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Abstract—This paper presents an improvement of the calculation of
the magnetic field components created by ring permanent magnets.
The three-dimensional approach taken is based on the Coulombian
Model. Moreover, the magnetic field components are calculated
without using the vector potential or the scalar potential. It is noted
that all the expressions given in this paper take into account the
magnetic pole volume density for ring permanent magnets radially
magnetized. We show that this volume density must be taken into
account for calculating precisely the magnetic field components in the
near-field or the far-field. Then, this paper presents the component
switch theorem that can be used between infinite parallelepiped
magnets whose cross-section is a square. This theorem implies that the
magnetic field components created by an infinite parallelepiped magnet
can be deducted from the ones created by the same parallelepiped
magnet with a perpendicular magnetization. Then, we discuss the
validity of this theorem for axisymmetric problems (ring permanent
magnets). Indeed, axisymmetric problems dealing with ring permanent
magnets are often treated with a 2D approach. The results presented
in this paper clearly show that the two-dimensional studies dealing
with the optimization of ring permanent magnet dimensions cannot be
treated with the same precisions as 3D studies.

1. INTRODUCTION

This paper continues the papers written by Babic and Akyel [1]
and Ravaud et al. [2]. Ring permanent magnets axially or radially
magnetized are commonly used for creating magnetic fields in magnetic
bearings [3, 4], in flux confining devices [5–9], in sensors [10–12],
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in electrical machines [13–16] and in loudspeakers [17–19]. The
calculation of the magnetic field created by such structures can
be done by using numerical methods or analytical methods. The
numerical methods are often based on a finite element method but
the evaluation of the magnetic field components with such methods
has a very high computational cost. Analytical methods are either
based on the Coulombian model [20–23], or the Amperian model [24–
33], in a 2D or 3D approach. Authors have often used 2D-analytical
methods for optimizing ring permanent magnet dimensions because
their expressions are fully analytical. However, these expressions are
not valid in two cases: for small ring permanent magnets and when
the magnetic field is calculated far from the magnets. Consequently,
3D-analytical methods are required.

As emphasized at the beginning of the introduction, such methods
have already been presented, but this paper improves once more the
way of calculating the magnetic field created by a ring permanent
magnet radially magnetized. Indeed, the magnetic pole volume
density is taken into account and we show that this magnetic charge
contribution is necessary to calculate the magnetic field components
in the near-field and the far-field. Then, we discuss the validity of the
component switch theorem for ring permanent magnets and we show
that this theorem cannot be used in three-dimensions whereas it can
be used in two dimensions between two infinite parallelepiped magnets.
The main reason lies in the fact that the magnetization is uniform for a
ring permanent magnet axially magnetized whereas it is not for a ring
permanent magnet radially magnetized. Such results are important
for modeling the magnetic field created by cylindrical structures. It
is noted that the 2D approximation consists in representing a ring
permanent magnet by an infinite parallelepiped as shown in Fig. 1.
With this approximation, the two magnetic components Hr(r, z) and
Hz(r, z) created by an infinite parallelepiped are assumed to be
the same as the ones created by a ring permanent magnet radially
magnetized (see Fig. 2). In fact, this approximation is false for two
reasons. The first reason has been studied in a previous paper [2]: the
magnitude of the magnetic field created by a ring permanent magnet
is under-estimated with the 2D approximation. In addition, there is
another physical reason which can be demonstrated mathematically.
With the 2D approximation, the magnetic field components Hr(r, z)
and Hz(r, z) verify the component switch theorem. This theorem
implies that the magnetic field components created by an infinite
parallelepiped magnet can be deducted from the ones created by
the same parallelepiped magnet with a perpendicular magnetization.
However, the theorem cannot be used for modelling the magnetic field



Progress In Electromagnetics Research B, Vol. 11, 2009 283

0

0

u z

u

u r r1

r

2

2

z

z

1

u r

uz

Figure 1. Approximation of a ring permanent magnet with an infinite
parallelepiped (the 2D approximation).

components created by ring permanent magnets radially magnetized.
The first section presents the component switch theorem for

the case of two infinite parallelepiped magnets. Then, the second
section presents the expressions of the magnetic field components
created by ring permanent magnets radially magnetized. Then, this
section discusses the validity of the component switch theorem for ring
permanent magnets axially and radially magnetized.

2. COMPONENT SWITCH THEOREM IN TWO
DIMENSIONS

This section presents the component switch theorem that can be used
for calculating the magnetic components created by infinite magnetized
parallelepipeds.

2.1. The 2D Approximation

Let us consider the two geometries shown in Fig. 2. The upper
geometry (Fig. 2(a)) corresponds to an infinite parallelepiped whose
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Figure 2. Representation of two infinite parallelepiped magnets whose
magnetization undergoes a rotation of 90 degrees between the upper
and lower configurations.

polarization is colinear with the z direction. The lower geometry
(Fig. 2(b)) corresponds to an infinite parallelepiped whose polarization
is colinear with the x direction. As the two configurations studied
are infinite along one direction (y direction), the magnetic field they
create does not depend on y. Moreover, only two magnetic field
components Hx(x, z) and Hz(x, z) exist. These components can be
determined analytically by using the coulombian model. By denoting
H

(1)
x (x, z) and H

(1)
z (x, z), the magnetic components created by the

configuration shown in Fig. 2(a) and H
(2)
x (x, z) and H

(2)
z (x, z), the

magnetic components created by the configuration shown in Fig. 2(b),



Progress In Electromagnetics Research B, Vol. 11, 2009 285

we have:

H(1)
x (x, z) = J̃

(∫ ∫
S1+

PMi,i,2

|PMi,i,2|3
dS1+ −

∫ ∫
S1−

PMi,i,1

|PMi,i,1|3
dS1−

)
· �ux (1)

H(1)
z (x, z) = J̃

(∫ ∫
S1+

PMi,i,2

|PMi,i,2|3
dS1+ −

∫ ∫
S1−

PMi,i,1

|PMi,i,1|3
dS1−

)
· �uz (2)

H(2)
x (x, z) = J̃

(∫ ∫
S2+

PM1,i,i

|PM1,i,i|3
dS2+ −

∫ ∫
S2−

PM2,i,i

|PM2,i,i|3
dS2−

)
· �ux (3)

H(2)
z (x, z) = J̃

(∫ ∫
S2+

PM1,i,i

|PM1,i,i|3
dS2+ −

∫ ∫
S2−

PM2,i,i

|PM2,i,i|3
dS2−

)
· �uz (4)

where J̃ = J
4πµ0

, PMα,β,γ = (x− xα)�ux + (y − yβ)�uy + (z − zγ)�uz and
dS1+ = dS1− = dxidyi and dS2+ = dS2− = dyidzi.

The analytical integrations of (1), (2), (3) and (4) give the
following expressions:

H(1)
x (x, z) = log

[
(x − x2)

2 + (z − z2)
2

(x − x1)2 + (z − z2)2

]
+ log

[
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2
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]
(5)
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(6)
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]
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]
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]

+arctan

[
x − x2

−z + z2

]
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]
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]
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[
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H(2)
z (x, z) = − log

[
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2
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Thus, we deduct the following expressions that constitute the
component switch theorem.

H(1)
z (x, z) = H(2)

x (x, z) (9)

and

H(1)
x (x, z) = −H(2)

z (x, z) (10)
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The relations (9) and (10) are valid only if the cross-section of the
bar-shaped magnet is a square. The calculations of such expressions
are well-known in the literature. As many authors have modelled ring
permanent magnets with parallelepiped magnets (2D approximation),
it can be interesting to know if the component switch theorem can be
used for ring permanent magnets radially and axially magnetized. For
this purpose, we propose in the next section to use the coulombian
model for calculating the magnetic field expressions created by a
ring permanent magnet radially magnetized. It is noted that this
calculation has been improved because the magnetic pole volume
density is taken into account in this paper and the expressions have
been simplified.

3. THREE-DIMENSIONAL EXPRESSIONS OF THE
MAGNETIC FIELD COMPONENTS CREATED BY
RING PERMANENT MAGNETS

3.1. Notation and Geometry

The geometry considered and the related parameters appear in Fig. 3.
The ring inner radius is r1 and the ring outer one is r2. Its height is
h = z2−z1. In addition, the axis z is an axis of symmetry. Calculations
are obtained by using the Coulombian model. Consequently, the ring
permanent magnet is represented by two curved planes that correspond
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Figure 3. Representation of the configuration studied; the inner
radius is r1, the outer radius is r2, the height is z2−z1, σ∗

s = �J ·�n = 1 T,
σ∗

v = −∇ �J = J
r .
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to the inner and outer faces of the ring and a charged ring with a
magnetic pole volume density +σ∗

v . The inner face is charged with a
surface magnetic pole density +σ∗

s and the outer one is charged with
the opposite surface magnetic density −σ∗

s . By denoting r0, a point
that belongs to the ring permanent magnet, the magnetic field �H(r, z)
created by the ring permanent magnet at any point of the space is
expressed as follows:

�H(r, z) =
∫

(V )

σ∗
v(�r0)(�r − �r0)

4πµ0|�r − �r0|3
d3 �r0 +

∫
(Sin)

σ∗
s(�r0)(�r − �r0)

4πµ0|�r − �r0|3
d2 �r0

−
∫

(Sout)

σ∗
s(�r0)(�r − �r0)

4πµ0|�r − �r0|3
d2 �r0 (11)

with

(�r − �r0)
|�r − �r0|3

=
(r − ri cos(θ)) �ur − ri sin(θ)�uθ + (z − zs)�uz

(r2 + r2
i − 2rri cos(θ) + (z − zs)2)

3
2

(12)

where i = 1 for d�r0
2 = dSin = r1dθsdzs, i = 2 for d�r0

2 = dSout =
r2dθsdzs, i = s for d�r3

0 = rsdrsdθsdzs.

3.2. Components Along the Three Directions �ur, �uθ, �uz

The calculation of (11) leads to the magnetic field components along
the three defined axes: Hr(r, z), Hθ(r, z) and Hz(r, z). It is noted that
the azimuthal component Hθ(r, z) equals 0 because of the cylindrical
symmetry.

3.3. Radial Component Hr(r, z)

The radial component Hr(r, z) is given by

Hr(r, z) =
2∑

i=1

2∑
j=1

(−1)(i+j)
(
Sr

i,j + V r
i,j + Ni,j

)
(13)

where

Sr
i,j = α

(0)
i,j

(
α

(1)
i F∗

[
α

(2)
i,j , α

(3)
i

]
+ α

(4)
i Π∗

[
α

(2)
i,j , α

(5)
i , α

(6)
i

])
(14)

V r
i,j = f(z − zj , r

2 + r2
i + (z − zj)2, 2rri,−1)

−f(z − zj , r
2 + r2

i + (z − zj)2, 2rri, 1) (15)
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with

f(a, b, c, u) = −η
(
β(1) + β(2)

)
(16)

η = β(3)
[
(b − c)E∗

[
β(4), β(5)

]
+ cF∗

[
β(4), β(5)

]]
+β(6)

[
(b − a2)F∗

[
β(7), β(8)

]
+ (b − a2 + c)Π∗

[
β(9), β(7), β(8)

]]
−β(10) − β(11) (17)

Table 1. Parameters used for calculating the surface contribution of
the radial component Hr(r, θ, z).

Parameters

α
(0)
i,j

J
√

2
4πµ0

ri(−z+zj)

(2rir)3/2α
(1)
i

α
(1)
i r2
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α
(2)
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√
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α
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α
(3)
i

√
α1
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4rir

α
(4)
i 2rir

2 − ri(r2
i + r2)

α
(5)
i

α
(1)
i +(z−zj)

2

α
(1)
i

α
(6)
i

√
2(α

(1)
i +(z−zj)2)

4rir

Ni,j =
∫ −1

1
(1 − u2) arctan

[
(ri − ru)(z − zj)√

r2(u2 − 1)ξ

]
du (18)

ξ =
√

r2 + r2
i − 2rriu + (z − zj)2 (19)

3.4. Axial Component Hz(r, z)

Hz(r, z) =
2∑

i=1

2∑
j=1

(−1)(i+j)
(
Sz

i,j + V z
i,j

)
(20)
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Table 2. Parameters used for calculating the volume contribution of
the radial component Hr(r, θ, z).

Parameters

β(1) a
√

1 − u2
√

b−cu
b+c + a

√
c(1+u)

c
√

1−u2

β(2) a(a2+b) arcsin[u]

c
√

b+c

√
b − cu

β(3) (1 + u)
√

c(u−1)
b−c

β(4) arcsin
[√

b−cu
b+c

]
β(5) b+c

b−c

β(6)
√

1 − u2

√
c(1+u)

b+c

β(7) arcsin
[√

1+u
2

]
β(8) 2c

b+c

β(9) 2c
b+c−a2

β(10) −2
√

1 − u2 log[a +
√

b − cu]

β(11) −
√

x
c log

[
4c2(c+a2u−bu+

√
x
√

1−u2)
x

3
2 (a2−b+cu)

]
x −a4 + 2a2b − b2 + c

with

Sz
i,j =

2ri

(r − ri)2 + (z − zj)2
K∗

[
− 4rri

(r − ri)2 + (z − zj)2

]
(21)

V z
i,j =

∫ 2π

0
tanh−1




√
r2 + r2

i + (z − zj)2 − 2rri cos(θs)

ri − r cos(θs)


 (22)

The special functions used are defined as follows:

K∗ [m] = F∗
[π

2
,m

]
(23)

F∗ [φ, m] =
∫ φ

0

1√
1 − m sin(θ)2

dθ (24)

Π∗ [n, φ, m] =
∫ φ

0

1
(1 − n sin(θ)2)

√
1 − m sin(θ)2

dθ (25)
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3.5. Comparison of the Magnetic Field Created by Ring
Permanent Magnets Axially and Radially Magnetized

This section discusses the validity of the component switch theorem
for ring permanent magnets axially and radially magnetized. For this
purpose, we represent in Figs. 4 and 5 the magnetic field modulus
H(r, z) created by either a ring radially magnetized or a ring axially
magnetized.
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Figure 4. Modulus of the magnetic field created by a ring permanent
magnet axially magnetized; we take r = 0.024 m, r1 = 0.025 m,
r2 = 0.028 m, z1 = 0 m, z2 = 0.003 m, J = 1 T.

[m]

[m
]

−

−
0.021 0.022 0.023 0.024

r

0.002

0.001

0

0.001

0.002

0.003

0.004

0.005

z

Figure 5. Modulus of the magnetic field created by a ring permanent
magnet radially magnetized; we take r = 0.024 m, r1 = 0.025 m,
r2 = 0.028 m, z1 = 0 m, z2 = 0.003 m, J = 1 T.

Figures 4 and 5 show that in the near-field, a ring permanent
magnet radially magnetized is similar to a ring permanent magnet
axially magnetized. The magnetic field becomes different when
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it is calculated far from the magnets. Thereby, it implies that
a ring permanent magnet radially magnetized do not create the
same magnetic field as a ring permanent magnet axially magnetized.
Consequently, the choice of using a ring permanent magnet radially
or axially magnetized depends greatly on the intended application.
Moreover, the cost of the magnet must be also taken into account
since rings radially magnetized are more expensive than rings axially
magnetized.
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Figure 6. Radial component of a ring permanent magnet axially
magnetized versus the axial displacement z; we take r = 0.024 m,
r1 = 0.025 m, r2 = 0.028 m, z1 = 0 m, z2 = 0.003 m, J = 1 T.
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Figure 7. Axial component of a ring permanent magnet radially
magnetized versus the axial displacement z; we take r = 0.024 m,
r1 = 0.025 m, r2 = 0.028 m, z1 = 0 m, z2 = 0.003 m, J = 1 T.

3.6. Magnetic Field Components Created by Rings Radially
and Axially Magnetized

In the previous section, we have shown that a ring permanent magnet
axially magnetized does not generate the same magnetic field than
a ring permanent magnet radially magnetized even though their
magnetic field modulus seems to be nearly the same. But strictly
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speaking, these two configurations are different when we look at their
magnetic components. We can see that by comparing their magnetic
components with the help of the component switch theorem (even
if this theorem cannot be used). For this purpose, we represent in
Figs. 6 and 7, the radial component of the magnetic field created by
a ring axially magnetized and the axial component of the magnetic
field created by a ring permanent magnet radially magnetized. We
see that these two components seem to verify the component switch
theorem. However we will see that it is not strictly the case. We
can also compare the axial component created by a ring permanent
magnet axially magnetized and the radial component of the magnetic
field created by a ring permanent magnet radially magnetized. These
two components are represented in Figs. 8 and 9.
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Figure 8. Axial component of a ring permanent magnet axially
magnetized versus the axial displacement z; we take r = 0.024 m,
r1 = 0.025 m, r2 = 0.028 m, z1 = 0 m, z2 = 0.003 m, J = 1 T.
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Figure 9. Radial component of a ring permanent magnet radially
magnetized versus the axial displacement z; we take r = 0.024 m,
r1 = 0.025 m, r2 = 0.028 m, z1 = 0 m, z2 = 0.003 m, J = 1 T.

Figures 8 and 9 show clearly that these components are nearly
the same. However, the component switch theorem cannot be used
for studying the magnetic field created by ring permanent magnets
radially and axially magnetized.
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Figure 10. Representation of the radial component Hr(r, z) with
or without the magnetic pole volume density σ∗

v versus z with the
following parameters: r = 0.02 m, r1 = 0.025 m, r2 = 0.028 m,
z1 = 0 m, z2 = 0.003 m; J = 1 T; thick line: with σ∗

v , dashed line:
without σ∗
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Figure 11. Representation of the axial component Hz(r, z) with
or without the magnetic pole volume density σ∗

v versus z with the
following parameters: r = 0.02 m, r1 = 0.025 m, r2 = 0.028 m,
z1 = 0 m, z2 = 0.003 m; J = 1 T; thick line: with σ∗

v , dashed line:
without σ∗

v .



294 Ravaud et al.

3.7. Necessity of Taking into Account the Magnetic Pole
Volume Density

This section explains why the magnetic pole volume density is
necessary for calculating the magnetic field components created by
a ring permanent magnet. This question is in fact crucial because the
calculation of the force or the stiffness between ring permanent magnets
is more complicated when the magnetic pole volume density is taken
into account. To do so, we plot in Fig. 10 the relative difference of
the radial field created by a ring permanent magnet versus the radial
distance r with and without taking into account the magnetic pole
volume density. In addition, we plot in Fig. 11 the relative difference
of the axial field created by a ring permanent magnet versus the radial
distance with and without the magnetic pole volume density.

We see that the farther the magnetic field is calculated from the
magnets, the more the relative difference increases if the magnetic pole
volume density is omitted. For a radial distance which equals 0.01 m
from the magnets, we make an error of at least 25 per cent for the radial
field and 20 per cent for the axial field is the magnetic pole volume
density is omitted. Consequently, we deduct that we must take into
account such a contribution for calculating the magnetic components
in the far-field. For a radial distance which equals 0.001 m from the
magnets, we make an error of at least 7 per cent for the radial field
and 5 per cent for the axial field is the magnetic pole volume density is
omitted. We can say that it is yet an important error for the near-field.
Consequently, we must take into account the magnetic pole volume
density for calculating the magnetic components in the near-field as
well.

4. CONCLUSION

This paper has presented an improvement of the magnetic field
calculation created by ring permanent magnets radially magnetized.
The expressions obtained are based on real functions and the magnetic
pole volume density is taken into account. We discuss the importance
of taking into account such a contribution. Then, this paper discusses
the validity of the component switch theorem for ring permanent
magnets. This theorem can be used for describing the magnetic
field created by infinite parallelepiped magnets (2D approach) whereas
it cannot be used for modeling the magnetic field created by ring
permanent magnets (3D approach). This result implies that an
optimization of the ring dimensions with a 2D approach seems to
be difficult. Eventually, we have compared, with the exact 3D
approach, the magnetic field created by a ring permanent magnet
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radially magnetized with a ring permanent magnet axially magnetized.
When their cross-section is a square, their magnetic field modulus is
nearly the same in the near field whereas it is different in the far field.
Such results imply that ring permanent magnets axially magnetized
can be used in magnetic bearings in which the near-field is the most
important parameter to optimize. The expressions given in this paper
are available online [34].
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