UNCLASSIFIED

When Gevernment or other drawings, specificatons or cto used cor any purpose other than in connection with wohtcd Government procurement operation, the U.S. thereby incurs no respomeibility, nor any obideation and the fact that the Government may have formulated, wh in way suphlied the said drawings, specifications ta is not to be regarded by implication or otherwise as mou heensing the holder or any other person or corporameytrg any rights permission to manufacture, use gr craed muention thet may in any way ie related theretat

THIS R18PORT COMCERETS . . .

a clasalfication procedure and its accuracy.
IT IS FOR THE USE
statisticinas and personnel responsible for developing classification procedures.

THE APPLICATIOM FOR THE AR FORCE B

a possible optimum classification procedure wherein the probabilities of possible misclassifications are known uader certain conditions.

 erformance.

Eveiyn Fin, and J.l., Hodges, Jr., Universiry mi Californin, Berkelay.
Opp \& iii. $\quad 11$ illua. $2 \% \mathrm{~cm}$. UNCL.ASSIFIED
A chasification procedur: is worked out for the following situation:
Too asferanples, oree tron each obe wo popala as belongin to the lisue
arulation it the mnjority ol a specified odd nuniber of lodividuals closes
o the individual in question belong to the first population. Thit metiod

 hare seen computed and cimpared wlih thise of the dincilainant function
 Augsat 1952 UMAP Selorel of Avintioe Medkiae, Project N(1, 21-49-004, Repor No. 11.

Evelya Fix, and J.L. Hodges, Jro, Uaíveralig; of Callfornia, Berkeloy.
UNCLASSIFIRD
A clacsification procedan Ie worknd out for ths following alcuation: Two lurge aniplom, oae from a ash of rwo popalatisma, bave began obeotred, Am
 o the individual La guention balos sto the firat population, Thle metiod

- trib the wame covalisece matik, the probablitiles of poeilble miaclapification swe leon comproced sed compered with thome of the difertmianar fuaction

2. Eslection and clasalitersion.
il. Hodsee, J.L., Jr.
3. Madematical sentiatics. 1. Fis, Evelya.

DISCRIMINATORY ANALYSIS
Nonparametric Discrimination: Small Sampía Forformance

EVELYN FIX, Ph.D.
J.L. HODGES, Jr., Ph.D.
U.iversity of Calffomia, Berkeley

Contract Ne. AF 41(129)-31

PROJECT NUMBER 21-49-004

REPORT MUMBER 11

DISCRIMIMATORY ANALYSIS
 Nonporamafric Discriminction: Smali Sample Performance

1. Introduction

In an earlior paper [1] concerned with the problem or nonparametric discrimination, the present authors proposed several classes of nonparametric diserimination procejures and proved that these procedures have asycytotic optimum properties for large samples. The ligas and rosults of [1] are briofly mumarized in section 2 for the convenience of the reader.

The present paper is concerned with the norformance or some of these procedires where tice samples are small. While tine large sample optimum properties given in [1] are generai, the investigation of amall sample properties is nocessarily special since arall sampls performance doponds greatly upon a number of rariables connected with the underlying distributions assumed. We have examined in detail certain special cases which seemed of interest and have tried to give same indiestion of the performanes in others. Tho seope it tho fresent study is given in section 3. The results obtained are presented in tine remaining sections.


```
sistency Prererties," was publisned as Report Nc. 4 of this
:roject, Pe!r:igry lifl.
```


2. A cifar of nonparamotrio diecrininatore and thale large

nampio jivopojtios

In the present soction we sumearise some of the ideas and resulta of $[1]$. Lot $x_{1}, x_{2}, \cdots, x_{m}$ be ampie from the p-rapiate distribution F and lot $Y_{1}, \mathbf{Y}_{2}, \cdots, Y_{n}$ be a sample from the p-variate distribution G. Wo do not suppose that F and G are luons, nor over that their parametric form $1 . s$ known. Let Z be an observation known to be either from F or from G; our problan is to decide which. To this end, define in the p-dimensional space a notion or "distance," in terms of wich the $m+i s$ obsorvations in tine comilinod samples can be ranked eccording to their "noamess" to z. The general idea of the discrimination proccaures of [1] is that Z should bo assigned to F if most of tho nearby observations are X's; othervise Z should be assigned to G. To simplify mattors, suppose the sample sizes are equal $i n=n$), and select an odd integer k. A specific prucedure of the general clasa is obtained by asaigning z to that distribution from wiaich cam the majority of the k nearest observation.

In [1], it was shown that several classes of these nonparametric discriainators have asymptotically optimum performance as n and n tend to infinity, in the sense that the prodabilitios of misciagaificaiion,

$$
\begin{aligned}
& P_{1}=P\{Z \text { is assignod to } G \mid Z \text { came from } F\}, \\
& P_{2}=P\{Z \text { is assigned to } F \mid Z \text { came from } G\},
\end{aligned}
$$

tond, as m and n tend to infinity, to the theoretical minimum ralues whioh they sculd have aran if F end G were completely lnown. The results do not require any restrictive sssumptions on the form of F and G, or on the derinition of neamess which is used.

3. Scope of the present study

The optimum large sampla property mentioned above, together with the applicational simplicity of the procedmres, suggests that nomparametric discriminators may be usaful alternatives to the commonly emplojed linear discriminant fuiction. The latter is a reasonable procedure if (i) F and G are p-variate nomal distriboty-x =nd (11) F and G have the sams covariance matrix. Many usars and also potential usors of the isinsar discriminant function iave been disturbed by the apparent and often considerable fallure to satisfy conditions (i) andor (ii) in cases where the procedure has besn applied. In the absence of lmowledge of the performance of the linear discriminant function under other conditions than (i) and/or (ii), such uneasiness leads to an incerest in methods whose theoretical justification is free

It would not be reasonable, however, to propose an alternative to the linear iescriminant function solely on the basis of asymptotic propertios. In particulars it is nocessary to ask how much discriminating pownp is lost through the use of a nonparamerrie procedure when samples are small

PROIECT NUSDER Z1-it-Tin BUPORT NUMBER 11 and when assumptions (1) and (11) are valid so that the Ifnear diseriminant function is appropriałe. Tho anerer to this question refirises a comparisos of the probatilitios of error, P_{1} and F_{2}, which result when the linear discriminant function is used with the corresponding probabilities
P_{1} and P_{2} obtained when some alternative discriminating procedure is used.

The number of parameters on wich these probabilities of
 p of the observation apace (that is, the number of measurements made on wach individual), (ii) the $\frac{p(p+1)}{2}$ parameters of the common covariance matrix, (1ii) the Zf coordinates of the two vector expectations and, finally: (iv) the specifienifor of the distance function used in the nonparamotric procedures to order the samine observations according to their nearness to Z.

We may note that tine distance function does not need to be a metric although any metric will sorve. All that is required is that, of two points u and v, the distance function spucify which is closer to a point 2 . Goonetrically, this amoints to ostablising for each point $=$ a system os loci, each lceus eonsisting of those points at the same diatance from zo for example, in fe uss fuclidean distance, the loci are just the swrfaces of p-dimonsional hyperspheres centered gt z. As second example, consider the afatance dofined by

$$
\Delta(x, s)=\underset{i=1}{p}\left|x_{1}-x_{1}\right|
$$

Fert the locus of points at a giten diatance iron z consists of the surface of hyperoube, oenteres at z , with faoe: parallel to the coordinate mperpianes. The distance $\Delta(x, z)$ has the advantage of being easily computsd. It 1s, incidentally, a motric.

We now observe that the problem can be aubetantially
 vation space. First, it is always possitio by such a transformation to insure that F and G will have the identity covariance matrix; that 18 , that the p transformed measurements are independent in each popuiailon, and that each measurament has unit variance. Second, we can put the expartation vector of F at the origin and the expectation rector of G on the positive first axis. Thus, only two parameters are required to specify the transformed populations, namely, p and λ whore

$$
\begin{aligned}
\lambda= & E(\text { first coordinate of } Y) \\
= & \text { distance between the means of the frans } \\
& \text { formed populations. }
\end{aligned}
$$

It is Fell luown that P_{1} and P_{2} for the linear discriminant function are unchangod by this transformation. Thus, in so far as the ifnear discriminant function is concerned, there is no loss of generality.

That about the nomparamotric procedurelif assoolated with each s and sach ciftano from s, thore was loous of polnts fir the exiginel space. Fe may oonsider the traneformed 2001, in the net space, as providing a transformed diatanoe funce tion. Since the totality of possibls sistance functione in the original apace is mapped one-one into the totality in the nat space, our transformation loses no generelity for the nonparametric procedure oither. Therofore, it is sufficiont to consider the transformed populations with the two parameters, p and λ.

It is clear that the totality of poxaible diatance furctions forms a rory large class; in fact, it is not eren a parametric class. It is also easy to soe that the values of P_{1} and P_{2} will dupend vory hoselly upon the distanco fime tion used. For example, if we use

$$
\delta(x, z)=\mid x_{2}-z_{2}!
$$

as distance (remembering that in the transformed ropulations the expectation vector of F is at the origin and the expec-
 would have no discriminating power at all and $P_{1}=P_{2}=1 / 2$. At the other extreme,

$$
\delta^{\prime}(x, z)=\left|x_{1} \cdot z_{1}\right|
$$

would give cuite good aiscrimingjian, oven with sumil samige (see section 4). In using the nonparemetric discrininatora
proposed hore, the judgment of the atacistician as to the relative importance of tha various measurements is of great consequence. In a sense, the linear discriminant fucceion wakes great domands on the pcpulations being discriminated but asks of the statisifician only a routine (though lengthy) computation-Thile the nomparametric discriminators which ask Iittile or nothing of the populations demand considerable judzment on the part of the stetistician. of course, this is nct a clear cut distinction since, for instance, with the linear discrimination function, juй or not assumptions (i) and (ii) are sufficiently true in the case under consideration to permit its use.

Wo are now able to defing the scope of the prescnt stury. Throughout the entire fiaper we assume that the sizgs of the samples tairen from oaci popuiation are oqual, $x=n$. Yost of the computatione heve been made using Δ (cerined in section 3) as distance functicz, 2lso a great part of the work hes dealt with the case where Z is assigned to ting population from whick care the individual of the pooled samples wo nost
 when Δ is used as distance function, ars given in sections 4 and 5 for $p=1$ and $2 ; \lambda=1,2,3 ; n=1,2,3,4,5$, $10,20,50$ and $\infty ; k=1$. In sectiou 6, values of $k>1$ have been considered. Section 7 has a discussion of the efPect of distance Punction alternative to Δ. A briar investigation for $p>3$ i:i reporied in section 8 .

Onforiunatoly, we are unable te say how the values of $P_{1}=P_{2}$ obtained Lore compare with thoso of the linear discriminant functinn, sifien tho latter is not jet tabled. a
 idio porformanes characteristic of the linear discriminant function woud require a large computational prograil. The re= suit would be of great value and interest but was beyond our means at this time. We kave given the rosults in the univarlate case (section 4) where it is easily cbtatned.

4. Mnivariato caso

When $n=1$, the obvious and natural distance function is ordinary Euclicoan iistance which in this case coincices - ith Δ. The linger diseriminant function is also areatly

$$
\frac{\overline{\mathrm{x}}+\overline{\mathrm{I}}}{2},
$$

and ogetys z to that population whose samion iman lies on the side of $(\bar{X}+\bar{Y}) / Z$ as does Z itgeli. $\overline{\mathrm{I}}$ 地: case the probebliftier or errer of the linear discriminant finctica are easily ccmputec. and this wo ncw procood to do.

Fror the eymimetry of the problem it is clear that $P_{1}=$ P_{2}. so it suffices to compute P_{1}, that is, we assume that 2 is distributed accoraing to P. Ae ghow in section 3 ,
 $v_{X}^{2}=\sigma_{Y}^{2}=1$. Introduce ine new variables

$$
\bar{v}=\bar{Y}-\bar{X}_{X}, \quad \nabla=\bar{X}+\bar{Y}-2 z
$$

Where $\bar{u} \bar{i}=\sum_{i=1}^{n} X_{1}, n \bar{Y}=\sum_{i=\bar{i}}^{n} Y_{i}$ ．Since，as is well know， $\bar{Y}-\bar{X}$ and $\overline{\mathrm{r}}+\overline{\mathrm{Y}}$ are independent，wo see that $\overline{0}$ and y are independent normal random variables：with

$$
E(0)=\lambda, \quad \sigma_{0}^{2}=2 / n, \quad E(V)=\lambda, \quad \sigma_{V}^{2}=4 i 2 / n
$$

Furthermore，an error is committed by the linear discriminant function if and only if

$$
\text { (i) } z>\frac{\bar{X}+\bar{Y}}{2} \quad \text { and } \quad \bar{Y}>\bar{X}
$$

or

$$
\text { (il) } \quad Z<\frac{\bar{X}+\bar{Y}}{2} \text { anu } Y<\bar{X} \text {. }
$$

Thu，an error occurs if and only if UV＜O．Thersfcio，it follows that for the linear discriminant function，when $p=1$ ，
 ジもジロ

$$
\phi(x)=\int_{-\infty}^{x} \frac{2}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u .
$$

The limiting value for $n=\infty$ is $(1-\lambda / 2)$ since with init－ nite samples the population means become surely known and P_{1} is just the probability that z exceeds $\lambda / 2$ ．Treble I gives the values of $P_{1}=P_{2}$ for various values of a and λ ．The

PROJER T NUMBER ail－49－004，REPORT HOMSER II
results are piotwred graphically in figures 1 ard $\mathbf{2}_{\text {。 }}$
Ist us now oon tder nomparametrio disoriminators．The nisplest of these proctiursa is tinc one corresponaing to $\mathrm{k}=$＝ wish oonsista in asigning iz to that population from which
 est neighbor＂hat coneiderable elementary intuitive appeal and

Table I
Proheilility of orror，liroar discriminant function， univariate normai distributions

7	$\lambda=2$	$\lambda=2$	$\lambda=3$
1	． 4175	． 2520	： 2335
\therefore	－30゙2i	． 2959	．0910
3	． 36 ii	．1619	．0゙ビヒ
4	－ 3472	． 1744	． 0787
5	． 3376	．1．？	． 0763
10	． 3175	． 1645	． 0716
20	． 3110	． 1616	．0692
50	． 30014	． 2500	． 0668
∞	． 3085	． 1587	． 0668

$n=$ size of sample taken from each popuiation
$\lambda=$ distance between the mesins of the two populations Probabillty of orror $=P\{Z$ is asseczed to $G \mid z$ came from $F\}$
$=P\{Z$ is ansigned to $\mathrm{F} \mid \mathrm{Z}$ came irma G$\}$
（seo formula 4．1）
prodabiy corresponds to yrictice in many situetions. For oxampiog it is possible that mot matiesi diantols fe influe
 of an earlior pationt whose symptoms resembie in sume way

Prodability of orror \bar{F}_{i} ui the innear discriminant funatior fur two univariate nomal distributioiss rith distance betwoen soans $=\lambda . \quad r=s i z e$ of sample from each population.

chose of the curnont patient. At any rete it seemed advisable to begin computations with the simplest procedure, that iss to begin with the computation of the probability P_{2} that the nearest neighbor to Z is one of the Y is, given that Z jas che distribution of an X.

Figure 2

Probability of error P_{1} of the linear aizcrininant function for two univariate formal figiributions wifi distance between the means $=\lambda$. plotted as a function of $\lambda, n=a i z e$ of sample from each population:

PROJECTNOMEtR II -4-CO4, REPONT NUMAER:
Our toobnique for performing this oomputation is as follows. Suppose it 1 is given that $2=5$, and let $p_{1}(x)$ denote
 enervation to Z is a given the $Z=3$. Then
(14.2)

$$
P_{1}=E\left[P_{1}(z)\right]=\int_{-\infty}^{\infty} \frac{\frac{1}{\sqrt{2 \pi}}}{} e^{-\frac{2}{2} z^{2}} P_{1}(z) d z .
$$

The calculation of $P_{2}(z)$ is quite straight formant. Let

$$
\begin{align*}
& H_{z}(\delta)=P i \mid X-z i<\hat{\lambda} ; \tag{4.3}\\
& =P\{z-\delta<x<z+\delta\}
\end{align*}
$$

wine
(14)

$$
\begin{aligned}
K_{z}(\delta) & =P\{|Y-z|<\delta\} \\
& =F(z-\lambda-\delta<Y-\lambda<z-\lambda+\delta) \\
& =d(z-\lambda+\delta)-\phi(z=\lambda-S) .
\end{aligned}
$$

The event, "the nearest sample value to z is a $Y^{\prime \prime}$ may be classified into the n exclusive events, tithe nearest sample value to z is $\bar{x}_{1}{ }^{n}, 1=1,2, \cdots, n$. By symmetry these n events ares equiprobuilo. The overt, "tho nearest sample
 slatance from $=$ to Y_{1}. Thus,

(4.5) $P_{2}(z)=n \int_{0}^{\infty}\left[1-H_{z}(\delta)\right]^{n}\left[1-A_{2}(\delta)\right]^{n-1} d K_{\underline{g}}(\delta)$.

Promise (4.2) and (4.5) are the basis of ail our compo-
 value of p. If $p=i, F_{2}(\delta)$ and $K_{2}(\delta)$ are net, of
 definition is analogous if one replaces $P\{|X-2|<\delta\}$ by Pities instance of x from $z<\delta j$ in (4.3) and similenis $P\{|Y-z|<\delta!$ by F (the distance of Y from $z<\delta\}$ in (4.4). The specific evaluation depend - timon upon the distance function used.

Aside from the case $p=1, n=1$, thick is given $6 A_{-}$ plastic ty ferula (4,1) with $x=1$, the belt of the ante... taction was carried out by straightermage numerical juts oration. For $p=1$,

$$
\mathrm{dK}_{z}(\delta)=\frac{1}{\sqrt{2 \pi}}\left[0-\frac{-\frac{(z-\bar{\lambda}+\hat{\delta})^{2}}{2}+-\frac{(z-\bar{i}-\bar{\delta})^{2}}{2}}{0} \mathrm{~d} \delta .\right.
$$

 tables [2] and [3]. In the calcination of $P_{1}(2)$ the in eness of the mesh and the quadrature mile used deporded to
 had been obtained, a fin -i visudrature (4.2) was ofiectad to
 computed in this way.

PROIECT NI'MBER 21-4; $-\infty$, REPORT NLMZES 11
The computations that led to the values recorded in table II are quite hoary. This is especially true in the bivariate case, $p=2$, With Which mo began computations. Therefore a search for a simple and sufficiently accurate approximate zietnod was instituted. of tine numerous approximate formulae tried, the following was the most successful, Let δ denote the distance Ir om z at which the nearest sample value lies. The conditional value of $P_{i}(z)$, given δ, may be seen to be

$$
\begin{equation*}
\frac{\frac{\mathrm{dK}_{z}(\delta)}{1-\mathrm{K}_{2}(\delta)}}{\frac{\mathrm{dR}_{2}(\delta)}{1-\mathrm{K}_{2}\left(\frac{\delta,}{1}\right)}+\frac{\mathrm{dH}_{2}(\delta)}{1-\mathrm{H}_{2}(\delta)}}=q(z, \delta) . \tag{4,6}
\end{equation*}
$$

It is notable that $a(2, \hat{\delta})$ is independent of n. The idea of tine approximation is that $P_{2}(2)$ may be replaced by its conditional value, $q\left(z, \delta^{*}\right)$ where δ^{*} is in some reason= able sense an average value of δ. In order that $q(z, \delta$) be an adequate replacement for $F_{1}(z)$, it is clear that δ^{*}
 of δ^{*} milch served best was arrived at by troating the I observations from each population as pooled sample of size $2 n$. An average value of δ was thought to be one Which would make the proiogility that at least one of the combined sample values would fall within the prescribed δ distance of z equal to the probability that a sample value would fall outside isis prescribed distance. The value of

PROJECT NUMBER $21-\infty 9-004$, REPORT NUMBER $1:$
$\delta^{\frac{n}{\#}}$ for a givoil n way ion chosen to astiafy the foliosing equation:

It was found easier to solve the stove equation far the rufus of n, gay is, corresponding to a given value oi δ, Then, if $q(\bar{a}, \delta)$ is regarded as a function of n^{*}, the value of q (\because; © : corresponding to a given n can be round by interporation, using aitken's method. Table jJ asexiended to larger Values of n in this way and the results are show in table T:-A. Figure 3 is based on the combined data of tables il and Zi-4.
 specifically for the bivariate case and it appears to be e votive approximation for small n under these conditions thar in tho unipariate case. Time permitted us to mate only a limited search for an approximation which would be more satisfactory for the univariato normal distributions. It may be oi some interest to give the first terms of the expansion or (4.5). We are tnfooted to Mr. T. A. Jeeves of this Laboratory for bringing tints expansion to our attention. In this connection, see [4] and [5].

Table II
Probebilitiy of errur, nonparametric diseriminator with $k=1$, univariate nopmal distribution

n	$\lambda=1$	$\lambda=2$	$\lambda=3$
1	.4175	.2532	.1235
2	.4086	.2364	.1084
3	.4052	.2307	.1036
4	.4032	.2280	.1014

Table II-A
Approximate probability of error, nonparametric discriminator

witin $k=I_{i}$ univariato normal distribution			
n	$\lambda=1$	$\lambda=2$	$\lambda=3$
4	.403	.226	.102
5	.401	.225	.100
10	.399	.223	.098
50	.398	.224	.098
∞	.398	.225	.098
	.398	.225	.098

$n=s i z=$ of sample from each population
$\lambda=$ distance between the means of the two populations
$\underline{v}=$ odd integer such that Z is assigned to that population from which came the majority of the k nearsat observetions-$k=1$ is the "rule of nearest neighbor."

Probability of error $=P\{Z$ is assigned to GiZ came from P\}

$$
=P\{Z \text { is assizned to } G\{Z \text { came from } G\}
$$

(see rommlae 4.2-4.5)
Distance function $=\Delta(x, z)=|x-z|$

$$
P_{1}(z)=\frac{d K_{2}(0)}{d H_{2}(0)+d K_{2}(0)}
$$

$$
-\frac{1}{\mathrm{n}} \frac{\mathrm{dH}_{2}(0) \mathrm{dK}_{2}(0)\left[\mathrm{dH}_{2}(0)-\mathrm{dK}_{2}(0)\right]}{\left[\mathrm{dH}_{2}(0)+\mathrm{dK}_{2}(0)\right]^{2}}
$$

$$
+\frac{1}{n^{2}\left[d H_{2}(0)+d K_{2}(0)\right]^{3}}\left\{\frac{d^{3} X_{2}(0) d H_{z}(0)-d R_{z}(0) d^{3} H_{2}(0)}{d B_{z}(0)+d K_{z}(0)}\right.
$$

$$
+\frac{\left.\mathrm{dH}_{z}(0) \mathrm{dK}_{2}(0)\left[\mathrm{dH}_{2}(0)-\mathrm{dK}_{z}(0)\right]\left[\left(\mathrm{dH}_{z}(0)\right)^{2}-4 \mathrm{dH}_{z}(0) \mathrm{dK}_{z}(0)+\left(\mathrm{dK}_{2}(0)\right)^{2}\right)\right]}{\left[\mathrm{dH}_{2}(0)+\mathrm{dK}_{2}(0)\right]^{2}}
$$

$$
+O\left(n^{-3}\right)
$$

The limiting value for $n \rightarrow \infty$ may be approached in another way. Then n is large, δ will be small, so that in the limit, $p_{1}(z) \quad$ Will simply be $q(z, 0)=\frac{d X_{z}(0)}{d X_{z}(0)+d H_{z}(0)}=\frac{g(z)}{f(z!+g(z)}$, wien f and g are the density functions corresporising to F and G, respectively. This argument is quite general; for large n,

$$
P_{1} \cong E\left[\frac{g(z)}{E(\bar{z}+f(z)}\right]=\int_{-\infty}^{\infty} \frac{f(z) g(z)}{f(z)+g(z)} d z .
$$

A simple application of scizartz's inequality shows the latter integral to be at inst $1 / 2$. We can than assert that,

Project number :1-49-004, neport number il
whatever be the populationa being disoriminated, the wrie
 -qual probabilities of orror at most $1 / 2$. While this remarle is of no practical interest, it is theoretically interesting because the "optimum" maxinum likelshoci rine, masign Z to that population with the larger density at z, possesses no such nontrivial general bound on the individual probebilities of error.

The easiest and most vivid metinod of comparing the figures of tables I, II and II-A is grapaically. Therefore, in figure 4, the probabilities of misclassification for paired values of λ are plotted against n while figure 5 shows the same values plotted ths time against λ for selected relues of n. It seems neodless to discuss the RPanhs at ingrth since in ary practicel cose the experimentor must meke up his minu whetiner or not the simplicity of oporation given by the ronparametile disuriminator makes up for the loss of efficiency. In the univariate case the question scems somewhat pointless since the linear discriminant function is easy to compute ard also it is little woric to derive its performence characteristic. The univariate investigation was undertaken for the sake of completeness of presentation and because it proVides a simple case on Fhich tc illustrate the use on nonparametric discriminators.

Next to the "rile of nearest neizthor," the simplest nonparametric discriminator is obtained by setting $k=3$ and using the "ruio of two out of thres," that is, assign
 Z 'io that population from which came the majority of the nēarest three observations in the poolod sampies. For finite n, the problam of miscinssification reduces to the following.

Comperison of the probability of error P_{1} as a function of a for the innear discriminant function and the nonparstetric diseriminator, distance function $=\Delta, k=1$, for two normal univariate popuiations with distance betweon meens $=\lambda . \quad n=$ size of sample from each population.

PROTECT NUMBER 21-4S-004. REPORT NUMBER 11
Jot X_{1}, X_{2}, X_{3} denote the values obtained firm F and Y_{1}, Y_{2}, \dddot{X}_{3} the value a from $G_{\text {. }}$ Fino tine conditional probability that two of the three values nearest to Z will be wis given that Z belongs to F and $Z=2$ is

Figure 5

Comparison of the probability of error \boldsymbol{P}_{1} as a function of
 nevi function ard tine nonparametric discriminator, distance function $=\Delta, k=1$, for two normal univariate populations $n=\therefore \dot{n}=\therefore$ sample from each population. $n=1$ is identical for seth. --- Indicates the nonparametric procedure.

$$
\begin{aligned}
& X_{3} \text { is farther from } z \text { than } X_{2} \text { \} } \\
& \text { ri } \mathrm{i} 8 \mathrm{P} \mathrm{Y}_{1}, Y_{2}, X_{1} \text { art nearer } \mathrm{E} \text { than } X_{2} \text { while } X_{3} \\
& \text { and } Y_{3} \text { are farther from } 2 \text { than } X_{2} \text {) } \\
& =6 \int_{0}^{\infty} \mathrm{E}_{2}^{3}(\delta) \mathrm{H}_{2}(\delta)\left[1-\mathrm{H}_{2}(\delta)\right] d H_{2}(\delta) \\
& \left.+20 \int_{0}^{\infty} K_{2}^{2}(\delta) H_{2} i \delta\right)\left[1-H_{2}(\delta)\right]\left[1-K_{z}(\delta)\right] \mathrm{CH}_{2}(\delta) . \\
& \text { That, as jertaze, }
\end{aligned}
$$

$$
p^{(j)}=E\left[F_{i}^{i j j}(2 j\}\right.
$$

as $n \rightarrow \infty, F_{i}^{(3)}$ may be shown (the argument is similar to the ont used when $n \rightarrow(\alpha, k=1)$ tc approach

$$
s_{1}-\int_{-\infty}^{\infty} \frac{[g(z)]^{3}+3[s(z)]^{2} f(z)}{[f(z)+g(z)]^{?}} f(z) \geq z
$$

It is noteworthy that cs $r \rightarrow \infty$, the value of $F_{I}^{(3)}$ for fixed pelues of s , however small, are independent of the dimensionality p of the sample space.
prom tais formula, the middle colum of tabla III was computed. Corresponding results from tables I and II-A are repeated for comparison. As shown in $[1]$, as $n \rightarrow \infty$ end

Project number 21-49-vu4. rlaukínumóén ii
$1 \rightarrow \infty$ (more slowly, however, than n), the innear discriminant function and the nomperametric discriminators have a comon limiting bohzivior, ahown in line timeo of table IIT. Thus, for $\lambda=2, p=1$, gnū iarge n, tine "ruie oí two oui of threen has a 19.2 per cent chance of misclasification as against 15.9 per =ent for the optimum. Figure 6 illustratea these results graphicaliy.
Tãle IM

λ	$k=1$	$\mathbf{k}=3$	$\underline{k}=\infty$
\bigcirc	. 500	. 500	. 500
?	. 398	. 368	2n9
2	. 225	= 10\%	. 159
j	.098	. 080	. 067
4	.034	.027	. 023
5	. 009	.007	. 005
a = उमiz of ampio from sach population $=$ distance betweon the means of the tranafomed populations			
	ion fro neares	2 is λ cam vatioria	to that ajcrity

Probebility of error $=P\{2$ is assigned tó $G \mid z$ carte isom $F\}$ $=P\{Z$ is assigned to piz came from G\}.

The probability of error for n large is ludependent of \bar{p}.
5. Elvariate nuime? Aletribution

For p 2, we have employod mothoda analogous to thoss described in saction l., to obtain the probabilition of error for the nonparametric diseriminators with $k=1 ; \lambda=1,2,3 ;$

Liristing prodabilities of error P_{1} as n, the size of sample from each population, $\rightarrow \infty$, for tro p-variate rormai distrivuivons. sistance function $=\boldsymbol{A}, \mathrm{k}=$ number of nasest individuais on wich the nonoarametric procedure is based.

PROJECT NUMBER 21-99-004, REPORT NUMEER 11
and $n=1,2,3,4,5,10,20,50, \infty$. The resulte are siummarized in table IV. All finite valuss of $n>4$ dere obtainod by the approximate method discussed in the last saction, a comperison of the yaluse obtained by numeilical intogration With those given iy the approximation are shom in table iv-a. To enable the reader to get a clearer picture of the change in probabilities of misclassification with a change in λ, figure 7 ehows the values of tabio IV plotted against λ. Unfortunately we do not have available the comparabls figures for the linear discriminant function. However, as a measure of the efficiency of the nonparamotric discriminators we have included the optimum limiting behavior to which both the nonparametric discriminator and the iinear discriminant function tend.
6. $x \equiv 3$ for the univariats and bivariato nornal distributioms
A. k is increasod the computations become much more laborious, so much so that the actual numerical integrations were carried out in oniy a very fow instances for the "two out of thres mile." The following methen may, however, be usec to estimate the effect of $i x \geqq 3$. Let us consider an alternative discriminator which we shall denota as ($x ; n$; ki). Suppose $k=r i$ and $n=r n '$. Partition the $2 n$ sample values at random into r sets of zn ' each and for each set observe the population-or-ntigin of the majcrity of the kl obsorvations nearest to Z. Assign Z to that population whose elements are in the majority for a majority of the r sets. It is ousy to show that this discriminator will dotermine the

Tabio IV
Protebilitios of error, nonparemetric discriminatore; $x=1$, bivariato neraal distribution

n	$\lambda=2$	$\lambda=2$	$\lambda=?$
3	. 435	. 292	. 157
2	-170	. 269	.135
3	$=123$. 259	. 125
4	-120	. 252	. 120
${ }^{5}$. 417	$=250$.11?
10	.411	. 240	.109
20	-400	- 230	.104
50	-408	-230	-100
∞	. 398	.225	. 398

Table IV-A
Comparison of the values obtained by numericel integretion

n = size of sample from each population
$\dot{\eta}=$ dietgnes betmeen the means of the transfonued populationa Probetility of error $=P\{Z$ is assignod to pla cente iron Gj $=F\{Z$ is assigreci to $G \mid z$ cans from $\bar{F}\}$
$k=o d d$ intecer such trat Z is assigned to that popirietion from rinich came the mbiority of tho k nearest obserFetions $\quad \underline{y}=1$ is "nearest nelenbor rule."

Distance functicn $=\Delta=\max \left\{\left|x_{1}-z_{1}\right|,\left|x_{2}-z_{2}\right|\right\}$

eralgment of Z an the bagis of sbservations isse olose te 2. than wouid be the oase if re oriployed the ordinery dise oriminetor neing the is olcsost of the ontire aumple oin. Hence it is :intuitive that the probabilities of error of ($\mathrm{r}, \mathrm{n}^{\prime}, \mathrm{k}^{\prime}$) Fill exceed those of the isual rule (n, k). We do not know a proof of this, however.

The computation of P_{1} for $\left(x, n^{\prime}, k^{\prime}\right)$ onee P_{1} has been obtained for (n ', k!) is relatively egsy. For fixed z, the r seta can be regaruiau as r indopendont triala each with constant probability $P_{1}(z)$ for ($n^{\prime}, \mathrm{k}^{\prime}$) of succoss (success is horo dofined as the ovest that Z will be inlsclassifiod). The values of $P_{1}(2)$ for ($x, n^{\prime}, k^{\prime}$) can then be found from tho tables of the binomicl distribution [6].
gohiez Y ani VI Eiva the resulta for the univariats and biveriato normal diftributions, reapectively. The first line in table UI has the vaiues celculated for the two out of three rule. The second line gives the probability of error when a sample of tiree observations from each population is considered as a set of three independent trials and the indiviaiki Z is assignsd to that popiliatian in which tho majority of tho trials placed him. One notices that while the correaponding proba-
 out ons's intuition nentioned above. The tables have been arFenged so that comparison idetween differont uses of tine same total number of inilvicuais lis the sample will be conveniont and an lidea of the most exfective discriminator ($x, n y, k i$) can bc obtained. The same reaulte are illustreted graphicaliy fr figures 8 and 9 .
rabie V
yrohabilitisa of errors nonparametrio discriminator, univariato normsi dintribution

n	T	n'	k^{\prime}	$\lambda=1$	$\lambda=2$
3	1	3	1	.405	. 232
3	3	1	\pm	. 385	. 203
9	9	1	1	.245	. 173
10	1	10	1	- 399	. 223
29	ξ	1	1	. 324	.164
50	1.	50	1	-398	. 225

$n=$ total size of sample from each population
$2=$ number of sots in the partition of the total sample
\therefore = siue of eash of the r sets; $n=n i r$
$k^{\prime}=i=$ rule of nearest neignbor
$\lambda=d$ stsince betrocin the means of tha trangfomed populations

Probability of armor $=P\{Z$ is assigned to $G \mid Z$ came from $F\}$ $=P\{Z$ is assigned to P / Z came from $G\}$

Distance function $=\Delta$.

Pabie VI
Projablitites or error, somperantric discrimiastor,
biveriate normal distribution

n	Σ	$n 1$	k'	$\bar{\lambda}=1$	$i=2$	$\lambda=3$
3	i	3	3	0.408	.235	$=1 i 0$
3	3	1	1	. 408	. 239	. 112
25	1	15	1	. 408%	. 2.66^{4}	
15	3	5	1	- $38 i$.207	
15	5	3	1	. 375	. 198	
こj	25	1	1	-353*	.1084	
5	5	1	1	- 391	. 210	. 096
is	j	4	1	. 389	חֵn>	.090
$\because 9$	29	i	i	.332	. 2^{0}	
30	3	ī	i	- JTY	- 20	.053
150	3	50	1	. 371	. 195	. 077

$\therefore=$ toial size of sampis Iron each population

μ^{2} : sizs of eaci of tife n sets; $\bar{n}=n^{i r}$
k' $=1=$ rule of nearest neightor
$k^{\prime}=3=$ rule of two out of three

Erobubility ef orror $=F\{2$ is assigned to $G \mid z$ came from $p ;$
$=P\{Z \pm s$ assigned to $F \mid Z$ came iran $\}$:
Eistence function $=\Delta$.

* ?ha sterred valuge were read fran graphs

s1eure
reoosoility of errer P_{1} of tha sonperemetrie discriminatos, distance fusction $=\Delta$, for two bivariate asman! nopyistions
 escn poruiation. $k=k^{\prime}=i \operatorname{sit} r=1$ for $k=1 ; r=n$

Probability of error P_{1} of the nonfarajotific diseriminator. distince function $=\Delta$, Ior reo bivariate nomal distri-

distribution

The difynubice of \mathcal{F}_{1} on the distance function was emprasised in section 3. The numbicai roauits wich aro given in: this soction are intended to show the magnitude of the offect on P_{1} of certain moderete changes in the distance function. During the corputaiions which are reported in section 5 , ve noticed that the value of $P_{1}(0,0)$, the conditional proba= sility of error given that Z is at the origin (the expectod positior of Z), was remarkably consistont mith the value of P_{1}. Since wo felt that it miuid be nore worthmile to survey a larger area of problems than to concentrate on the complote answer to one. we decided to make use of the Fact
 various distance functions. Jn table VII, the values of $P_{i}(0,0)$ and P_{1} are given, together with tine difference $E_{1}-P_{1}(0,0)$. The Acurth colum gives and spproximation for F_{1} oitained by adding a crude comection term to F_{1} (0,0), namely,

$$
\frac{1}{3} \frac{\cdot 5-P_{1}(0,0)}{\lambda / 2},
$$

. 5 bsing the value of $P_{1}\left(\lambda / 2, x_{2}\right)$. It is our belief thet the oritar of the magnitude of the change in P_{I} with the change of ciatance sunction will be shown by the effect of the aletance function on $P_{2}(0,0)$.

Table VII
Comparison of the probabilities of error PI_{1} vith the conditional probability of exror $P_{1}(0,0)$ givan thet

2 Ls at the origin. Momparametric diseriminator;

$\left.D=P_{1}-P_{1} ; 0,0\right)$
$\cdots \quad \tilde{p}_{1}=p_{1}(0,0) \div \frac{2\left[.5-p_{1}(0,0)\right]}{3}$
project number ai-4f-ODA. perot number il
In selecting the alterative distances, wa had ir mind that, in general, we were dealing with a transformed space and were interested in the affect on the probability of
 original apace. The distance functions chosen are as folLows. Tine definition of Δ is repeated for the sake of sompleteness.

The locus st points at a given distance from z is ε square, cantered at 2 , with sides parallel to the axes.
(ii) $\Delta_{1}\left[\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right]=\sqrt{\left(x_{1}-z_{1}\right)^{2}+\left(x_{2}-z_{2}\right)^{2}}$.

Nisus Δ_{1} is omáhery Encildear disvinios iposbaps a moire natural Distance fiction than \triangle). The locus of points at a given distance from z is a circle centered et z.
(iii:) $\left.\Delta_{2}\left[\left(x_{1}, x_{2}\right), i z_{1}, z_{2}\right)\right]=\max \left\{\left|x_{1}-z_{2}\right|, 3\left|x_{2}=z_{2}\right|!\right.$

Tho loews of feints at a given distance frow z is a roc tangle centered at. z whose sides are parallel to the ares and in inti ratio of one to tire.
(iv; $\Delta_{3}\left[\left(f x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right]=\max \left\{3\left|x_{1}-z_{1} \hat{i}\right| x_{2}-z_{2} \mid\right\}$.

The locus of points at given distazias from z is a recterrie centred at z with of ias parallel to the ares and in the ratio of three to one.

Distenet funations Δ_{2} and Δ_{3} ars the tiansfoms if the originei distributions is indepenient noranal biveriate but the Feriances of the two messuremente are unoqual.
(v) Distance runctions denoted ty Δ ($p=a$). The iucus of points is a square contered at s but, whose sides are not parallel to the axes. The values of f are $a=$.25, .50, .75. This is the transform of Δ if the origisal. distribution is joint nomal bivariate with the two variates baving unit variances and covariance $=P$.

The comparison of vaines of $P_{1}(0,0)$ for the verious distance functions is given in table VIII and in figure 10. It will be seen that for all practical purposes it makes no difference whother Δ or $\bar{\Delta}_{1}$ (Eucildean distance) is used. Evever, tha Affasi of the other iivwnse iunctions is marked. This bears sut the atatement made previously that a burder is placed upon the statistician for selecting the approurlate distonce Eunction.
Q. $p \geqq 2$ ior the p-jariate normal distribution

This section is sin attempt tio give an indication on the influence that an increase in p : the number of dimensions of the sqmple space, will produce on the probability of misclassificetion. Wo have agein compitec only ihe conditionai probability $P_{1}(0)$ for z at the urigin. Teo altornatife distanes funtions were usca., =ameis.

Taiole VIII
Probabilities of error, nonparamatric diseriminator, nermal ifivariate diatribution, $t=I_{c}$

λ	Δ			Δ_{1}		Δ_{2}		Δ_{3}	
	n	Fy, 0 , 0)	\bar{r}_{2}	$\mathrm{F}_{2}(0,0)$	$\stackrel{\sim}{r}_{1}$	$\square_{1}(0,0)$	\tilde{F}_{1}	$F_{1}(0,0)$	$\stackrel{F}{2}_{1}$
i	2	. 391	. $4+35$. 389	. 463				
2 2 2 2	1 2 3 4	.184 .300 .254 .226	.292 .269 .259 .252	.184	.289	.383 .300 .254 .225	.422 .367 .336 .317	1146 .120 .123 .122	$\begin{aligned} & .225 \\ & .211 \\ & .207 \\ & .206 \end{aligned}$
3	1	.051	$.15 ?$.053	. 152				
		$\Delta=\Delta(\rho$	$p=0)$	$\Delta(p=.25)$	25)	$\Delta(\rho=$	50)	$\Delta(p=$	75)
2	i 2 4 4	.1044 .159 .149 .142	.292 .269 .250 .25	.179 .152 .140 .133	.280 .260 .260 .255	142 .129 .112 .102	.278 .253 - $2 \cdot 1$.235	.137 .084 .062 .0149	$\begin{aligned} & .258 \\ & .222 \\ & .208 \\ & .199 \end{aligned}$

$\lambda=$ distance vetween the means of the tranetormed ponulations
$\mathrm{n}=$ size of sample from each population
$\mathrm{k}=1=$ neaseat neighbor rule
$F_{1}(0,0)=$ conditionai probejility tingt for z at tine origin, Z will be misciassified
$P_{1}=$ probability of misclassification
$f_{1}=r o u z h$ astimata of F_{1}. Tine figurer to be comparad are the $P_{1}(0,0)$
gietaces tizetions Δ^{2} a ars as dofined in the preceding paragraphs

$$
\Delta\left[\left(x_{1}, \cdots, x_{p} f_{y_{1}} \cdots \cdots, z_{p}\right)\right]-\max _{1=1}^{y} \mid z_{1}-z_{1}
$$

axc

$$
\Delta_{1}\left[\left(z_{1}, \cdots, x_{p}\right),\left\{z_{1}, \cdots, z_{p}\right)\right]=\sqrt{\sum_{1=i}^{p}\left(x_{1}-s_{1}\right)^{2}}
$$

snd the computations were carried out for $n=1 ; t=1$.
 wouli expect the resuits depend rather heavily on the aimer-

Table Ix
Conditional probabilities $P_{1}(0,0)$ of error given that 2 is at the crigin, romparametric isiscriminstor, nomel p-rauiate distribution, $n=1, k=1$

p	7-1		$\therefore \sim E$	$\lambda=3$
	Δ_{1}	\triangle	Δ_{1}	
2 4 6 10	$\begin{array}{r} .389 \\ .414 \\ .427 \end{array}$	$\begin{aligned} & .184 \\ & .228 \\ & .255 \\ & .288 \end{aligned}$	$\begin{aligned} & .184 \\ & .230 \\ & .259 \\ & .295 \end{aligned}$	$\begin{aligned} & .053 \\ & .082 \\ & .105 \end{aligned}$

sionsilty of the apace Fhon n is fixed. Adicittedy is $e m e s t$ oursory glance at tho situation for p dimensions. The fact that the figures lefor to $n=$? $k=1$, means of course tiast the figures have no practical vaiue. Hevertheless, we decided to include them since it seemed that the behavior in this fimpitst case might púriue sose indication of what might be expectod as the inmensionality p is increased.
9. Conclusion

The choice between parametric and nonparanetric rules जill in ang given situation depend upon (i) the strencth of the statistician's beilef in his parametric model, (11) the loss be would suffer by using the nonparametric mile if in fact the parametric fom is correct and (1ii) the lose he Frid suffor by using tize parametric rule if the actual donsities depart fron the parametric form assumed. In [1], it Fas ascertaineu that if the sample size increases and at the
same time the numer of rearset nelghbors on witeh the norparanetric procedures bese its decision is incrozaed tut
 probabilitiea of error will be those of the optimua 1ikellhood ratio mile whatever the population donsities. Howevor,

Probadility of error P_{i} of nonparametait diocriminator, distence function $=\Delta$, for iwo p-variate distribitions with distance totreen the means $=\boldsymbol{\lambda}, n=1, i=1$.

PROJECT NUMAER 21 40-004, REPORT NUMBER 11
ths matter of greatest practical inter'sat is the performanoe 0: the mulen then the samilea ero vena:

In thie proper, winnve boen coucemed with (11) for the apecial case of greatest interast, the innear disorininant function. Te succecded in ifnding tine probabilitios of misclassipication for some nonparametric procedures. Fiowever, the computation or the perfommence charscteristic tef the linear discriminant function eroved to be too lengthy. It woula be ji extreme vaiue, egpacially when one thinks of tho Wide use to which the Iinear discriminant function is put if its probabilities of misclasaification in representative situations would be tabulated.

In sumary, let us indicate the nature of the situstions in whic! a nonruramotric discriminuiv: maj ve preferailo to the Ifngar iiscriminant function, and conversiziy. If the populations to be discriminated are weli known, and hove bsta investigated to establish that the normal distribution gives a good fit and that the varisnces and correlations do not charige much when the means are changed, and if tha classification to be made warrents the labor of matrix inversion, then the linear discriminant function should certalnly be used. If on the sther hand. the populations are either not well imown, or are imom noi to be approximately recmal, or to heve very different covariance matrices; or if the discrimiLation is one in whicil small decreates in probability of error
 parametric rule, perhaps with $k \geqq 3$, seems to have the edge.

In ooncluaion, we would like to expone suc nivimoiefise
 proparttion of this paper. Eapecially me mould like to thank Mrs. Jeanne Lovesioli and Mrs. Bloise Putzswo somputed the tables for us.

REPERENCES
[2] EVELYN FIX and J. Lo HODGES, JY., "Nonparametric disericination. I. Consistency propertios," Technical report prepared under contract between miversity of Californis and Schori of aviaizoal Medicine, fandolph

[2] rables of probaiiiity functions, vol. 2, Federal Forks Agency, Mathamatical Tablas Project, Hationa? Eurean of Standards: 1942.
[3] EARL PEARSON, Tables for statisticians and biometricians parts 1 and 2. Cimbridge Oniversity Press, 1930.
$[4]$ T. A. JEEVES, "Punctions of iarge numbers. Asymptotic oxpansions," from Probability meihods in physics-semfinar ty miciol Locve and appondix by participants, pp. 187-201. Mimeographod, oniversity of Callfornia. 1948-194;.
!5] O. pernow, f. akad, der Tis., manick, sitz. Hatio Phy. Ki., 1917, pp. 191-219.

