, zk ← s′, S ← S ∪ {s′}
15: end for
16: until convergence

car truck cat dogvan van van

s=vehicle s=animal s=snew

k = van

Algorithm 1: Procedure for learning the tree.

Therefore, the loss function in Eq. 4 can be optimized by iteratively performing the following two
steps. In the first step, we maximize over w and β keeping θ fixed. This can be done using standard
stochastic gradient descent (SGD). Then, we maximize over θ keeping β fixed. This can be done in
closed form using Eq. 5. In practical terms, the second step is almost instantaneous and only needs
to be performed after every T gradient descent steps, where T is around 10-100. Therefore, learning
is almost identical to standard gradient descent. It allows us to exploit the structure over labels at a
very nominal cost in terms of computational time.

2.2 Learning the Tree Hierarchy

So far we have assumed that our model is given a fixed tree hierarchy. Now, we show how the tree
structure can be learned during training. Let z be a K-length vector that specifies the tree structure,
that is, zk = s indicates that class k is a child of super-class s. We place a non-parametric Chinese
Restaurant Process (CRP) prior over z. This prior P (z) gives the model the flexibility to have any
number of superclasses. The CRP prior extends a partition of k classes to a new class by adding
the new class either to one of the existing superclasses or to a new superclass. The probability of

adding it to superclass s is cs

k+γ
where cs is the number of children of superclass s. The probability

of creating a new superclass is γ
k+γ

. In essence, it prefers to add a new node to an existing large

superclass instead of spawning a new one. The strength of this preference is controlled by γ.

Equipped with the CRP prior over z, the conditional over Y takes the following form

P (Y|X ) =
∑

z

(
∫

w,β,θ

P (Y|X ,w, β)P (w)P (β|θ, z)P (θ)dwdβdθ

)

P (z). (6)

MAP inference in this model leads to the following optimization problem

max
w,β,θ,z

logP (Y|X ,w, β) + logP (w) + logP (β|θ, z) + logP (θ) + logP (z).

Maximization over z is problematic because the domain of z is a huge discrete set. Fortunately, this
can be approximated using a simple and parallelizable search procedure.

We first initialize the tree sensibly. This can be done by hand or by extracting a semantic tree from
WordNet [16]. Let the number of superclasses in the tree be S. We optimize over {w, β, θ} for a
L steps using this tree. Then, a leaf node is picked uniformly at random from the tree and S + 1
tree proposals are generated as follows. S proposals are generated by attaching this leaf node to
each of the S superclasses. One additional proposal is generated by creating a new super-class and
attaching the label to it. This process is shown in Algorithm 1. We then re-estimate {β, θ} for
each of these S + 1 trees for a few steps. Note that each of the S + 1 optimization problems can
be performed independently, in parallel. The best tree is then picked using a validation set. This
process is repeated by picking another node and again trying all possible locations for it. After each
node has been picked once and potentially repositioned, we take the resulting tree and go back to
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Figure 2: Examples from CIFAR-100. Five randomly chosen examples from 8 of the 100 classes are shown.
Classes in each row belong to the same superclass.

optimizing w, β using this newly learned tree in place of the given tree. If the position of any class
in the tree did not change during a full pass through all the classes, the hierarchy discovery was
said to have converged. When training this model on CIFAR-100, this amounts to interrupting the
stochastic gradient descent after every 10,000 steps to find a better tree. The amount of time spent
in learning this tree is a small fraction of the total time (about 5%).

3 Experiments on CIFAR-100

The CIFAR-100 dataset [13] consists of 32 × 32 color images belonging to 100 classes. These
classes are divided into 20 groups of 5 each. For example, the superclass fish contains aquarium
fish, flatfish, ray, shark and trout; and superclass flowers contains orchids, poppies, roses, sunflowers
and tulips. Some examples from this dataset are shown in Fig. 2. We chose this dataset because it has
a large number of classes with a few examples in each, making it ideal for demonstrating the utility
of transfer learning. There are only 600 examples of each class of which 500 are in the training set
and 100 in the test set. We preprocessed the images by doing global contrast normalization followed
by ZCA whitening.

3.1 Model Architecture and Training Details

We used a convolutional neural network with 3 convolutional hidden layers followed by 2 fully con-
nected hidden layers. All hidden units used a rectified linear activation function. Each convolutional
layer was followed by a max-pooling layer. Dropout [8] was applied to all the layers of the net-
work with the probability of retaining a hidden unit being p = (0.9, 0.75, 0.75, 0.5, 0.5, 0.5) for the
different layers of the network (going from input to convolutional layers to fully connected layers).
Max-norm regularization [8] was used for weights in both convolutional and fully connected layers.
The initial tree was chosen based on the superclass structure given in the data set. We learned a
tree using Algorithm 1 with L = 10, 000 and M = 100. The final learned tree is provided in the
supplementary material.

3.2 Experiments with Few Examples per Class

In our first set of experiments, we worked in a scenario where each class has very few examples.
The aim was to assess whether the proposed model allows related classes to borrow information
from each other. For a baseline, we used a standard convolutional neural network with the same
architecture as our model. This is an extremely strong baseline and already achieved excellent
results, outperforming all previously reported results on this dataset as shown in Table 1. We created
5 subsets of the data by randomly choosing 10, 25, 50, 100 and 250 examples per class, and trained
four models on each subset. The first was the baseline. The second was our model using the given
tree structure (100 classes grouped into 20 superclasses) which was kept fixed during training. The
third and fourth were our models with a learned tree structure. The third one was initialized with
a random tree and the fourth with the given tree. The random tree was constructed by drawing a
sample from the CRP prior and randomly assigning classes to leaf nodes.

The test performance of these models is compared in Fig. 3a. We observe that if the number of
examples per class is small, the fixed tree model already provides significant improvement over
the baseline. The improvement diminishes as the number of examples increases and eventually
the performance falls below the baseline (61.7% vs 62.8%). However, the learned tree model does
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Figure 3: Classification results on CIFAR-100. Left: Test set classification accuracy for different number of
training examples per class. Right: Improvement over the baseline when trained on 10 examples per class. The
learned tree models were initialized at the given tree.

Method Test Accuracy %

Conv Net + max pooling 56.62 ± 0.03
Conv Net + stochastic pooling [24] 57.49
Conv Net + maxout [6] 61.43
Conv Net + max pooling + dropout (Baseline) 62.80 ± 0.08
Baseline + fixed tree 61.70 ± 0.06
Baseline + learned tree (Initialized randomly) 61.20 ± 0.35
Baseline + learned tree (Initialized from given tree) 63.15 ± 0.15

Table 1: Classification results on CIFAR-100. All models were trained on the full training set.

better. Even with 10 examples per class, it gets an accuracy of 18.52% compared to the baseline
model’s 12.81% or the fixed tree model’s 16.29%. Thus the model can get almost a 50% relative
improvement when few examples are available. As the number of examples increases, the relative
improvement decreases. However, even for 500 examples per class, the learned tree model improves
upon the baseline, achieving a classification accuracy of 63.15%. Note that initializing the model
with a random tree decreases model performance, as shown in Table 1.

Next, we analyzed the learned tree model to find the source of the improvements. We took the model
trained on 10 examples per class and looked at the classification accuracy separately for each class.
The aim was to find which classes gain or suffer the most. Fig. 3b shows the improvement obtained
by different classes over the baseline, where the classes are sorted by the value of the improvement
over the baseline. Observe that about 70 classes benefit in different degrees from learning a hierarchy
for parameter sharing, whereas about 30 classes perform worse as a result of transfer. For the learned
tree model, the classes which improve most are willow tree (+26%) and orchid (+25%). The classes
which lose most from the transfer are ray (-10%) and lamp (-10%).

We hypothesize that the reason why certain classes gain a lot is that they are very similar to other
classes within their superclass and thus stand to gain a lot by transferring knowledge. For example,
the superclass for willow tree contains other trees, such as maple tree and oak tree. However, ray
belongs to superclass fish which contains more typical examples of fish that are very dissimilar in
appearance. With the fixed tree, such transfer hurts performance (ray did worse by -29%). However,
when the tree was learned, this class split away from the fish superclass to join a new superclass and
did not suffer as much. Similarly, lamp was under household electrical devices along with keyboard
and clock. Putting different kinds of electrical devices under one superclass makes semantic sense
but does not help for visual recognition tasks. This highlights a key limitation of hierarchies based
on semantic knowledge and advocates the need to learn the hierarchy so that it becomes relevant to
the task at hand. The full learned tree is provided in the supplementary material.

3.3 Experiments with Few Examples for One Class

In this set of experiments, we worked in a scenario where there are lots of examples for different
classes, but only few examples of one particular class. The aim was to see whether the model
transfers information from other classes that it has learned to this “rare” class. We constructed
training sets by randomly drawing either 5, 10, 25, 50, 100, 250 or 500 examples from the dolphin
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Figure 4: Results on CIFAR-100 with few examples for the dolphin class. Left: Test set classification accuracy
for different number of examples. Right: Accuracy when classifying a dolphin as whale or shark is also
considered correct.

Classes
baby, female, people,

portrait

plant life, river,

water

clouds, sea, sky,

transport, water
animals, dog, food clouds, sky, structures

Images

Tags claudia 〈 no text 〉
barco, pesca,

boattosail, navegaçāo

watermelon, dog,

hilarious, chihuahua

colors, cores, centro,

commercial, building

Figure 5: Some examples from the MIR-Flickr dataset. Each instance in the dataset is an image along with
textual tags. Each image has multiple classes.

class and all 500 training examples for the other 99 classes. We trained the baseline, fixed tree and
learned tree models with each of these datasets. The objective was kept the same as before and
no special attention was paid to the dolphin class. Fig. 4a shows the test accuracy for correctly
predicting the dolphin class. We see that transfer learning helped tremendously. For example, with
10 cases, the baseline gets 0% accuracy whereas the transfer learning model can get around 3%.
Even for 250 cases, the learned tree model gives significant improvements (31% to 34%). We
repeated this experiment for classes other than dolphin as well and found similar improvements. See
the supplementary material for a more detailed description.

In addition to performing well on the class with few examples, we would also want any errors
to be sensible. To check if this was indeed the case, we evaluated the performance of the above
models treating the classification of dolphin as shark or whale to also be correct, since we believe
these to be reasonable mistakes. Fig. 4b shows the classification accuracy under this assumption for
different models. Observe that the transfer learning methods provide significant improvements over
the baseline. Even when we have just 1 example for dolphin, the accuracy jumps from 45% to 52%.

4 Experiments on MIR Flickr

The Multimedia Information Retrieval Flickr Data set [9] consists of 1 million images collected
from the social photography website Flickr along with their user assigned tags. Among the 1 million
images, 25,000 have been annotated using 38 labels. These labels include object categories such as,
bird, tree, people, as well as scene categories, such as indoor, sky and night. Each image has multiple
labels. Some examples are shown in Fig. 5.

This dataset is different from CIFAR-100 in many ways. In the CIFAR-100 dataset, our model was
trained using image pixels as input and each image belonged to only one class. MIR-FLickr is a
multimodal dataset for which we used standard computer vision image features and word counts
as inputs. The CIFAR-100 models used a multi-layer convolutional network, whereas for this
dataset we use a fully connected neural network initialized by unrolling a Deep Boltzmann Machine
(DBM) [19]. Moreover, this dataset offers a more natural class distribution where some classes oc-
cur more often than others. For example, sky occurs in over 30% of the instances, whereas baby
occurs in fewer than 0.4%. We also used 975,000 unlabeled images for unsupervised training of the
DBM. We use the publicly available features and train-test splits from [21].
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Figure 6: Results on MIR Flickr. Left: Improvement in Average Precision over the baseline for different
methods. Right: Improvement of the learned tree model over the baseline for different classes along with the
fraction of test cases which contain that class. Each dot corresponds to a class. Classes with few examples
(towards the left of plot) usually get significant improvements.

Method MAP

Logistic regression on Multimodal DBM [21] 0.609
Multiple Kernel Learning SVMs [7] 0.623
TagProp [22] 0.640
Multimodal DBM + finetuning + dropout (Baseline) 0.641 ± 0.004
Baseline + fixed tree 0.648 ± 0.004
Baseline + learned tree (initialized from given tree) 0.651 ± 0.005

Table 2: Mean Average Precision obtained by different models on the MIR-Flickr data set.

4.1 Model Architecture and Training Details

In order to make our results directly comparable to [21], we used the same network architecture as
described therein. The authors of the dataset [10] provided a high-level categorization of the classes
which we use to create an initial tree. This tree structure and the one learned by our model are shown
in the supplementary material. We used Algorithm 1 with L = 500 and M = 100.

4.2 Classification Results

For a baseline we used a Multimodal DBM model after finetuning it discriminatively with dropout.
This model already achieves state-of-the-art results, making it a very strong baseline. The results
of the experiment are summarized in Table 2. The baseline achieved a MAP of 0.641, whereas our
model with a fixed tree improved this to 0.647. Learning the tree structure further pushed this up to
0.651. For this dataset, the learned tree was not significantly different from the given tree. Therefore,
we expected the improvement from learning the tree to be marginal. However, the improvement over
the baseline was significant, showing that transferring information between related classes helped.

Looking closely at the source of gains, we found that similar to CIFAR-100, some classes gain
and others lose as shown in Fig. 6a. It is encouraging to note that classes which occur rarely in
the dataset improve the most. This can be seen in Fig. 6b which plots the improvements of the
learned tree model over the baseline against the fraction of test instances that contain that class. For
example, the average precision for baby which occurs in only 0.4% of the test cases improves from
0.173 (baseline) to 0.205 (learned tree). This class borrows from people and portrait both of which
occur very frequently. The performance on sky which occurs in 31% of the test cases stays the same.

5 Conclusion

We proposed a model that augments standard neural networks with tree-based priors over the classi-
fication parameters. These priors follow the hierarchical structure over classes and enable the model
to transfer knowledge from related classes. We also proposed a way of learning the hierarchical
structure. Experiments show that the model achieves excellent results on two challenging datasets.
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