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Abstract—This paper describes an in-depth investigation of training

criteria, network architectures and feature representations for regression-

based single-channel speech separation with deep neural networks

(DNNs). We use a generic discriminative training criterion corresponding

to optimal source reconstruction from time-frequency masks, and intro-

duce its application to speech separation in a reduced feature space (Mel

domain). A comparative evaluation of time-frequency mask estimation by

DNNs, recurrent DNNs and non-negative matrix factorization on the 2nd

CHiME Speech Separation and Recognition Challenge shows consistent

improvements by discriminative training, whereas long short-term mem-

ory recurrent DNNs obtain the overall best results. Furthermore, our

results confirm the importance of fine-tuning the feature representation

for DNN training.

Index Terms—speech enhancement; deep neural networks; discrimi-

native training

I. INTRODUCTION

Single-channel source separation aims to recover one or more

source signals of interest from a mixture of signals. An important

application in audio signal processing is to obtain clean speech

signals from single-channel recordings with non-stationary noises, in

order to facilitate human-human or human-machine communication

in unfavorable acoustic environments. Popular algorithms for this

task include model-based approaches such as non-negative matrix

factorization (NMF) [1]–[3] and, more recently, supervised learning

of time-frequency masks for the noisy spectrum [4]–[7]. However,

it is notable that these methods do not directly optimize the actual

objective of source separation, which is an optimal reconstruction of

the desired signal(s). Initial studies have recently shown the benefit

of incorporating such criteria for NMF [8] and deep neural network

[9] based speech separation.

In this paper, we consolidate earlier work on discriminative

speech separation by starting from a generic discriminative training

objective for optimizing signal-to-noise ratio (SNR). We then use

this framework to derive a novel discriminative objective for mask

estimation in a reduced feature space (here, the Mel domain) from

which a full-resolution result is obtained by filtering. Furthermore, we

show the importance of feature and training target representation in

combination with deep learning techniques for single-channel speech

separation. Finally, by investigating discriminative training of long

short-term memory recurrent neural networks for speech separation,

we show that good design of discriminative objective functions is

complementary to improved recurrent neural network architectures

circumventing the vanishing gradient problem.

II. SPEECH SEPARATION BY TIME-FREQUENCY FILTERING

The problem of single-channel speech separation is to obtain

an estimate ŝ(t) of a target speech signal s(t) from a mixture

signal m(t), which also contains background noise n(t). A popular

approach is to work in the time-frequency domain, for example

obtained by short-time Fourier transform (STFT) based on a discrete

Fourier transform (DFT) with F frequency bins, and apply a time-

varying filter yt ∈ R
F
+ to the magnitude spectrum mt of the mixture

to obtain an estimate ŝt of the speech magnitude spectrum such that:

ŝ
α
t = yt ⊗m

α
t (1)

where ⊗ denotes element-wise multiplication and α > 0 is an

exponent that affects the estimation of yt. A time-domain signal

is then reconstructed using inverse STFT of the complex spectrum

obtained from ŝt and the phase of the mixture.

In many cases, it is useful to estimate filters in a reduced resolution

feature space, for example obtained using a Mel transform. An

advantage of this is that the filters may be smoother and easier

to learn, requiring fewer parameters, and might generalize better

to unseen speakers and noise [3], despite reducing the achievable

separation quality. See [3] for a comparison of Mel-domain with

full-resolution speech enhancement based on NMF.

We consider a Mel transformation applied to the full-resolution

spectrum as mmel
t = Bmα

t with B = (bi,f ) ∈ R
B×F , where B is

the number of Mel bins and bi,f is the weight of the DFT bin f in the

i-th Mel bin, and similarly for smel and nmel. From a filter estimated

in that domain, we have to estimate a corresponding full-spectrum

filter to use with (1). However, the Mel matrix B is rectangular (B <
F ) and hence the corresponding linear transform is not invertible. As

an ‘ad-hoc’ method to reconstruct from Mel domain filters, we can

compute a full-spectrum filter as:

yt = B
⊺
y
mel
t . (2)

Due to the fact that the rows of B are overlapping Mel filter envelopes

that sum to one, this distributes the estimated filter value ymel
i,t for

the i-th Mel filter back to the f -th full-spectrum frequency bin in

proportion to that bin’s original contribution bi,f to that Mel filter.

Although this is a rather ad-hoc approach, we found that it did not

perform worse in terms of SNR than a more principled approach

using a Wiener-like filter, where the Mel-domain speech and noise

estimates are both transformed with the pseudo-inverse B+ of B.

III. SUPERVISED TRAINING FOR SPEECH SEPARATION

The most common approach to estimate the filter yt is based on

time-frequency masking [1]–[9], which restricts the filter to [0, 1]F

to form a time-frequency mask. This restriction is reasonable: it

introduces little approximation error (0.36 dB in oracle experiments),

and avoids estimation of unbounded values. These methods rely on

a supervised training scheme based on a parallel training corpus of

clean speech signals and speech mixtures. They optimize a system

mt 7→ ŷt that produces a mask estimate ŷt from the features

mt of the mixed signal. Among these, two main approaches have

emerged: the mask approximation approach trains the system so that



the estimated mask best approximates a reference mask computed

using the clean and noisy speech; the signal approximation approach

trains the system so that the estimated mask, when applied to the

mixture, leads to the best approximation of the reference signal.

In both approaches, it may be useful to introduce a non-linear

warping x 7→ xα of the magnitudes in the objective function, in

order to differentially affect the sharpness of the mask or the dynamic

range of the features. Here, we consider α = 2 (power spectrum),

α = 1 (magnitude spectrum) and α = 2/3 (‘auditory’ spectrum). The

latter is motivated by the ‘power law of hearing’ as in computation

of perceptual linear prediction (PLP) coefficients [10].

A. Mask approximation (MA)

In mask approximation, given a reference mask y∗
t , the objective

function is defined as

EMA(ŷ) =
∑

f,t

D(ŷf,t, y
∗
f,t) (3)

where D is a distance measure. In this paper, we use the squared

Euclidean distance, which ensures that EMA is closely related to the

source separation evaluation criterion in terms of signal-to-distortion

ratio (SDR). The reference mask is often taken to be the so-called

ideal ratio mask (IRM) [4]:

y
∗
t =

sαt

sαt + nα
t

, (4)

where nt is obtained from n(t) = m(t) − s(t), and division is

performed element-wise.

B. Signal approximation (SA)

Even though the mask approximation objective is discriminative,

it does not directly optimize the actual source separation objective,

which is to deliver the best possible reconstruction of the speech

signal (e.g., in terms of SDR). We use instead the following signal

approximation objective, whose minimization maximizes the SNR for

the warped features in each time-frequency bin:

ESA(ŷ) =
∑

f,t

(

ŝαf,t − sαf,t
)2

=
∑

f,t

(

ŷf,tm
α
f,t − sαf,t

)2
. (5)

Such an objective function can be applied to any mask estimation

scheme, for example see [8], [9]. It can in particular be used to

estimate a Mel-domain mask ŷmel = (ŷmel
i,t ) by substituting (2):

ESA,Mel(ŷmel) =
∑

f,t

(

(

∑

i

bi,f ŷ
mel
i,t

)

mα
f,t − sαf,t

)2

, (6)

which takes into account the fact that the Mel mask ŷmel
i,t influences

one or more DFT bins.

C. Mask estimation by deep neural networks

We now describe the mask estimators considered in this paper.

While some studies used Support Vector Machines [5] or decision

trees [7], there is an increasing trend towards deep neural network

(DNN) based speech separation [4], [6], [9]. In this study, we first

use K-layer feed-forward DNNs with K − 1 hidden layers and one

output layer, which compute an estimated mask ŷt as

ŷt = σ
(

W
KH

(

W
K−1 · · ·H

(

W
1[xt; 1]

)

))

, (7)

where xt are the input features, σ denotes the element-wise logistic

sigmoid function, H is an element-wise non-linear function (here we

use the hyperbolic tangent), and [a;b] := (a⊺,b⊺)⊺ denotes row-

wise concatenation. For our DNN experiments, we concatenate C
consecutive frames of log spectra of the mixture (C − 1 past frames

and the current frame, to allow for real-time operation) to obtain the

input features xt = log[mt−C+1; · · · ;mt].
Deep neural networks have a few convenient properties for the

speech separation task. First, the masking functions for all frequency

bins can be represented in a single model. Second, non-linearities in

the feature representation can be introduced effectively, thus allowing

for compression of the spectral magnitudes, which is considered

useful in speech processing. Once trained, (7) can be very effi-

ciently evaluated, unlike iterative methods such as NMF. Finally, the

backpropagation algorithm allows for easy discriminative training,

since only the gradient of the objective function with respect to

the network output ŷ needs to be modified accordingly, whereas all

other derivatives are unaffected. In particular, computing the gradients

∂EMA/∂ŷ , ∂ESA/∂ŷ and ∂ESA,Mel/∂ŷ is straightforward.

D. Deep recurrent neural networks

Since audio is sequential, it is not surprising that in recent years

recurrent neural networks have seen a resurgence in popularity for

speech and music processing tasks [9], [11]–[15]. The combination

of deep structures with temporal recurrence yields so-called deep

recurrent neural networks (DRNNs) [13]. The function computed

by deep recurrent neural networks can be defined by the following

iteration for k = 1, . . . ,K − 1 and t = 1, . . . , T :

h
1,...,K−1
0 = 0, (8)

h
0
t = xt, (9)

h
k
t = H(Wk[hk−1

t ;hk
t−1; 1]), (10)

ŷt = σ(WK [hK−1
t ; 1]). (11)

In the above, hk
t denotes the hidden feature representation of time

frame t in the level k units (k = 0: input layer (9)).

To train RNNs, the recurrent connections in (10) can be ‘unfolded’,

conceptually yielding a T -layer deep network with tied weights.

However, this approach (‘backpropagation through time’) suffers

from a vanishing or exploding gradient for larger T , making the

optimization difficult [16]. As a result, RNNs are often not able to

outperform DNNs in practical speech processing tasks [9], [17]. One

of the oldest, yet still most effective solutions proposed to remedy

this problem is to add structure to the RNN following the long

short-term memory (LSTM) principle as defined in [18], [19]. In

particular, LSTM-DRNNs perform exceptionally well on standard

speech recognition benchmarks [13], [20].

In LSTM networks, the computation of hk
t is performed by a

differentiable function Lk(hk
t ;h

k
t−1) which performs soft versions

of read, write, and delete operations on a memory variable. Each

of these operations is governed by weights which are optimized

in the manner of backpropagation through time. The memory is

implemented as a recurrent unit with weight 1, allowing the RNN to

preserve an arbitrary amount of temporal context. It can be shown that

this approach avoids the vanishing gradient problem, thus allowing

to effectively train DRNNs using gradient descent.

E. Baseline: discriminative non-negative matrix factorization

As a strong, model-inspired baseline for supervised speech separa-

tion, we use discriminative NMF (DNMF) [8]. At test time, DNMF

computes the mask ŷt as follows:

h
0
t = 1⊗ (1/R), (12)

h
k
t = h

k−1
t ⊗

W
⊺(xt/Wh

k−1
t )

W
⊺
1+ λ

, 1 ≤ k < K, (13)

ŷt =

∑

r≤Rs

wK,(r)hK
r,t

WKhK
t

(14)



where R is the number of NMF dictionary atoms,

W = [w(1) · · ·w(Rs) · · ·w(R)] and WK =
[wK,(1) · · ·wK,(Rs) · · ·wK,(R)] ∈ R

CF×R
+ are NMF dictionaries

with Rs speech atoms and R − Rs noise atoms, each of which

corresponds to a sliding window of C contiguous STFT spectra

(magnitude, α = 1). xt ∈ R
CF
+ is a sliding window of mixture

magnitude spectra similar to the input features of the DNN, λ is a

free parameter controlling the sparsity of the ‘hidden’ activations h,

and K is a fixed number of iterations.

In conventional NMF, it is assumed that WK = W, and W is

trained non-discriminatively, for example using sparse NMF on each

source [21]. Note that, as shown in [8], sparse NMF can significantly

outperform the recently popular ‘exemplar-based’ approaches [3]

based on random sampling of speech and noise observations.

However in the context of discriminative training, it is convenient

and effective to allow WK to differ from W, so that WK can

be trained using the objective function (5), given the activations

hK
t obtained by (13). A multiplicative update algorithm for this

optimization is given in [8].

IV. EXPERIMENTAL SETUP

Our methods are evaluated on the corpus of the 2nd CHiME Speech

Separation and Recognition Challenge (track 2: medium vocabulary)

[22], which is publicly available1. The task is to estimate speech

embedded in noisy and reverberant mixtures. Training, development,

and test sets of noisy mixtures along with noise-free reference signals

are created from the Wall Street Journal (WSJ-0) corpus of read

speech and a corpus of noise recordings. The noise was recorded

in a home environment with mostly non-stationary noise sources

such as children, household appliances, television, radio, etc. The

dry speech recordings are convolved with a time-varying sequence

of room impulse responses from the same environment where the

noise corpus is recorded. The training set consists of 7 138 utterances

at six SNRs from -6 to 9 dB, in steps of 3 dB. The development

and test sets consist of 410 and 330 utterances at each of these

SNRs, for a total of 2 460 and 1 980 utterances. Our evaluation

measure for speech separation is source-to-distortion ratio (SDR)

[23]. By construction of the WSJ-0 corpus, our evaluation is speaker-

independent. Furthermore, the background noise in the development

and test set is disjoint from the noise in the training set, and a different

room impulse response is used to convolve the dry utterances.

All experiments use spectral features obtained with the square root

of the Hann window, a frame size of 400 samples (25 ms) and a frame

shift of 160 samples (10 ms). For the NMF baseline, we set C = 9,

K = 25, Rs = 1000, R = 2000 and λ = 5 based on limited

parameter tuning on the CHiME development set [8].

In D(R)NN training, all the weight matrices Wk, k = 1, . . . ,K
are estimated by supervised training as outlined in Section III. The

training targets are derived from the parallel noise-free and multi-

condition training sets of the CHiME data. The input features are

globally mean and variance normalized on the training set, this kind

of normalization allowing for on-line processing at run time. The

DNN topology was optimized based on limited parameter tuning

(number of hidden layers and units) on the CHiME development

set (cf. Table I). The DRNN topology used in this study was

determined based on earlier experiments with speech separation and

feature enhancement on different corpora. All weights are randomly

initialized with Gaussian random numbers (µ = 0, σ = 0.1). For

DNN training, ‘discriminative’ pre-training is used [24], i.e., building

1http://spandh.dcs.shef.ac.uk/chime challenge/ – as of July 2014

TABLE I
AVERAGE SDR FOR VARIOUS TOPOLOGIES (# OF HIDDEN LAYERS × # OF

HIDDEN UNITS PER LAYER) OF DNN AND LSTM-DRNN ON THE CHiME
DEVELOPMENT SET.

SDR [dB] Input SNR [dB]
-6 -3 0 3 6 9 Avg.

Noisy -3.73 -1.05 1.18 2.86 4.53 6.19 1.66

DNN 1×1024 4.48 6.90 8.96 10.38 12.11 13.95 9.46
DNN 2×1024 4.76 7.17 9.15 10.62 12.38 14.27 9.72
DNN 3×1024 5.77 8.00 9.92 11.24 12.99 14.84 10.46

DNN 4×1024 5.70 7.92 9.91 11.26 13.02 14.83 10.44
DNN 2×1536 4.61 7.06 9.13 10.60 12.39 14.28 9.68

LSTM-DRNN 1×256 7.30 9.31 11.14 12.38 14.15 15.93 11.70
LSTM-DRNN 2×256 7.94 9.89 11.68 12.92 14.60 16.35 12.23

LSTM-DRNN 3×256 7.64 9.69 11.52 12.70 14.46 16.18 12.03

Oracle (IRM) 13.91 15.26 16.52 17.38 18.91 20.49 17.08

the DNN layer by layer by backpropagation (as opposed to generative

pre-training).

We train the DNNs and DRNNs through stochastic (‘on-line’) gra-

dient descent with an initial learning rate of 10−5 and a momentum of

0.9. Weights are updated after ‘mini-batches’ of 25 feature sequences.

In DRNN training, sequences within these mini-batches are processed

in parallel on a graphics processing unit (GPU), but unlike in DNN

training, there is no parallelism across time steps. Hence, to increase

the efficiency of DRNN training, the utterances are ‘chopped’ into

sequences of at most T = 100 time steps (but not shorter than

T = 50).

Two common strategies are used to reduce over-fitting on the

training set. First, Gaussian noise (µ = 0, σ = 0.1) is added to

the inputs in the training phase. Second, we use an early stopping

strategy where we evaluate the objective function on the development

set after each training epoch and select the best network accordingly.

Training is stopped as soon as no improvement on the development

set is observed for ten training epochs or after 100 epochs. We

use the GPU-enabled DNN and LSTM-DRNN training software

CURRENNT [25], which is publicly available2.

V. RESULTS AND DISCUSSION

A. Neural network topologies

Table I shows the source separation performance using various

network architectures and dimensions. Best DNN results are obtained

with 3 layers and 1024 units per layer (10.46 dB SDR), whereas

for 4 layers the performance saturates. 1.0 dB SDR is gained by

increasing the depth from 1 to 3 layers, whereas increasing the

width of the network to 1536 units does not seem to help. LSTM-

DRNN can achieve up to 12.23 dB SDR with a much smaller model

size (3×1024 DNN: 4.1 M trainable parameters, 2×256 LSTM-

DRNN: 1.0 M), indicating a clear benefit of explicitly modeling

temporal dependencies. Interestingly, the benefit of adding depth to

LSTM-DRNN (besides their inherent depth in time) seems to be

comparatively minor for the denoising task, leading to competitive

results even with a single layer (11.70 dB).

B. Influence of feature representation

Fig. 1 shows the influence of the feature representation on the

oracle masking performance as well as on the results obtained with

supervised training of mask estimation with LSTM-DRNNs. As is

expected, in the oracle case the full-resolution mask delivers the

best SDR. Regarding warping, α = 1 (magnitude spectrum) works

best. However, when the estimated mask is used, best results are

2https://sourceforge.net/p/currennt
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DFT and Mel spectra (B = 40, B = 100).
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Fig. 2. SDR on the CHiME development set with LSTM-DRNN mask esti-
mation, trained with the mask approximation (MA) and signal approximation
(SA) objectives, and SA-based retraining of LSTM-DRNNs trained with MA
(MA+SA). Mel (B = 100) and DFT magnitudes (α = 1).

obtained with Mel masks (B = 100), and the full-resolution mask

works only slightly better than the low-resolution (B = 40) Mel

mask. Since for B = 100, the lower Mel bins correspond to single

DFT bins while the higher Mel bins comprise multiple DFT bins,

this indicates difficulties in precisely estimating the mask for the

higher frequencies, which could be due to insufficient training data.

Furthermore, while ‘auditory’ spectra (α = 2/3) deliver clearly the

worst performance in oracle masking, they are on par with magnitude

spectra for the estimated mask. Apparently, using warping with

α = 2/3 (which smoothes the training targets) eases the optimization

of the cost function enough to compensate for the lower attainable

performance in oracle masking. Overall, the performance differences

stemming from the feature representation are surprising. In the DFT

power spectrum domain, 11.39 dB average SDR are obtained while

in the Mel magnitude domain (B = 100) we get 12.81 dB.

C. Influence of the objective function

Fig. 2 shows the impact of using discriminative objective functions

for α = 1. Interestingly, when training LSTM-DRNNs using the

discriminative objectives ESA and ESA,Mel (‘SA’ in Fig. 2), we

obtain worse performance than with mask approximation (‘MA’ in

Fig. 2). We found sub-optimal convergence of the cost function in this

case, both on the training and held-out development set. However,

if we start from the solution obtained by training with EMA until

convergence, we can significantly improve the results over MA (‘MA

+ SA’ in Fig. 2). Yet the results in the DFT domain using MA + SA

TABLE II
SOURCE SEPARATION PERFORMANCE FOR SELECTED SYSTEMS ON CHiME

TEST SET (α = 1). Mel: B = 100.

SDR [dB] Mel SA Input SNR [dB]
-6 -3 0 3 6 9 Avg.

Noisy -2.27 -0.58 1.66 3.40 5.20 6.60 2.34

NMF [8] 5.48 7.53 9.19 10.88 12.89 14.61 10.10
DNMF [8] ✓ 6.61 8.40 9.97 11.47 13.51 15.17 10.86

DNN 6.89 8.82 10.53 12.25 14.13 15.98 11.43
DNN ✓ 7.89 9.64 11.25 12.84 14.74 16.61 12.16
DNN ✓ ✓ 8.36 10.00 11.65 13.17 15.02 16.83 12.50
LSTM-DRNN ✓ ✓ 10.14 11.60 13.15 14.48 16.19 17.90 13.91

Oracle (IRM) – 14.53 15.64 16.95 18.09 19.65 21.24 17.68

Oracle (IRM) ✓ – 14.00 15.14 16.45 17.62 19.21 20.82 17.21

are still below the results with Mel domain MA. Furthermore, if

we apply MA + SA in the Mel domain, we can obtain best results

(13.09 dB average SDR on the CHiME development set).

D. CHiME test set evaluation

We conclude our evaluation with a comparison of selected speech

enhancement systems on the CHiME test set, cf. Table II. The

topologies for DNN and LSTM-DRNNs as tuned on the devel-

opment set are used (2×256 LSTM-DRNN and 3×1024 DNN,

cf. Table I). The default training procedure for DNN is MA, while

the training procedure for DNN and LSTM-DRNNs with SA is

MA+SA as described above. Comparing the results obtained with

full-resolution magnitude spectra, we observe that considering signal

approximation in the objective leads to a performance improvement

for both DNN and NMF. Note that DNN including SA-based training

outperformed the DNMF results reported in [8], but it remains

to be seen how the methods would compare with similar training

procedures, e.g., MA+SA, use of the Mel domain, and optimization

of α. As on the development data, using the Mel magnitude domain

(B = 100) instead of DFT improves the results for the DNN.

The gains by using the LSTM-DRNN network architecture are

complementary, and 1.4 dB performance improvement is achieved

with the LSTM-DRNN over a strong DNN baseline using Mel

magnitudes and SA-based discriminative training, leading to the best

result of 13.91 dB average SDR. While this corresponds to 11.6 dB

gain over the noisy baseline, there is still a gap of 3.77 dB relative

to the oracle masking (17.68 dB). Audio examples are available at

http://www.mmk.ei.tum.de/%7Ewen/denoising/chime.html.

VI. CONCLUSIONS

By a comparative evaluation on the CHiME Challenge data set,

we were able to show that a straightforward discriminative training

criterion based on optimal speech reconstruction can improve the

performance of time-frequency masking approaches to speech separa-

tion. Best performance in real-time speech separation on the CHiME

database was achieved by discriminatively trained DRNNs operating

in the Mel domain. It is interesting that DRNNs outperform DNNs

by a large margin in our study, whereas this was not the case in

earlier work [9]; we attribute this to avoiding the vanishing temporal

gradient in conventional DRNN training as used by [9] thanks to

the LSTM architecture. Furthermore, it is notable that the choice of

feature representation has such a strong effect on the results, but

this is in accordance with earlier studies showing that DNN acoustic

models cannot compensate even for simple rotations of the input

features [26]. In future work, we will investigate whether the lack of

training data may have been responsible for the under-performance

of full-resolution features. Such features could indeed support the

separation of harmonics in the higher frequencies.
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