
DISCUSSION 

j A heavier vortex core moving downward. 
2 A heavier vortex core moving upward. 
3 A lighter vortex core moving downward. 
4 A lighter vortex core moving upward. 

In Cases 1 and 4, the vortex ring receives acceleration due to 
buoyant and gravitational forces. However, the vortex ring in 

i Case 1, by having denser fluid in the core than the ambient fluid, is 
more unstable with respect to centrifugal instability mechanism 
than that of Case 4 which has lighter fluid in the core than the 
ambient fluid. Similarly, although in Cases 2 and 3 the vortex 
ring receives deceleration due to buoyant force, the vortex in 
Case 2, again by having denser fluid inside the vortex, is much 

i more unstable with respect to centrifugal instability mechanism 
I f.haii that of Case 3. Therefore, the present investigation which 
• is Case 1 should differ from Turner's results which is Case 4 not 
• to mention the difference in different density ratio used. In our 
I Fig- 4> t n e distance of laminar flow is the distance that a vortex 

with denser fluid inside can maintain the flow pattern at stage 2 
I as shown in Fig. 2 or the shape like photo 1. Therefore, a vortex 

ring, although unstable, may remain essentially a ring shape and 
travel a considerably longer distance than the laminar distance. 
It should be noted that in Turner's Fig. 12 the final height, which 
is the total distance, is not the distance of laminar flow as defined 

I in our paper. Disregarding the effect of centrifugal instability, 
Turner's results show that in the case of a density difference of 
20 percent (compared with our 50 percent) the final height may 
reach a distance only about 20 times that of the diameter. In ad
dition, Turner experimented with a fixed input condition and 
varied the buoyance, while in our experiment we fixed the buoy-
ance and varied the input condition. We do agree with Pro
fessor Chen that the breakdown at stage 2 of our Fig. 2 may also 
occur for neutral density vortex range. The centrifugal in
stability can be shown, for example, from Rayleigh theorem, to 
manifest outside the vortex core in the region where the azi-
muthal velocity, relative to the core center, decreases with the 
radius. This instability is known to occur in neutrally buoyant 
fluid such as investigated by Krutzsch in reference [3] of our 
paper. However, this instability should be stronger for the case 
of heavier vortex core than that of a neutral one and should be 
weaker for the case of buoyant vortex ring. 

Concerning the initial exit condition, we agree with Professor 
Mattingly in that the ring stability should depend on the initial 
condition under which the ring is generated. We slowly fed the 
smoke, which is cooled to room temperature through a coil, into 
the vortex chamber radially while the orifice remains open. 
When the smoke is about to fill the whole chamber we observed 
that the smoke drifted out along the edge of orifice in a manner 
like a teapot effect. If the feeding is too fast a strong drift down
ward along the center of orifice is observed. However when the 

I valve controlling the smoke flow is shut off there is a duration of 
' about 5 sec in which the smoke is almost stopped from drifting 
• downward even though the orifice is not closed. In this 5-sec 
: duration the experiment began by turning off the d-c current 
I to the magnet that controls the piston. We found that this 

process is quite satisfactory as it creates the least dLsturbance 
with our experiment. We know tha twhen a vortex is generated 
in the observation chamber there is another vortex oh'awn into the 
smoke chamber. Therefore, several seconds will elapse before 
the smoke will finally drift out of the chamber again. However, 
the vortex in the observation chamber is too far away to be dis
turbed by the drift. Our data show that the range of impulse 
time varies from 0.04 to 0.4 sec. To obtain the actual time from 
our Fig. 1 wehavei(sec) = £>2 (vNst^^)'1 = 170(Nst'Nre)~

1. 
Thus to get the longest impulse time is to choose the smallest 

Reynolds and Strouhal numbers. For N r o = 1200 and N„t = 0.28, 
we get t = 0.5 sec. We certainly agree that a 2.6-sec impulse 

. time for a 10-in-dia piston impulsing a 2-in-dia orifice will pro
duce a jet flow. 

We would like to thank Dr. Viets for offering further observa

tions on the formation of subring and the "upside down mush
rooms" structures. This shows further that the subring forma
tion is dominated by the gravitational force. 

In conclusion, we feel that we covered the flow pattern for all 
ranges of Reynolds and Strouhal numbers that are capable of 
generating a circular vortex ring under the present arrangement of 
the experiment. Of course this does not cover the case of im
miscible combination of fluids or the case of nonstationary ambi
ent fluid. 

Governing Equations for Vibrating 
Constrained-Layer Damping Sandwich 
Plates and Beams1 

D. J. MEAD.2 The authors are to be commended for the at
tempt to put a new slant on the theory of sandwich plates and 
to produce a simplified governing equation of motion. If equa
tion (37) is valid, it will lead to considerable simplification in 
computing the plate dynamic properties. 

I must confess to some uneasiness, however, about the sim
plification tha t has been achieved. In the first place, it leads to 
only two boundary conditions which need to be satisfied at each 
end of the beam (as shown in equations (42)-(48)). Tha t this is 
inadequate for a clamped boundary of a sandwich beam is easily 
shown. Such a boundary must prevent transverse displacement 
W, and rotation dW/dx (as expressed by equations (43) and (44)) 
if there is no shear deformation in the face plates. In addition, 
a condition must he imposed on the in-plane motion of the face
plates. A fully clamped boundary must also have U = 0, but 
it is conceivable that the boundary might allow U displacements, 
at the same time as it maintains W = 0 and dW/dx = 0. In 
this case, say, we might have to impose a zero value on the mid-
plane face-plate stresses, <rx. Thus three conditions in all are 
required at the clamped end. 

The governing differential equation, being biharmonic, only 
requires two boundary conditions for each end. I t seems, then, 
that in deriving this simplified equation some important con
straint has in effect been imposed, and this excludes the possibility 
of satisfying all three of the important boundary conditions. 

In the second place, the results shown in Table 1 have me 
worried! 

1 Because the results from the Mead/Markus equation 
should be the same as those from DiTaranto's (the two equations 
stem from identical assumptions, and were derived by similar 
analyses). 

2 Because the Mead/Mavkus/DiTaranto results should be 
virtually exact for the wave numbers considered, which imply 
bending wavelengths of about 60 times the thickness of the 
thickest face plate. This means that face-plate shear deforma
tion and rotatory inertia are negligible—which Mead/Markus 
and DiTaranto assumed. 

This latter fact prompts the question "Why does the new 
theory of Yan and Dowell yield different results from Mead / 
Markus and DiTaranto?" I suggest that it is due to Yan and 
Dowell assuming zero transverse stress in the layers of the sand
wich, whereas Mead/Markus and DiTaranto assumed zero 
transverse strain but finite (nonzero) transverse stress. The 

i By M.-J. Yan and E. H. Dowell, published in December, 1972, 
issue of the JOURNAL OF APPLIED MECHANICS, Vol. 39, No. 4, 
TKANS. ASME, Vol. 94, Series E, pp. 1041-1047, 

2 University of Southampton, Southampton, England. 
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DISCUSSION 

transverse stress of Mead/Markus and DiTaranto was correctly 
in equilibrium with the transverse inertia forces of the plate 
layers and with their rates of change of transverse shear force. 
Through this, the inertia forces of one layer were reacted by 
shear forces in all three layers of the plate. Yan and Dowell's 
assumption seems to lead to the conclusion that the transverse 
inertia forces in any layer are reacted by the shear forces in tha t 
layer, and in that layer alone. I t is this assumption I suggest, 
which leads to their simplified differential equation, their two 
(and not three) boundary conditions at an end, and to their 
different numerical results. 

I shall appreciate the authors' comments, and look forward to 
being corrected if I am wrong. 

Authors' Closure 
The governing equations were originally derived for the study 

of constrained-layer damping mechanisms in sandwich plates and 
beams. The authors were very surprised to arrive at such a 
simple equation form, which helps greatly in studying the com
plicated phenomena of constrained-layer damped systems. I t 
seems to the authors that not only the final equations are interest
ing, but also equations (28)-(32). These equations will reduce to 
the set of Timoshenko beam equations when only one-layer beam 
is considered. I t is possible that many more interesting and sur
prising results for multiple-layered plates can be derived following 
the same method. 

Mere knowledge of the governing differential equation can lead 
to information on the boundary conditions through a variational 
statement. If the system of equations (33)-(35) or equations 

(H)-(23) can be reduced to the biharmonic equation (37), then 
the boundary conditions which are compatible are only f0.„, 
(rather than six). Additional boundary conditions cannot bp 
entirely independent, otherwise they will lead to either trivial 
solutions or no solution. If the vibration of the sandwich is of 
main interest, this biharmonic equation with its boundary condi-
tions will yield enough information on the "global" behavior of; 

the system. If "local" behavior in the sandwich is desired the 
solution oi w(x) will lead to solutions to other functions such as 
U, S,. . . or Wt<0), M / 1 ' , . . . . This group of local solutions should 
not affect the global picture of vibrations. The assumptions and 
constraints which lead to this biharmonic equation have been 
clearly stated in the Introduction. 

Table 1 clearly shows that the solution of Mead/Markus is very 
close to Yan/Dowell. 

The authors are also interested to know "Why does DiTaranto's 
equation yield results different from Mead/Markus?" We do not 
have the answer to this question either. Also the authors could 
not see how "the conclusion that the transverse inertia forces in 
any layer are reacted by the shear forces in tha t layer, and in that 
layer alone" can be obtained from equations (11), (28), or (33), 
All physical variables are indirectly if not directly coupled, 
Finally, we note that the present theory has given results in 
reasonable agreement with experiment.3 

The discusser's interest and kind remarks are greatly appre
ciated. 

3 Yan, M.-J., and Dowell, E. H., "High-Damping Measurements 
and a Preliminary Evaluation of an Equation for Constrained-Layer 
Damping," AIAA Journal, Vol. 11, No. 3, Mar. 1973, pp. 388-390. 
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