
Tab le 3 Sam p le calcu lat ion of a r esid u al sum of squ ar es (RSS) v a l u e 

(A) 

i 

(B) 

x o 

( C) 

* 1 =  V 

(D) 

x 2 = f 

(E ) 

T ( m i n . ) 

( F ) 

y =  T < - ° . 2 > 

(G) (H ) 

R = y - y 

( I ) 

R 2 
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16 1 " 1 . 6 2 . 1 5 0  0 . 3 6 8 0 . 1 3 5 4 
17 1 6 0 0  2 . 3 5 3 . 7 6 5 5 . 0 1 6 - 1 . 2 5 1 1 . 5 6 5 0  

18 1 2 . 6 5 4 . 2 4 5 - 0 . 7 7 1 0 . 5 9 4 4 
19 1 3 . 0  4 . 7 2 8 » - 0 . 2 2 8 0 . 0 8 2 9 
2 0  1 " 3 . 6 5 . 4 1 7 0 . 4 0 1 0 . 1 6 0 8 
2 1 1 5 0 0  " 6 . 4 7 . 4 3 4 8 . 2 5 0  - 0 . 8 1 6 0 . 6 6 5 9 

2 2 1 " 7 . 8 8 . 0 7 5 - 0 . 1 7 5 0 . 0 3 0 6 

2 3 1 " " 9 . 8 8 . 7 8 4 0 . 5 3 4 0 . 2 8 5 2 

2 4 1 " " 1 6 . 5 ] 0 . 2 8 7 2 . 0 3 7 4 . 1 4 9 4 
2 5 1 4 0 0  " 2 1 . 5 1 0 . 9 9 3 1 1 . 4 8 4 - 0 . 4 9 1 0 . 2 4 1 1 
2 6 1 " 2 4 . 5 1 1 . 3 2 7 - 0 . 1 5 7 0 . 0 2 4 6 
2 7 1 " " 2 6 . 0  1 1 . 4 7 7 " - 0 . 0 0 7 0 . 0 0 0 1 
2 8 1 " 3 3 . 0  1 2 . 0 5 8 0 . 5 7 4 0 . 3 2 9 5 
2 9 1 6 0 0  0 . 0 2 2 1 . 2 0 . 8 5 8 1 . 6 9 9 - 0 . 8 4 1 0 . 7 0 7 3 
3 0  1 " 1 . 5 1 . 8 6 7 0 . 16 8 0 . 0 2 8 2 
3 1 1 " " 1 . 6 2 . 1 5 0  0 . 4 5 1 0 . 2 0 3 4 
3 2 1 " " 1 . 6 2 , 1 5 0  " 0 . 4 5 1 0 . 2 0 3 4 

3 3 1 4 5 0  " 4 . 0  5 . 8 0 4 6 . 5 5 0  - 0 . 7 4 6 0 . 5 5 6 5 
3 4 1 " " 4 . 7 6 . 3 8 1 yxvutsqponmkihfedcbaXWVUTSRQPOLKJIHFEDCBA• < . 
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3 5 1 " 5 . 3 6 . 7 9 8 ii 0 . 0 6 1 5 
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RSS = 2R-1 = 21.093 zyxwvutsrqponmlkihgfedcbaYXWVUTSRPONMLKJIHGFEDCBA

A P P E N D I X B 

Sampl e Calculat io n of  a R SS Valu e 
The basis of the RSS contour diagram shown in the body of the 

paper is a grid of RSS values, where each value is determined by 

fitting equation (7), i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i ? [ r w ] = ft + + ft/"' (28) 

For instance, if at = 1, = 1, and X = —0.2, then 

E[T<-«•«] = E - A + A F + ft/ (29) 

The coefficients ft, ft, and ft are estimated by the method of 

least squares, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b = (X 'X) - 1 X' y (30) 

where b is the vector of estimated values of (3 

X is the matrix of transformed independent variables 

X' is the transpose of X 
(X 'X ) - 1 is the inverse of (X 'X ) 

and y is the vector of transformed observations of tool life, i.e., 
y — y(x). 

Using the carbide tool-life data [3] shown in Table 3, the calcu-

lation of the b's is illustrated as follows: 

1 The matrix of independent variables X consists of the 

values given by columns (B), (C), and (D) in Table 3. 

2 The observation vector y consists of the values given in 

column (F), and are calculated from 

Ti-«•» - 1.0 
- r t-o.2) = — : i = l , . . . , n. 

where T( is the observed tool life shown in column (E), and 

where 

1 

f = ( r , X X T, X . . . X Tn)n, i.e., 

f = [(1.75)(1.85)(2.0) . . . (6.0)]36 = 3.692 

Journa l of Engineerin g fo r Industr y 

3 By equation (30) 

"&r 36.466" 

b = 62 = - 0.032 

_ -698 .289 . 

and the predicting equation is 

y = f <•-<>•» = 36.466 - 0.0327 698.289/ (31) 

where y is the predicted transformed tool life. 

The values of y at the various cutting conditions are calculated 

by equation (31) and are shown in column (G). 

Finally, the residuals Rt, 

Ri = (y> ~ Vi) i ' = l , . . . , n. 

are given in column (H), the 7J,2 are given in column (I), and 

thus the value of the residual sum of squares is: 

RSS = = 2 1 0 9 3 -
i = l 

This particular RSS is shown in Fig. 6(a2 = 1) at the point 

(X = - 0 . 2 ,X <X\  = 1.0). 

By using a high-speed computer, the complete RSS grid in the 

X — ai plane can be determined and hence RSS contours can be 

drawn. 

D I S C U S S I O N 

Wi l l i a m G.  Hunt e r 2 

The paper under discussion [7]3 raises many interesting and 

useful points, the primary one being that power transformations 

are potentially useful for fitting tool-life data. Because of its 

exploratory nature some questions are, of course, left unresolved. 

One hopes that they will be discussed in future work. 

The power transformations discussed in [7] remain to be tried 

1 On leave of absence from the University of Wisconsin; presently, 

Imperial College, London, England. 
3 Numbers in brackets designate Additional References at end of 

this discussion. 
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PREDICTION EQUATION 

y = 13 . 75 3 9 - 1. 9 73 9 « n VT . H 5 9 8 t n f - . 2 776 « n d 

a t c o n s t a n t f an d d ( f = . 0 15 , d = . 0 7 0 ) 

_ j i i i I I i I 
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60 

PREDICTION EQUATION yvutsrqponmlifedcbaZYXWVUTSRQPONMLIHGFEDCBA

y =  1 3 . ! 2 0 - . 1 7 2 5 V ' 5 0 - 13 . 11R f ' 7 U - 5 . 2 M 7 d ' 

a t c o n s t a n t f and d ( f = . 0 15 , d = . 0 7 0 ) 

3d 

.50  zyxwvutsrqponmlkihgfedcbaYXWVUTSRPONMLKJIHGFEDCBA
Fig.  12 

v 

Fig.  14 

PREDICTION EQUATION* 

V » 6 . 8 9 8 0 - . 0 0 3 7V- 2 8 . 776 9 f- 3 . 5 5 8 9 d 

a t c o n s t a n t f an d d ( f = . 0 15 , d = . 0 7 0 ) 

10 0  200  300  400  500  600  700  800  900  10 0 0  

V 

Fig.  13 
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on many more sets of tool-life data. It will then be possible to 
assess their general usefulness. Perhaps, in certain circumstances, 
other classes of transformations will be found superior to the 
power transformations. But the development of these alterna-
tive transformations is somewhere in the future. For the moment 
power transformations seem to be quite flexible and the immediate 
task is to try these statistical techniques to see how they work on 
practical problems. It is likely that they will find wide applica-
tion in tool-life testing work. In these comments the nomencla-
ture of Wu, Ermer, and Hill [7] is followed. 

Ext ensio n of  Presen t  Resear c h 

One obvious extension of the present work is to consider depth 
of cut in addition to speed and feed. In the summer of 1964, Mr. 
W. J. Hill and I did some preliminary work along these lines. 
The methods of Box and Tidwell [8] were applied to the data 
given by Wu [9], twenty-four observations of tool lifezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA T, the 
variables being speed V, feed / , and depth of cut d. Fitting In T 

one finds the values of the transforming parameters which yield 
the best fit are & = 0.50, a2 = 0.74, and d3 = 0.06. 

The best fitting first-order prediction equation is 

$ = 13.2200 - 0.1725F0-60 - 13.1180/°-" - 5.2472d°-«» (32) 

where ij is the predicted value of In T. The residual sum of 
squares Ii(ai, a2, a3) is 0.4339 in this case with (ai, a2 a3) = 
(<$„ a3) = (0.50, 0.74, 0.06), i.e., fl(0.50, 0.74, 0.06) = 0.4339. 
This value is less than that obtained by simply fitting to the 
logarithms of the independent variable, (a,, a2, a,) — (0, 0, 0), 
from which one obtains the residual sum of squares 22(0, 0, 0) = 
0.6702. An interesting point to be noted in passing is that by 
fitting to the untransformed independent variables, (au a2, a3) = 
(1, 1, 1), one obtains a residual sum of squares slightly less than 
72(0, 0, 0). In fact, fi(l, 1, 1) = 0.6598. 

The prediction equation for the case where («i, a2, a3) = 
(0, 0, 0) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i) = 13.7539 - 1.9739 In V - 0.4598 In / - 0.2776 In d (33) 

Transactions of the A S M E 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/m

a
n
u
fa

c
tu

rin
g
s
c
ie

n
c
e
/a

rtic
le

-p
d
f/8

8
/1

/8
9
/6

4
9
6
9
5
9
/8

9
_
1
.p

d
f b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



and the prediction equation for the case where (a it a2, a3) = 
(1, 1, 1) is 

4 = 6.8880 - 0.0037F - 28.7769/ - 3.5589d (34) 

A visual comparison of the three prediction equations (32), (33), 
and (34) can be obtained from Figs. 12,13, and 14. 

In summary the best fit is obtained in neither the case where 
the fitting is done to the experimental variables themselves (equa-
tion (34)) nor to the logarithms of the variables (equation (33)). 
Instead equation (32) gives the best fit but it is more complicated 
and not as easily appreciated as either equations (33) or (34). 
Perhaps for these reasons equation (32), although giving the best 
fit, would not be as useful in practice. A close approximation to 
this prediction equation can be obtained, however, by using 
(o(i, as, a3) = f , -fa) = (0.50, 0.75, 0.05). In this form it 
may be slightly more convenient to use. A summary of the re-
sults obtained from the four prediction equations is given in 
Table 4. zyxwvutsrqponmlkihgfedcbaYXWVUTSRPONMLKJIHGFEDCBA

Tabl e 4 Resul t s obt aine d by t i lt in g se t  of  t went y- fou r  t ool- l i f e run s w i t h 
fou r  predict io n equat ion s 

Values of transforming 
parameters at,yxwutsrponmlkjihfecaZYXWVUTSRQPONMLJIHGFEDCBA CM, az 

1.00,1.00,1.00 
0.00,0.00,0.00 
0.50,0.74,0.06 
0.50,0.75,0.05 

Variables used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V,f,d 
In V, In / , In d 
yo.sô  /o.'-i, daM yxvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J / 0 .5( /  yo .75 ) ( ;0 .0 5 

Residual sum 
of squares 

0.6598 
0.6702 
0.4339 
0.4382 

The mean square for pure error is 0.027531 (see Appendix C of 

[9]) and this is associated with eight degrees of freedom. Lack of 

fit tests indicate that all the above transformations are adequate. 

When the number of transforming parameters exceeds two or 

three the calculations become more difficult and time-consuming. 

Also there are problems of presenting the results of such calcula-

tions so that they can be readily understood and appreciated. 

Handling these matters can be facilitated by the use of an auto-

matic plotting device which can be employed in direct conjunc-

tion with an electronic computer, e.g., the Calcomp plotter or the 

Stromberg Carlson 4020 Computer Recorder. 

The Tr ansfor me d De sig n Mat r i x 

In some cases it may be meaningful to ask what happens to the 

design matrix as a result of transformation. Suppose a statis-

tically designed experiment has been run and values of the trans-

forming parameters have been determined which yield a first-

order relationship between the expected value of the transformed 

observations (dependent variable) and the transformed (inde-

pendent) variables. That is, a relationship of the following form 

has been found to fit the data adequately: 

®[!/(X)] = ft + £ PiUt (35) 
i=l 

The untransformed design matrix D{x) for N runs with k 

variables is the N X k matrix of x's giving the standardized levels 
of the variables to be run. The levels of x are often —1, 0, and 
+ 1. There will be a standardizing formula for each variable. 
For example, for each tool-life testing variable V, f, and d there 
would be such a formula, say, Xi = g\{V),x2 = gzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2(f), and x3 = g3(d). 

(See equations (2) in reference [10].) 

The reason for selecting one particular design D(x) for the ex-
perimental plan as preferable to all the others that might have 
been chosen is that it has certain properties that the experimenter 
deems desirable. For example, he may wish to obtain uncorre-
lated estimates of the effects of the variables and for this reason 
he selects an orthogonal design. (Certain mild assumptions 
about the nature of the experimental errors are required to make 
this logic exactly correct.) An orthogonal design matrix is one 
for which all the possible sums of cross-products for the columns 

are zero, i.e., £ xi*xju — 0 for all i j, where i = 1, 2, . . ., k 
U = 1 

and/ = 1, 2, . . ., k. It is extremely unlikely, of course, that the 
transformed design matrix D{x) will possess this desirable property; 
on the contrary, it will almost always be true that 

X 

X) ^ 0, where x, = g,(U,), 1 = 1, 2, . . ., k. 
u = l 

The experimenter may be willing to run a few additional experi-
ments (say n) if it is possible to "repair the damage" to the de-
sign matrix that has resulted from transformation. In other 

words, it might be worthwhile to perform n more runs if it is 
iV+n 

possible to achieve the orthogonality condition £ xiuxju = 0. 
u = l 

In considering this situation a number of questions arise. When 
will it be possible to "repair the damage" in this way? We must 
remember that we are not completely free to choose any levels of 
the variables for these additional runs; there will be certain con-
straints imposed because of the physical nature of the situation. 
However, given these constraints and the results from the first N 

experiments the problem of minimizing some meaningful measure 
of nonorthogonality can be solved mathematically for fixed n. 

But at present it is not known which is the best way to proceed. 
Another related question is: In a given situation what is the 
smallest number of addition runs required to satisfy the ortho-
gonality condition, i.e., what is the minimum value for ?&? 

In certain circumstances, I think, experimenters might be in-
terested in answers to questions of this kind. I would be in-
terested in knowing whether the authors agree. The property of 
orthogonality was merely chosen for illustrative purposes. There 
are many other properties and which particular properties are 
most important in a given situation depends, of course, upon the 
situation. With suitable modification, however, the above re-
marks still apply, whichever properties are most pertinent. 
Perhaps the design matrix to consider after transformation should 
be defined in some alternative way. 

Lac k of  Fit  Test s 

It is not always true that all values contained in a calculated 
95 percent confidence region fit the data adequately. In some 
cases all such values may give an inadequate fit because the 
model itself is inadequate. As illustrated so well in [9] and [10] 
a lack of fit test is necessary. A statistical analysis is incomplete 
if one does not attempt to check the adequacy of the mathemati-
cal model (and, for that matter, all the other assumptions that 
are tentatively made at the outset of the analysis). In the ex-
amples in this paper what do each of the lack of fit tests reveal? 

In this regard it would be helpful to publish the data that were 
used. Granted there are serious space limitations in scientific 
journals, but in general, data are not published as often as they 
should be. 

The data presented in Table 3 show some peculiarities. Ap-
parently there are nine distinct sets of conditions, each of which 
is repeated four times. But within each set there is a consistent 
trend of results for the tool life T. Are the results shown in the 
order in which they were taken? If so, what is the cause of the 
trends? Were there variables in addition to speed and feed? If 
there were no extra variables and the model is correct, then the 
trends are only manifestations of experimental error. But such 
a chance happening (that is, consistent trends within each set of 
four replicates) is very rare, occurring in fact fewer than once in a 
million trials. Perhaps the results were taken in random order 
and rearranged for purposes of presentation. Is this the case? If 
so, does each of the nine sets consist of four runs which are 
genuine replicates? 

Questions such as these are relevant to a proper assessment of 
the model. Incidentally, in answering them one might shed some 
light on the supposed ambiguity in the carbide tool-life data. If 
the model represented by equation (35) is inadequate then it is of 
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no practical use to report the best transformations; they are 
simply not good enough. If, on the other hand, the model is 
adequate for both sets of data (i.e., the 36 observations at 200 
Bhn with a C-6 carbide tool and the 30 observations at 300 Bhn 
with a C-7 carbide tool) then perhaps there is notzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA one best trans-
formation that is appropriate for both. There is the possibility 
that two transformations are necessary, one for each set of data. 

There is a tendency in some other fields of engineering research 
for experimenters, who are searching for "the best" model to fit 
their data, to examine only the values of the residual sum of 
squares for the various models and to report the single model 
which yields the minimum residual sum of squares. In general, 
such practice is of questionable practical value, especially since 
experimental error is rarely taken properly into account. If ex-
perimental error is taken into account (this will be possible if 
there is replication), one can see that the data often do not 
support the conclusion that a single model is correct but rather 
support alternative conclusions, e.g., all models so far considered 
are inadequate or more than one model adequately fit the data. 

Readers may get the impression from [7] that lack of fit tests 
are unnecessary and I feel that the authors do not want to give 
this impression. For the proper assessment of Tables 1 and 2, for 
instance, it is necessary to know what experimental error is. 
By merely selecting that transformation which gives the mini-
mum residual sum of squares an experimenter can sometimes be 
misled. zyxwvutsrqponmlkihgfedcbaYXWVUTSRPONMLKJIHGFEDCBA

Conf idenc e Re gion s 

Equations (25) to (27) in [7] are incorrect because <$2 has not 
been used as specified in equation (23) which is correct. The 
approximate 95 percent confidence regions in all the figures 
should therefore be rechecked. The value of a2 should be re-
ported to the same number of decimals as % and <Si. 

Addi t iona l Reference s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 S. M . Wu, D. S. Ermer, W . J. Hill, " A n Exploratory Study of 

Taylor's Tool-Life Equation by Power Transformations," a paper by 

S. M . Wu, D. S. Ermer, and W . J. Hill presented at the 1965 A S M E 

Metals Engineering-Production Engineering Conference, Berkeley, 

California, June 10, 1965. 

8 Box and Tidwell, "Transformation of the Independent Varia-

bles," Technometrica, vol. 4, 1962, pp. 531-550. 

9 S. M . Wu, "Tool-Life Testing by Response Surface Methodol-

o g y , " JOURNAL OP ENGINEERING FOR INDUSTRY, TRANS. A S M E , 

Series B, vol. 86, no. 2, part 2, 1964, pp. 105-116. 

10 S. M . Wu, part 1 (1964)—same as above. 

Aut hor s ' Closur e 
The authors appreciate Dr. Hunter's comments and his interest 

in this investigation. The paper was written from the viewpoint 
of engineering applications of power transformations. However, 
a discussion of the use of power transformations from a statistical 
viewpoint is very helpful. Since the present paper is only an 
exploratory study, we expect further tool-life data to be analyzed 
by power transformations as well as other alternative methods. 

It is obvious that experimenters will be interested in tech-
niques which will enable them to obtain a transformed design 
matrix with desirable properties, provided the experimenters had 
started with a statistically designed experiment. However, the 
data presented in this paper, except for the third part of the study, 
were not obtained using statistical experimental designs. The 
data in Table 3 were obtained from a graph in a previously pub-
lished government report and the authors do not have any 
additional information about the order in which the data were 
taken. 

Theoretically, the adequacy of the postulated model should be 
checked by a lack of fit test. In this instance, however, previous 
research has shown that a linear model based on a logarithmic 
transformation is adequate. Since the purpose of the study was 
to search for transformations to linearize the tool-life data and 
give a better fit than a logarithmic transformation, there was no 
reason to doubt the adequacy of the linear models presented. 

Finally, the authors want to thank Dr. Hunter for pointing 
out that &i instead of ai should be used in equations (25) to (27). 
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