
Discriminatively Trained Sparse Code Gradients

for Contour Detection

Xiaofeng Ren and Liefeng Bo
Intel Science and Technology Center for Pervasive Computing, Intel Labs

Seattle, WA 98195, USA
{xiaofeng.ren,liefeng.bo}@intel.com

Abstract

Finding contours in natural images is a fundamental problem that serves as the
basis of many tasks such as image segmentation and object recognition. At the
core of contour detection technologies are a set of hand-designed gradient fea-
tures, used by most approaches including the state-of-the-art Global Pb (gPb)
operator. In this work, we show that contour detection accuracy can be signif-
icantly improved by computing Sparse Code Gradients (SCG), which measure
contrast using patch representations automatically learned through sparse coding.
We use K-SVD for dictionary learning and Orthogonal Matching Pursuit for com-
puting sparse codes on oriented local neighborhoods, and apply multi-scale pool-
ing and power transforms before classifying them with linear SVMs. By extract-
ing rich representations from pixels and avoiding collapsing them prematurely,
Sparse Code Gradients effectively learn how to measure local contrasts and find
contours. We improve the F-measure metric on the BSDS500 benchmark to 0.74
(up from 0.71 of gPb contours). Moreover, our learning approach can easily adapt
to novel sensor data such as Kinect-style RGB-D cameras: Sparse Code Gradi-
ents on depth maps and surface normals lead to promising contour detection using
depth and depth+color, as verified on the NYU Depth Dataset.

1 Introduction

Contour detection is a fundamental problem in vision. Accurately finding both object boundaries and
interior contours has far reaching implications for many vision tasks including segmentation, recog-
nition and scene understanding. High-quality image segmentation has increasingly been relying on
contour analysis, such as in the widely used system of Global Pb [2]. Contours and segmentations
have also seen extensive uses in shape matching and object recognition [8, 9].

Accurately finding contours in natural images is a challenging problem and has been extensively
studied. With the availability of datasets with human-marked groundtruth contours, a variety of
approaches have been proposed and evaluated (see a summary in [2]), such as learning to clas-
sify [17, 20, 16], contour grouping [23, 31, 12], multi-scale features [21, 2], and hierarchical region
analysis [2]. Most of these approaches have one thing in common [17, 23, 31, 21, 12, 2]: they are
built on top of a set of gradient features [17] measuring local contrast of oriented discs, using chi-
square distances of histograms of color and textons. Despite various efforts to use generic image
features [5] or learn them [16], these hand-designed gradients are still widely used after a decade
and support top-ranking algorithms on the Berkeley benchmarks [2].

In this work, we demonstrate that contour detection can be vastly improved by replacing the hand-
designed Pb gradients of [17] with rich representations that are automatically learned from data.
We use sparse coding, in particularly Orthogonal Matching Pursuit [18] and K-SVD [1], to learn
such representations on patches. Instead of a direct classification of patches [16], the sparse codes
on the pixels are pooled over multi-scale half-discs for each orientation, in the spirit of the Pb

1

image patch: gray, ab

depth patch (optional):

depth, surface normal

…

local sparse coding multi-scale pooling

oriented gradients

power transforms

 linear SVM

+ -

…

per-pixel

sparse codes

SVM

SVM

SVM

…

SVM

RGB-(D) contours

Figure 1: We combine sparse coding and oriented gradients for contour analysis on color as well as
depth images. Sparse coding automatically learns a rich representation of patches from data. With
multi-scale pooling, oriented gradients efficiently capture local contrast and lead to much more
accurate contour detection than those using hand-designed features including Global Pb (gPb) [2].

gradients, before being classified with a linear SVM. The SVM outputs are then smoothed and non-
max suppressed over orientations, as commonly done, to produce the final contours (see Fig. 1).

Our sparse code gradients (SCG) are much more effective in capturing local contour contrast than
existing features. By only changing local features and keeping the smoothing and globalization parts
fixed, we improve the F-measure on the BSDS500 benchmark to 0.74 (up from 0.71 of gPb), a sub-
stantial step toward human-level accuracy (see the precision-recall curves in Fig. 4). Large improve-
ments in accuracy are also observed on other datasets including MSRC2 and PASCAL2008. More-
over, our approach is built on unsupervised feature learning and can directly apply to novel sensor
data such as RGB-D images from Kinect-style depth cameras. Using the NYU Depth dataset [27],
we verify that our SCG approach combines the strengths of color and depth contour detection and
outperforms an adaptation of gPb to RGB-D by a large margin.

2 Related Work

Contour detection has a long history in computer vision as a fundamental building block. Modern
approaches to contour detection are evaluated on datasets of natural images against human-marked
groundtruth. The Pb work of Martin et. al. [17] combined a set of gradient features, using bright-
ness, color and textons, to outperform the Canny edge detector on the Berkeley Benchmark (BSDS).
Multi-scale versions of Pb were developed and found beneficial [21, 2]. Building on top of the Pb
gradients, many approaches studied the globalization aspects, i.e. moving beyond local classifica-
tion and enforcing consistency and continuity of contours. Ren et. al. developed CRF models on
superpixels to learn junction types [23]. Zhu et. al. used circular embedding to enforce orderings
of edgels [31]. The gPb work of Arbelaez et. al. computed gradients on eigenvectors of the affinity
graph and combined them with local cues [2]. In addition to Pb gradients, Dollar et. al. [5] learned
boosted trees on generic features such as gradients and Haar wavelets, Kokkinos used SIFT features
on edgels [12], and Prasad et. al. [20] used raw pixels in class-specific settings. One closely related
work was the discriminative sparse models of Mairal et al [16], which used K-SVD to represent
multi-scale patches and had moderate success on the BSDS. A major difference of our work is the
use of oriented gradients: comparing to directly classifying a patch, measuring contrast between
oriented half-discs is a much easier problem and can be effectively learned.

Sparse coding represents a signal by reconstructing it using a small set of basis functions. It has
seen wide uses in vision, for example for faces [28] and recognition [29]. Similar to deep network
approaches [11, 14], recent works tried to avoid feature engineering and employed sparse coding of
image patches to learn features from “scratch”, for texture analysis [15] and object recognition [30,
3]. In particular, Orthogonal Matching Pursuit [18] is a greedy algorithm that incrementally finds
sparse codes, and K-SVD is also efficient and popular for dictionary learning. Closely related to our
work but on the different problem of recognition, Bo et. al. used matching pursuit and K-SVD to
learn features in a coding hierarchy [3] and are extending their approach to RGB-D data [4].

2

Thanks to the mass production of Kinect, active RGB-D cameras became affordable and were
quickly adopted in vision research and applications. The Kinect pose estimation of Shotton et.
al. used random forests to learn from a huge amount of data [25]. Henry et. al. used RGB-D cam-
eras to scan large environments into 3D models [10]. RGB-D data were also studied in the context
of object recognition [13] and scene labeling [27, 22]. In-depth studies of contour and segmentation
problems for depth data are much in need given the fast growing interests in RGB-D perception.

3 Contour Detection using Sparse Code Gradients

We start by examining the processing pipeline of Global Pb (gPb) [2], a highly influential and
widely used system for contour detection. The gPb contour detection has two stages: local contrast
estimation at multiple scales, and globalization of the local cues using spectral grouping. The core
of the approach lies within its use of local cues in oriented gradients. Originally developed in
[17], this set of features use relatively simple pixel representations (histograms of brightness, color
and textons) and similarity functions (chi-square distance, manually chosen), comparing to recent
advances in using rich representations for high-level recognition (e.g. [11, 29, 30, 3]).

We set out to show that both the pixel representation and the aggregation of pixel information in local
neighborhoods can be much improved and, to a large extent, learned from and adapted to input data.
For pixel representation, in Section 3.1 we show how to use Orthogonal Matching Pursuit [18] and
K-SVD [1], efficient sparse coding and dictionary learning algorithms that readily apply to low-level
vision, to extract sparse codes at every pixel. This sparse coding approach can be viewed similar
in spirit to the use of filterbanks but avoids manual choices and thus directly applies to the RGB-
D data from Kinect. We show learned dictionaries for a number of channels that exhibit different
characteristics: grayscale/luminance, chromaticity (ab), depth, and surface normal.

In Section 3.2 we show how the pixel-level sparse codes can be integrated through multi-scale pool-
ing into a rich representation of oriented local neighborhoods. By computing oriented gradients
on this high dimensional representation and using a double power transform to code the features
for linear classification, we show a linear SVM can be efficiently and effectively trained for each
orientation to classify contour vs non-contour, yielding local contrast estimates that are much more
accurate than the hand-designed features in gPb.

3.1 Local Sparse Representation of RGB-(D) Patches

K-SVD and Orthogonal Matching Pursuit. K-SVD [1] is a popular dictionary learning algorithm
that generalizes K-Means and learns dictionaries of codewords from unsupervised data. Given a set
of image patches Y = [y1, · · · , yn], K-SVD jointly finds a dictionary D = [d1, · · · , dm] and an
associated sparse code matrix X = [x1, · · · , xn] by minimizing the reconstruction error

min
D,X

‖Y −DX‖2F s.t. ∀i, ‖xi‖0 ≤ K; ∀j, ‖dj‖2 = 1 (1)

where ‖ · ‖F denotes the Frobenius norm, xi are the columns of X , the zero-norm ‖ · ‖0 counts the
non-zero entries in the sparse code xi, and K is a predefined sparsity level (number of non-zero en-
tries). This optimization can be solved in an alternating manner. Given the dictionary D, optimizing
the sparse code matrix X can be decoupled to sub-problems, each solved with Orthogonal Matching
Pursuit (OMP) [18], a greedy algorithm for finding sparse codes. Given the codes X , the dictionary
D and its associated sparse coefficients are updated sequentially by singular value decomposition.
For our purpose of representing local patches, the dictionary D has a small size (we use 75 for 5x5
patches) and does not require a lot of sample patches, and it can be learned in a matter of minutes.

Once the dictionary D is learned, we again use the Orthogonal Matching Pursuit (OMP) algorithm
to compute sparse codes at every pixel. This can be efficiently done with convolution and a batch
version of the OMP algorithm [24]. For a typical BSDS image of resolution 321x481, the sparse
code extraction is efficient and takes 1∼2 seconds.

Sparse Representation of RGB-D Data. One advantage of unsupervised dictionary learning is
that it readily applies to novel sensor data, such as the color and depth frames from a Kinect-style
RGB-D camera. We learn K-SVD dictionaries up to four channels of color and depth: grayscale
for luminance, chromaticity ab for color in the Lab space, depth (distance to camera) and surface
normal (3-dim). The learned dictionaries are visualized in Fig. 2. These dictionaries are interesting

3

(a) Grayscale (b) Chromaticity (ab) (c) Depth (d) Surface normal

Figure 2: K-SVD dictionaries learned for four different channels: grayscale and chromaticity (in
ab) for an RGB image (a,b), and depth and surface normal for a depth image (c,d). We use a fixed
dictionary size of 75 on 5x5 patches. The ab channel is visualized using a constant luminance of 50.
The 3-dimensional surface normal (xyz) is visualized in RGB (i.e. blue for frontal-parallel surfaces).

to look at and qualitatively distinctive: for example, the surface normal codewords tend to be more
smooth due to flat surfaces, the depth codewords are also more smooth but with speckles, and the
chromaticity codewords respect the opponent color pairs. The channels are coded separately.

3.2 Coding Multi-Scale Neighborhoods for Measuring Contrast

Multi-Scale Pooling over Oriented Half-Discs. Over decades of research on contour detection and
related topics, a number of fundamental observations have been made, repeatedly: (1) contrast is
the key to differentiate contour vs non-contour; (2) orientation is important for respecting contour
continuity; and (3) multi-scale is useful. We do not wish to throw out these principles. Instead, we
seek to adopt these principles for our case of high dimensional representations with sparse codes.

Each pixel is presented with sparse codes extracted from a small patch (5-by-5) around it. To aggre-
gate pixel information, we use oriented half-discs as used in gPb (see an illustration in Fig. 1). Each
orientation is processed separately. For each orientation, at each pixel p and scale s, we define two
half-discs (rectangles) Na and N b of size s-by-(2s+1), on both sides of p, rotated to that orienta-
tion. For each half-disc N , we use average pooling on non-zero entries (i.e. a hybrid of average and
max pooling) to generate its representation

F (N) =

[

∑

i∈N

|xi1|

/

∑

i∈N

I|xi1|>0, · · · ,
∑

i∈N

|xim|

/

∑

i∈N

I|xim|>0

]

(2)

where xij is the j-th entry of the sparse code xi, and I is the indicator function whether xij is non-
zero. We rotate the image (after sparse coding) and use integral images for fast computations (on
both |xij | and |xij | > 0, whose costs are independent of the size of N .

For two oriented half-dics Na and N b at a scale s, we compute a difference (gradient) vector D

D(Na
s , N

b
s) =

∣

∣F (Na
s)− F (N b

s)
∣

∣ (3)

where | · | is an element-wise absolute value operation. We divide D(Na
s , N

b
s) by their norms

‖F (Na
s)‖+ ‖F (N b

s)‖+ ǫ, where ǫ is a positive number. Since the magnitude of sparse codes varies
over a wide range due to local variations in illumination as well as occlusion, this step makes the
appearance features robust to such variations and increases their discriminative power, as commonly
done in both contour detection and object recognition. This value is not hard to set, and we find a
value of ǫ = 0.5 is better than, for instance, ǫ = 0.

At this stage, one could train a classifier on D for each scale to convert it to a scalar value of
contrast, which would resemble the chi-square distance function in gPb. Instead, we find that it is
much better to avoid doing so separately at each scale, but combining multi-scale features in a joint
representation, so as to allow interactions both between codewords and between scales. That is, our
final representation of the contrast at a pixel p is the concatenation of sparse codes pooled at all the

4

scales s ∈ {1, · · · , S} (we use S = 4):

Dp =
[

D(Na
1
, N b

1
), · · · , D(Na

S , N
b
S); F (Na

1
∪N b

1
), · · · , F (Na

S ∪N b
S)
]

(4)

In addition to difference D, we also include a union term F (Na
s ∪N b

s), which captures the appear-
ance of the whole disc (union of the two half discs) and is normalized by ‖F (Na

s)‖+ ‖F (N b
s)‖+ ǫ.

Double Power Transform and Linear Classifiers. The concatenated feature Dp (non-negative)
provides multi-scale contrast information for classifying whether p is a contour location for a partic-
ular orientation. As Dp is high dimensional (1200 and above in our experiments) and we need to do
it at every pixel and every orientation, we prefer using linear SVMs for both efficient testing as well
as training. Directly learning a linear function on Dp, however, does not work very well. Instead,
we apply a double power transformation to make the features more suitable for linear SVMs

Dp =
[

Dα1

p , Dα2

p

]

(5)

where 0<α1<α2<1. Empirically, we find that the double power transform works much better
than either no transform or a single power transform α, as sometimes done in other classification
contexts. Perronnin et. al. [19] provided an intuition why a power transform helps classification,
which “re-normalizes” the distribution of the features into a more Gaussian form. One plausible
intuition for a double power transform is that the optimal exponent α may be different across feature
dimensions. By putting two power transforms of Dp together, we allow the classifier to pick its
linear combination, different for each dimension, during the stage of supervised training.

From Local Contrast to Global Contours. We intentionally only change the local contrast es-
timation in gPb and keep the other steps fixed. These steps include: (1) the Savitzky-Goley filter
to smooth responses and find peak locations; (2) non-max suppression over orientations; and (3)
optionally, we apply the globalization step in gPb that computes a spectral gradient from the local
gradients and then linearly combines the spectral gradient with the local ones. A sigmoid transform
step is needed to convert the SVM outputs on Dp before computing spectral gradients.

4 Experiments

We use the evaluation framework of, and extensively compare to, the publicly available Global
Pb (gPb) system [2], widely used as the state of the art for contour detection1. All the results
reported on gPb are from running the gPb contour detection and evaluation codes (with default
parameters), and accuracies are verified against the published results in [2]. The gPb evaluation
includes a number of criteria, including precision-recall (P/R) curves from contour matching (Fig. 4),
F-measures computed from P/R (Table 1,2,3) with a fixed contour threshold (ODS) or per-image
thresholds (OIS), as well as average precisions (AP) from the P/R curves.

Benchmark Datasets. The main dataset we use is the BSDS500 benchmark [2], an extension of the
original BSDS300 benchmark and commonly used for contour evaluation. It includes 500 natural
images of roughly resolution 321x481, including 200 for training, 100 for validation, and 200 for
testing. We conduct both color and grayscale experiments (where we convert the BSDS500 images
to grayscale and retain the groundtruth). In addition, we also use the MSRC2 and PASCAL2008
segmentation datasets [26, 6], as done in the gPb work [2]. The MSRC2 dataset has 591 images of
resolution 200x300; we randomly choose half for training and half for testing. The PASCAL2008
dataset includes 1023 images in its training and validation sets, roughly of resolution 350x500. We
randomly choose half for training and half for testing.

For RGB-D contour detection, we use the NYU Depth dataset (v2) [27], which includes 1449 pairs
of color and depth frames of resolution 480x640, with groundtruth semantic regions. We choose
60% images for training and 40% for testing, as in its scene labeling setup. The Kinect images are
of lower quality than BSDS, and we resize the frames to 240x320 in our experiments.

Training Sparse Code Gradients. Given sparse codes from K-SVD and Orthogonal Matching Pur-
suit, we train the Sparse Code Gradients classifiers, one linear SVM per orientation, from sampled
locations. For positive data, we sample groundtruth contour locations and estimate the orientations
at these locations using groundtruth. For negative data, locations and orientations are random. We
subtract the mean from the patches in each data channel. For BSDS500, we typically have 1.5 to 2

1In this work we focus on contour detection and do not address how to derive segmentations from contours.

5

2 3 4 5 7 10 14
0.8

0.82

0.84

0.86

0.88

0.9

pooling disc size (pixel)

av
er

ag
e

pr
ec

is
io

n

single scale
accum. scale

25 50 75 100 125 150
0.82

0.84

0.86

0.88

0.9

0.92

0.94

dictionary size

av
er

ag
e

pr
ec

is
io

n

horizontal edge
45−deg edge
vertical edge
135−deg edge

1 2 3 4 5 6 7 8
0.84

0.86

0.88

0.9

0.92

sparsity level

av
er

ag
e

pr
ec

is
io

n

gray
color (ab)
gray+color

(a) (b) (c)

Figure 3: Analysis of our sparse code gradients, using average precision of classification on sampled
boundaries. (a) The effect of single-scale vs multi-scale pooling (accumulated from the smallest).
(b) Accuracy increasing with dictionary size, for four orientation channels. (c) The effect of the
sparsity level K, which exhibits different behavior for grayscale and chromaticity.

BSDS500
ODS OIS AP

lo
ca

l

gPb (gray) .67 .69 .68
SCG (gray) .69 .71 .71
gPb (color) .70 .72 .71
SCG (color) .72 .74 .75

g
lo

b
al

gPb (gray) .69 .71 .67
SCG (gray) .71 .73 .74
gPb (color) .71 .74 .72
SCG (color) .74 .76 .77

Table 1: F-measure evaluation on the BSDS500
benchmark [2], comparing to gPb on grayscale
and color images, both for local contour detec-
tion as well as for global detection (i.e. com-
bined with the spectral gradient analysis in [2]).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

gPb (gray) F=0.69
gPb (color) F=0.71
SCG (gray) F=0.71
SCG (color) F=0.74

Figure 4: Precision-recall curves of SCG vs
gPb on BSDS500, for grayscale and color
images. We make a substantial step beyond
the current state of the art toward reaching
human-level accuracy (green dot).

million data points. We use 4 spatial scales, at half-disc sizes 2, 4, 7, 25. For a dictionary size of 75
and 4 scales, the feature length for one data channel is 1200. For full RGB-D data, the dimension is
4800. For BSDS500, we train only using the 200 training images. We modify liblinear [7] to take
dense matrices (features are dense after pooling) and single-precision floats.

Looking under the Hood. We empirically analyze a number of settings in our Sparse Code Gradi-
ents. In particular, we want to understand how the choices in the local sparse coding affect contour
classification. Fig. 3 shows the effects of multi-scale pooling, dictionary size, and sparsity level
(K). The numbers reported are intermediate results, namely the mean of average precision of four
oriented gradient classifier (0, 45, 90, 135 degrees) on sampled locations (grayscale unless otherwise
noted, on validation). As a reference, the average precision of gPb on this task is 0.878.

For multi-scale pooling, the single best scale for the half-disc filter is about 4x8, consistent with
the settings in gPb. For accumulated scales (using all the scales from the smallest up to the current
level), the accuracy continues to increase and does not seem to be saturated, suggesting the use of
larger scales. The dictionary size has a minor impact, and there is a small (yet observable) benefit to
use dictionaries larger than 75, particularly for diagonal orientations (45- and 135-deg). The sparsity
level K is a more intriguing issue. In Fig. 3(c), we see that for grayscale only, K = 1 (normalized
nearest neighbor) does quite well; on the other hand, color needs a larger K, possibly because ab is
a nonlinear space. When combining grayscale and color, it seems that we want K to be at least 3. It
also varies with orientation: horizontal and vertical edges require a smaller K than diagonal edges.
(If using K = 1, our final F-measure on BSDS500 is 0.730.)

We also empirically evaluate the double power transform vs single power transform vs no transform.
With no transform, the average precision is 0.865. With a single power transform, the best choice of
the exponent is around 0.4, with average precision 0.884. A double power transform (with exponents

6

MSRC2
ODS OIS AP

gPb .37 .39 .22
SCG .43 .43 .33

PASCAL2008
ODS OIS AP

gPb .34 .38 .20
SCG .37 .41 .27

Table 2: F-measure evaluation comparing
our SCG approach to gPb on two addi-
tional image datasets with contour groundtruth:
MSRC2 [26] and PASCAL2008 [6].

RGB-D (NYU v2)
ODS OIS AP

gPb (color) .51 .52 .37
SCG (color) .55 .57 .46

gPb (depth) .44 .46 .28
SCG (depth) .53 .54 .45

gPb (RGB-D) .53 .54 .40
SCG (RGB-D) .62 .63 .54

Table 3: F-measure evaluation on RGB-D con-
tour detection using the NYU dataset (v2) [27].
We compare to gPb on using color image only,
depth only, as well as color+depth.

Figure 5: Examples from the BSDS500 dataset [2]. (Top) Image; (Middle) gPb output; (Bottom)
SCG output (this work). Our SCG operator learns to preserve fine details (e.g. windmills, faces, fish
fins) while at the same time achieving higher precision on large-scale contours (e.g. back of zebras).
(Contours are shown in double width for the sake of visualization.)

0.25 and 0.75, which can be computed through sqrt) improves the average precision to 0.900, which
translates to a large improvement in contour detection accuracy.

Image Benchmarking Results. In Table 1 and Fig. 4 we show the precision-recall of our Sparse
Code Gradients vs gPb on the BSDS500 benchmark. We conduct four sets of experiments, using
color or grayscale images, with or without the globalization component (for which we use exactly
the same setup as in gPb). Using Sparse Code Gradients leads to a significant improvement in
accuracy in all four cases. The local version of our SCG operator, i.e. only using local contrast, is
already better (F = 0.72) than gPb with globalization (F = 0.71). The full version, local SCG plus
spectral gradient (computed from local SCG), reaches an F-measure of 0.739, a large step forward
from gPb, as seen in the precision-recall curves in Fig. 4. On BSDS300, our F-measure is 0.715.

We observe that SCG seems to pick up fine-scale details much better than gPb, hence the much
higher recall rate, while maintaining higher precision over the entire range. This can be seen in the
examples shown in Fig. 5. While our scale range is similar to that of gPb, the multi-scale pooling
scheme allows the flexibility of learning the balance of scales separately for each code word, which
may help detecting the details. The supplemental material contains more comparison examples.

In Table 2 we show the benchmarking results for two additional datasets, MSRC2 and PAS-
CAL2008. Again we observe large improvements in accuracy, in spite of the somewhat different
natures of the scenes in these datasets. The improvement on MSRC2 is much larger, partly because
the images are smaller, hence the contours are smaller in scale and may be over-smoothed in gPb.

As for computational cost, using integral images, local SCG takes ∼100 seconds to compute on a
single-thread Intel Core i5-2500 CPU on a BSDS image. It is slower than but comparable to the
highly optimized multi-thread C++ implementation of gPb (∼60 seconds).

7

Figure 6: Examples of RGB-D contour detection on the NYU dataset (v2) [27]. The five panels
are: input image, input depth, image-only contours, depth-only contours, and color+depth contours.
Color is good picking up details such as photos on the wall, and depth is useful where color is
uniform (e.g. corner of a room, row 1) or illumination is poor (e.g. chair, row 2).

RGB-D Contour Detection. We use the second version of the NYU Depth Dataset [27], which
has higher quality groundtruth than the first version. A median filtering is applied to remove double
contours (boundaries from two adjacent regions) within 3 pixels. For RGB-D baseline, we use a
simple adaptation of gPb: the depth values are in meters and used directly as a grayscale image
in gPb gradient computation. We use a linear combination to put (soft) color and depth gradients
together in gPb before non-max suppression, with the weight set from validation.

Table 3 lists the precision-recall evaluations of SCG vs gPb for RGB-D contour detection. All
the SCG settings (such as scales and dictionary sizes) are kept the same as for BSDS. SCG again
outperforms gPb in all the cases. In particular, we are much better for depth-only contours, for
which gPb is not designed. Our approach learns the low-level representations of depth data fully
automatically and does not require any manual tweaking. We also achieve a much larger boost by
combining color and depth, demonstrating that color and depth channels contain complementary
information and are both critical for RGB-D contour detection. Qualitatively, it is easy to see that
RGB-D combines the strengths of color and depth and is a promising direction for contour and
segmentation tasks and indoor scene analysis in general [22]. Fig. 6 shows a few examples of RGB-
D contours from our SCG operator. There are plenty of such cases where color alone or depth alone
would fail to extract contours for meaningful parts of the scenes, and color+depth would succeed.

5 Discussions

In this work we successfully showed how to learn and code local representations to extract contours
in natural images. Our approach combined the proven concept of oriented gradients with powerful
representations that are automatically learned through sparse coding. Sparse Code Gradients (SCG)
performed significantly better than hand-designed features that were in use for a decade, and pushed
contour detection much closer to human-level accuracy as illustrated on the BSDS500 benchmark.

Comparing to hand-designed features (e.g. Global Pb [2]), we maintain the high dimensional rep-
resentation from pooling oriented neighborhoods and do not collapse them prematurely (such as
computing chi-square distance at each scale). This passes a richer set of information into learn-
ing contour classification, where a double power transform effectively codes the features for linear
SVMs. Comparing to previous learning approaches (e.g. discriminative dictionaries in [16]), our
uses of multi-scale pooling and oriented gradients lead to much higher classification accuracies.

Our work opens up future possibilities for learning contour detection and segmentation. As we il-
lustrated, there is a lot of information locally that is waiting to be extracted, and a learning approach
such as sparse coding provides a principled way to do so, where rich representations can be automat-
ically constructed and adapted. This is particularly important for novel sensor data such as RGB-D,
for which we have less understanding but increasingly more need.

8

References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries
for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation.
IEEE Trans. PAMI, 33(5):898–916, 2011.

[3] L. Bo, X. Ren, and D. Fox. Hierarchical Matching Pursuit for Image Classification: Architecture and Fast
Algorithms. In Advances in Neural Information Processing Systems 24, 2011.

[4] L. Bo, X. Ren, and D. Fox. Unsupervised Feature Learning for RGB-D Based Object Recognition. In
International Symposium on Experimental Robotics (ISER), 2012.

[5] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In CVPR, volume 2,
pages 1964–71, 2006.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object
Classes Challenge 2008 (VOC2008). http://www.pascal-network.org/challenges/VOC/voc2008/.

[7] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. Liblinear: A library for large linear classification. The
Journal of Machine Learning Research, 9:1871–1874, 2008.

[8] V. Ferrari, T. Tuytelaars, and L. V. Gool. Object detection by contour segment networks. In ECCV, pages
14–28, 2006.

[9] C. Gu, J. Lim, P. Arbeláez, and J. Malik. Recognition using regions. In CVPR, pages 1030–1037, 2009.

[10] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping: Using depth cameras for dense 3d
modeling of indoor environments. In International Symposium on Experimental Robotics (ISER), 2010.

[11] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural computation,
18(7):1527–1554, 2006.

[12] I. Kokkinos. Highly accurate boundary detection and grouping. In CVPR, pages 2520–2527, 2010.

[13] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view RGB-D object dataset. In ICRA,
pages 1817–1824, 2011.

[14] H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional deep belief networks for scalable unsuper-
vised learning of hierarchical representations. In ICML, pages 609–616, 2009.

[15] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local
image analysis. In CVPR, pages 1–8, 2008.

[16] J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce. Discriminative sparse image models for
class-specific edge detection and image interpretation. ECCV, pages 43–56, 2008.

[17] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using brightness and
texture. In Advances in Neural Information Processing Systems 15, 2002.

[18] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal Matching Pursuit: Recursive Function Approx-
imation with Applications to Wavelet Decomposition. In The Twenty-Seventh Asilomar Conference on
Signals, Systems and Computers, pages 40–44, 1993.

[19] F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification.
In ECCV, pages 143–156, 2010.

[20] M. Prasad, A. Zisserman, A. Fitzgibbon, M. Kumar, and P. Torr. Learning class-specific edges for object
detection and segmentation. Computer Vision, Graphics and Image Processing, pages 94–105, 2006.

[21] X. Ren. Multi-scale improves boundary detection in natural images. In ECCV, pages 533–545, 2008.

[22] X. Ren, L. Bo, and D. Fox. RGB-(D) scene labeling: features and algorithms. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2759–2766. IEEE, 2012.

[23] X. Ren, C. Fowlkes, and J. Malik. Cue integration in figure/ground labeling. In Advances in Neural
Information Processing Systems 18, 2005.

[24] R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient Implementation of the K-SVD Algorithm using
Batch Orthogonal Matching Pursuit. Technical report, CS Technion, 2008.

[25] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-
time human pose recognition in parts from single depth images. In CVPR, volume 2, page 3, 2011.

[26] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context
modeling for multi-class object recognition and segmentation. In ECCV, 2006.

[27] N. Silberman and R. Fergus. Indoor scene segmentation using a structured light sensor. In IEEE Workshop
on 3D Representation and Recognition (3dRR), 2011.

[28] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse representation.
IEEE Trans. PAMI, 31(2):210–227, 2009.

[29] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image
classification. In CVPR, pages 1794–1801, 2009.

[30] K. Yu, Y. Lin, and J. Lafferty. Learning image representations from the pixel level via hierarchical sparse
coding. In CVPR, pages 1713–1720, 2011.

[31] Q. Zhu, G. Song, and J. Shi. Untangling cycles for contour grouping. In ICCV, 2007.

9

