
8 The linear analysis as applied to a squeeze film bearing is 
only valid for small displacements. The squeeze film bearing 
support which is used on a number of gas turbine designs is 
highly nonlinear in its behavior and will not function under 
certain ranges of unbalance and unidirectional loading. 

Acknowledgments 
The author wishes to acknowledge the support and encourage

ment of Robert L. Cummings and Erwin Zaretsky of NASA 
Lewis Research Center, Cleveland, on the development of this 
paper, P. De Choudhury for his assistance on programming, and 
particularly, R. Gordon Kirk for his efforts on the Rotor 4P, 
4M, and the squeeze-film bearing programs. The study was 
supported in part by NASA Grant NGR 47-005-050 and 
NASA Institutional Grant NsG-682, University of Virginia. 

References 
1 Alford, J. S., "Protecting Turbomachinery From Self-Excited 

Rotor Whirl," Journal of Engineering for Power, TBANS. ASME, 
Series A, No. 4, Oct. 1985, pp. 333-344. 

2 Kulina, M., "A New Concept for Critical Speed Control," 
SAE National Aeronautic Meeting, New York, N. Y„ April 24-27, 
1967. 

3 Dworski, J., "High-Speed Rotor Suspension Formed by Fully 
Floating Hydrodynamic Radial and Thrust Bearings," Journal of 
Engineering for Power, TRANS. ASME, Series A, No. 2, Apr. 1964, 
pp. 149-160. 

4 "New Squeeze Bearing Mount," Rocketdyne Corporation, 
Product Engineering, March 28, 1960. 

5 Van Nimwegen, Robert R., "Critical Speed Problems En
countered in the Design of High Speed Turbomachinery," SAE, 
Oct. 1964, pp. 524-536. 

6 Hamburg, G., and J. Parkinson, "Gas Turbine Shaft Dynam
ics," SAE Transactions, Vol. 70, 1962, pp. 774-784. 

7 Suter, P., "Bearing Flexibility and Damping at the First 
Critical Speed," Sulzer Technical Revi-'W S, 1962. 

8 Linn, F. C , ?nd Prohl, M. A., "The Effect of Flexibility of 
Support Upon thi Critical Speeds of High-Speed Rotors," Trans. 
SNAME, Vol. 59, 1951, pp. 536-553. 

9 Cooper, S., "Preliminary Investigation of Oil Films for Con
trol of Vibration," Proceedings of the Lubrication and Wear Convention, 
I. Mech. E. 1963, London, England. 

10 Aviation Week and Space Technology, Feb. 6, 1967, p. 39. 
11 Wood, W. J., "Non-Linear Vibration Damping Functions for 

Fluid Film Bearings," SAE Paper, 1966. 
12 Ng, C. W., and Orcutt, F. K., "Steady State and Dynamic 

Properties of the Floating-Ring Journal Bearing," JOURNAL OF 
LUBRICATION TECHNOLOGY, TRANS. ASME, Series F, Vol. 90, No. 
1, Jan. 1968, pp. 243-253. 

13 Myklestad, N. O., "A New Method of Calculating Natural 
Modes of Uncoupled Bending Vibration of Airplane Wings and 
Other Types of Beams," Journal of Aeronautical Sciences, Apr. 1944, 
pp. 153-162. 

14 Gunter, E. J., "Dynamic Stability of Rotor-Bearing Systems," 
NASA SP-113, Office of Technical Utilization, U. S. Government 
Printing Office, Washington, D. C , 1966. 

D I S C U S S I O N 

J. M. McGiew 
In recent years, j et engine manufacturers both here and abroad 

have added various forms of squeeze film bearings in series or 
parallel with conventional rolling element bearings to minimize 
the effect of unbalance on system response. The author has 
presented an analysis of the effect of support damping and stiff
ness on the dynamic response of such a hypothetical rotor-bearing 
system. 

The author emphasizes in the paper title and in the text that 
machinery using rolling element bearings is being considered. 
As a result of considering only rolling element bearings, the author 
makes a number of legitimate assumptions which simplify his 
theoretical derivations. However, the analytical model which 
the author ends up with for the squeeze-film supported rolling 
element bearing is identically the same as the analytical model 
which is obtained for a rigidly supported fluid-film bearing. 

(=) 

y—>-

Fig. 15 Nomanclatura 

A number of rotor dynamic analyses have already been pub
lished which treat fluid-film two-bearing machines, with either 
rigid and flexible rotors, where each bearing is represented by 8 
(or in general, 16) linearized coefficients. Lund and Sternlicht 
[15]3 have studied the effect of transmitted forces for a two bear
ing machine having a symmetric single-mass flexible rotor. Lund 

! Mechanical Technology Inc., Latham, N. Y. 

3 Numbers in brackets designate Additional References at end of 
Discussion (and Closure). 

Journal of Lubrication Technology JANUARY 1 9 7 0 / 69 Copyright © 1970 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/tribology/article-pdf/92/1/69/5527659/69_1.pdf by guest on 17 August 2022

https://crossmark.crossref.org/dialog/?doi=10.1115/1.3451344&domain=pdf&date_stamp=1970-01-01


Fig. 17 Possible value of a/C versus eccentricity for various unbalance levels 

[16] has also studied the attenuation of transmitted bearing 
forces for an unbalanced, flexible, symmetrical, two-mass rotor 
supported in fluid-film bearings which in turn are mounted in 
flexible, damped supports. Each bearing is characterized by 4 
spring and 4 damping coefficients. This analysis is a more gen
eral case than the author's present analysis, although it is limited 
to a symmetrical rotor while the author's analysis can treat a 
non-symmetrical rotor (provided that it is rigid). 

Lund, in [16] and [17], includes the effect of bearing support 
mass. In [16] he points out that while a soft mount is desirable 
for reducing transmitted forces, the "support resonance" due to 
the support mass may become important under soft mount con
ditions. The author's present analysis does not permit in
vestigation of "support resonance" effects because support mass 
is neglected. These effects are particularly important in jet 
engine design where casing resonances are as serious a problem as 
rotor resonances. 

The one significant advantage of the author's work over pre
vious work is that non-symmetric rotors can be handled providing 
the rotor acts as a rigid body in the speed range of interest. 

The author presents his analytical results for a range of damp
ing values. However, no mention is made in the text as to the 
actual range of damping which may be obtained from a practical 
squeeze film support bearing. 

A simple approach to calculate squeeze film damper per
formance is to make use of the short bearing approximation. 
This is valid since most practical dampers have a very low L/D 
ratio. The author assumes a linear treatment by considering 
small oscillations about a static equilibrium position (author's 
equations (8) and (9)). An alternative approach is to adopt a 
quasi-linear model by considering small oscillations about a 
quasi-static equilibrium position, a circular orbit. Neither of 
these may be a legitimate assumption. A true representation of 
the oil film would require a nonlinear model. 

However, for illustration purposes, consider the journal 
oscillating about a quasi-static equilibrium position CJS in Fig. 15. 
The instantaneous journal center is CJD. I t can be shown that 
for a "short" journal bearing with 180-deg film extent, the 
dynamic oil film forces acting on the journal can be expressed as 

where 

Fr = -C„.f - k„r + C,J 

Fs = CJ - ksrr - C„,s 

Ck, 

F„ 

- k„s + Fl0 

Ck,r 

F\ 
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(l 

Ck„ 
F0 

e«(l 

Ck,* 

8(1 + e«2) 
- eo2)[7r2(l - e 0

2 ) + lee,,2]1/2 

TT(1 - eo2)1/* 

e0[7r2(l - eo2) + 166o2]1/* 

ir(l + 2e„2) 

- 6„2)'^[7r2(l - 6„2) + 16e0
2]1/! 

4 
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k„ 
Or, = Csr = - -
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Fig. 18 Sample quasi-steady slate equilibrium calculation 

F* = 
IxL'R |~(u> — 2a>L)we 

4C2 L (1 - e2)V 2 . 

and the attitude angle is given by 

(1 - «o2)7: 
<fo = tan ' TT/4 

(37) 

(38) 

The equation of motion for a mass mounted in a damper is 

M(f - w2(r + xi + e„) - 2sco) = Fr (39) 

M(ii - (s + a,-2)co
2 + 2fw) = F, 

The equations of motion plus the film force equation lead to a 
fourth order frequency equation which is governed by the non-
dimensional parameters F^/MCw2 and €o. A relatively simple 
analysis allows for the solution of the frequency equation and the 
prediction of the regions of instability. Both the threshold of 
stability and unbalance response can be calculated using the short 
bearing approximation. 

A simplification results if it is assumed 

k = <f> = 0 

which is equivalent to a nonrotating squeeze film damper in which 
the center orbits in a circle with constant attitude angle. For 
this case the spring coefficient is given b3r 

n, 
Ce0 

2/j.oiL3 eo 

C3 (1 - e2)2 (40) 

and the damping term by 

Fio 
Co = 

ixhm 

Ccoe0 2C3 (1 - eo2) 2W2 
(41) 

Equations of Equilibrium—Quasi-Static Case. The force generated 
in the fluid film must be equal and opposite to the dynamic un
balance force in order to satisfy equilibrium. The conditions for 
balance of the quasi-static-state forces on the journal for a given 
unbalance are shown in Fig. 17. 

From the geometry of Fig. 16 the relation between a/C, x/C 
and e0 

a/C = e„ cos <p0 ± V ( x / C ) 2 - (e„ sin<p0)
2 (42) 

where <p0 is given by equation (38). Fig. 17 shows the possible 

values of - as a function of e with '— as a parameter. I t will be 

a 
noticed that for some values of e, there are two values of —, an 

inner and outer mode. 

From - and an estimate of the effective rotor mass at the 

damper the inertia force can be calculated from 

F = Maw2 (43) 

At equilibrium the inertia force must balance the film force. 
Fig. 18 shows a sample set of equilibrium curves showing possible 
running conditions for a range of unbalance eccentricities and a 
stated geometry. The intersection of the inertia curve and the 
film force curve establish a possible operating condition. For a 
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given unbalance x, this process can be repeated for a range of 
speeds and the amplitude response and phase angle \p deter
mined as a function of operating speed. 

Effect of Oil Supply. The previous discussions have assumed a 
film extent in the damper of 180 deg. This is a reasonable as
sumption for moderate supply pressures. If the supply pressure 
is increased above moderate levels, the film will extend beyond 
180 deg and the bearing will approach the Sommerfeld condition, 
that is the radial component of force Fso will approach 90 cleg. 
This has been observed by Cooper [9], He also noted that this 
effect is most predominant in damper bearings of low L/D ratio. 
Both supply pressure (i.e., film extent) and L/D ratio will affect 
damper performance. 

In practice, it is found that the quasi-static model using the 
short bearing approximation provides a reasonable tool for de
signing damper bearings. A rule of thumb based on Fig. 17 is 
that damper clearance should run about 2 to 3 times x (see Fig. 18). 

There are basically two theories for explaining squeeze film 
effectiveness (1) isolation and (2) damping. The isolation 
school states that squeeze film effectiveness is due primarily to 
isolation, i.e., by centering the rotor mass e.g. at the bearing axis. 
The other school argues that damping is the primary influence on 
squeeze film effectiveness. Would the author comment? 

I also would question how the author arrived at the spring and 
damping coefficients for the sample design case in Figs. 13 and 
14. Since damper performance is relatively insensitive to L/D 
ratio why was an L/D as large as 0.5 used? What was the as
sumed oil supply pressure and method of feeding as these will 
significantly effect the film spring and damping properties (i.e., 
film extent)? 

Lastly, the author is to be congratulated on presenting a well 
written and interesting paper which is a significant contribution 
to the rotor-dynamics literature. 

Additional References 

15 Lund, J. W„ and Sternlicht, B., "Rotor-Bearing Dynamics 
With Emphasis on Attenuation," Journal of Basic Engineering, 
TEANS. ASMB, Series D, Vol. 84, No. 4, 1962, pp. 491-502. 

16 Lund, J. W., "Attenuation of Bearing Transmitted Noise— 
Volume 2, Part 1: Attenuation of Rotor Unbalanced Forces by 
Flexible Bearing Supports," Report No. EC 232, prepared for 
Bureau of Ships under Contract NOBs-86914, Aug. 1964. 

17 Lund, J. W., "The Stability of an Elastic Rotor in Journal 
Bearings With Flexible, Damped Supports," Journal of Applied 
Mechanics, TKANS. ASME, Vol. 87, Series E, 1965, pp. 911-920. 

F. A. Shen4 

The analysis conducted by Dr. Gunter is a useful one toward 
the understanding of optimum bearing mounting stiffness and 
damping requirements in achieving a smooth running rotor over 
a predetermined speed range. The author is to be commended 
for his work in providing interesting numerical illustrations of 
the optimum bearing mounting characteristics for a rotor-bearing 
system. 

The technique of incorporating a substantially lower bearing 
mounting stiffness with or without damping in eliminating severe 
bearing reactions and shaft deflections for a speed range has been 
frequently applied in the design of a rotor-bearing system. 

To gain insight into the mechanism of bearing mounting 
stiffness and damping in affecting the rotor deflection and bear
ing reactions, an example of a rigid, single-mass rotor sym
metrically supported on two identical, force characteristic bear
ings is used. In such a case, the rotor deflection to mass ec-

centricity ratio, —, at its critical speed may be represented by 
e 

equation (44). 

C 
(44) 

where M is the rotor mass; wn, the undamped critical speed; and 
C, the bearing damping coefficient. 

The total two bearing reaction, F, at the critical speed can then 
be written as: 

F = Mco„% 
Mm, 

C + 1 
'A 

(45) 

Equation (41) clearly indicates that the bearing reaction is a 
strong function of the magnitude of the critical speed. To 
minimize the bearing reaction, an effective way would be to re
duce the critical speed by using a low bearing stiffness. In-as-
much as it is not always practical to lower the support bearing 
stiffness because of load capacity or life expectancy limitations 
of rolling-element bearings, a resilient bearing mount inserted 
between bearing and housing has been found effective in re
ducing the system critical speed; and, consequently, the bearing 
reactions. With the single-mass system, it can be shown that at 
a speed above \Z2mH the bearing reactions increase with the 
damping coefficient similar to that found by the author. 

An additional parameter which also affects the smooth running 
performance of a rotor at or near a critical speed is the rotor spin 
acceleration encountered during startup or variable speed opera
tion. According to Macchia [18], the maximum rotor deflection 
at the critical speed for a single-mass, undamped rotor under con
stant acceleration and symmetrically supported on two identical 
bearings would be 

w = 1.5 - ^ 
6 /maximum "v & 

(46) 

where a is the ratio of an applied torque to the polar inertia of 
the rotor, or the balanced angular acceleration of the rotor. 

Equation (46) suggests that for a rotor-bearing system with 
substantial angular acceleration capacity, the effects of ac
celeration on minimizing the rotor deflection, and consequently 
the bearing reactions, can be significant. 

Although a basic rule in minimizing the steady-state rotor de
flection and bearing reactions at or near a critical speed is to 
provide low bearing mount stiffness and an adequate amount of 
damping, a general formulation to determine the optimum re
quirements for a practically unlimited number of rotor-bearing 
configurations would be quite complex. Fortunately, the opti
mum bearing mount characteristics for a rotor-bearing system 
can be determined with accuracy by the application of generally 
available axisymmetric critical speed and rotordynamic response 
computer programs in a manner similar to that carried out by 

CRITICAL SPEED VERSUS REARING STIFFNESS RELATIONSHIPS 

FOR A TURROALTERNATOR UNIT 

4 North American Rockwell Corporation, Rocketdyne Division, 
Canoga Park, Calif. Mem. ASME. 

3 h 5 6 7 8 9 10^ 2 3 <i b 6 7 8 9 1 0 5 2 

BEARING STIFFNESS, L B / I N/BEA't ING 

Fig, 19 
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the author. The whirl driving component of a rotor-bearing sys
tem can be precisely represented by an appropriate negative 
damping parameter generally provided in the response computer 
program. 

A critical speed versus bearing stiffness relationship from a past 
study of a high speed turboalternator is shown in the Fig. 19. 
This was a first step in minimizing the rotor deflection and bear
ing reactions in the critical speed regions. 

While the first and second critical speed, as shown in the graph, 
are drastically lowered by using the low bearing or mount stiff
ness, the magnitude of the third critical speed, a shaft bending 
mode, is also materially affected by the bearing stiffness. In 
seeking a smooth operating speed range, the lowering of the 
third critical speed resulting from low bearing mounting stiffness 
should also be considered. 

Additional Reference 

18 Macchia, D., "Acceleration of an Unbalanced Rotor Through 
the Critical Speed," based on a Master's thesis at Cornell Uni
versity (date of paper not available). 

Author's Closure 
The author greatly appreciates the interest and valuable 

comments of J. M. McGrew and F . A. Shen to this paper. In 
reply to Mr. McGrew, I would also like to point out the excellent 
work by Lund [19] on flexible rotor response, which also includes 
the effect of bearing support mass. 

The equations to include the influence of the support mass have 
been developed and are presented in [20]. An extensive in
vestigation on the effect of the support or bearing housing re
sponse on the rotor motion was conducted by the author and 
E,. G. Kirk at the University of Virginia, and the results of this 
study are being prepared for publication. For example, Fig. 20 
represents the rotor motion of a system in which the total bearing 
housing mass Mi equals the rotor mass Mi(Mi/M2 = M = l ) a n d 
the support stiffness Ki is equal to the effective bearing and rotor 
stiffness IQ. The dimensionless damping coefficient C represents 
the ratio of damping in the support to the effective damping in 
the bearing and rotor. For light values of support damping, two 
resonance frequencies are introduced on either side of the original 

critical speed. Note that if excessive support damping is used, 
then the support becomes ineffective in attenuating the rotor 
motion, resulting in high amplitudes at the critical speed. For 
each value of support housing mass and stiffness there is an opti
mum damping coefficient for maximum rotor attenuation and 
minimum bearing forces. Fig. 21 represents the dimensionless 
rotor amplitude versus the support to bearing damping ratio for 
various stiffness ratios for the case where the total support mass is 
0.1 of the rotor mass. The value of A = 10 represents the rotor 
amplification factor at the critical speed on rigid supports. Note 
that when the support stiffness is twice the bearing stiffness 
(K = 2) the optimum damping in the support must be 30 times 
greater than the bearing damping to reduce the amplification 
factor to 3.5. If a very soft support system is used (K = 0.01) 
then the optimum support system damping value may vary over 
a wide range from 0.5 to 5 times the bearing damping value to 
achieve an amplification factor of less than 1.5, as compared to 10 
for the rigid support case. 

The orbits in Figs. 13 and 14 were obtained, not with a linear 
spring-damper system, but by integrating the forces as pre
dicted by the nonlinear Reynolds equation with the dynamical 
system equations of motion. The form of the Reynolds 
equation used for the squeeze film bearing is as follows: 

2 ^ /h? dp 
fl2 d0 \ u, i>6 

/ / i 3 i>p\ b /A» d p \ 

\M hi) + dz \M bz) 
12 

ah 
dt 

(47) 

Various methods for the numerical solution of this equation 
are given by Castelli and Pirvics [21]. A typical hydrodynamical 
pressure distribution in the squeeze film bearing, including 
cavitation, is shown in Fig. 22 and is discussed in detail in [22]. 
The fluid film extent is dependent upon the instantaneous condi
tions of displacement and velocity, and only for the case of circular 
synchronous motion about the origin or squeeze film bearing 
center will the film be 180 deg. Feeding conditions will also have 
an effect on the performance since it will effect the bearing pres
sure distribution and cavitation region. 

The particular dimensions of the squeeze bearing used in Figs. 
13 and 14 were chosen to simulate the desired optimum damping 
coefficient of 6.7 for small unbalance values [23]. This damping 
coefficient may be adequately approximated by the short bearing 
theory as presented by McGrew. The approximate damping co-

RuTOR AMPLITUDE VS. FREQUENCY RATIO 
1 1 I ! i i i i | i i . 
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1 I ' 
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I ' ' ' ' I • ' ' ' I ' ' 
1 . 0 0 0 1 .S0O 2.0(10 2 . 5 0 0 
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Fig. 20 Rotor amplitude versus dim rotor speed for various values of 
support damping (support to rotor mass ratio = 1 ) 

Journal of Lubrication Technology J A N U A R Y 1 9 7 0 / 73 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/tribology/article-pdf/92/1/69/5527659/69_1.pdf by guest on 17 August 2022



ROTOR MAXIMUM AMPLITUDE VS DAMPING RATIO 
FOR VARIOUS STIFFNESS RATIOS, K 
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Fig. 21 Rotor maximum amplitude versus damping ratio for various 
stiffness ratios {M = 0.10) 

6.56 

5.7 Pressure Profile, Pressure Surface, and Film Thickness 
for X = Y = 0, X - -Y = 0.5 

Fig. 22 Typical hydrodynamic squeeze film pressure profile including 
cavitation 
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SQUEEZE FILM BEARING 
HORIZONTAL UNBALANCED_ROTOR 

N = 28000 RPM 
R = 1.00 IN. 
L = 1.00 IN. 
C = 6.50 MILS 
TRSMRX = 21.91 
KRX = 10000 LB/IN 
EMU = 0.20 
SU = 0.006 
TRDMAX = 0.76 

WT = 4.45 
W = 29 LB. 
MUD5 = 0.100 REYNS 
FMAX = -.635.5 LB. RND 
OCCURS AT 2.08 CYCLE 

KRY = 10000 LB/IN 
FU = 838.84 LB. 
FURAT10 = 28.93 
ESU = 0.905 

SQUEEZE FILM BEARING 
VERTICAL UNBALANCED ROTOR N0.1I22B3 

N = 28000 RPM 
R = 1.00 IN. 
L = 1.00 IN. 
C = 6.50 MILS 
TRSMAX = 93.41 
KRX = 10000 LB/IN 
EMU = 0.20 
SU = 0.026 
TRDMAX = 3.23 

WT = 0.00 
W = 29 LB. 
MUaS = 0.100 REYNS 
FMAX = 2709.7 LB. AND 
OCCURS AT 0.38 CYCLE 

KRY = 10000 LB/IN 
FU = 838.84 LB. 
FURATIO = 28.93 
ESU = 0.805 

r ig . 23 Rotor motion in a squeeze film bearing after 20 cycles with 
vertical loading Fig. 24 Initial transient-motion of a rotor in a squeeze film with suddenly 

applied shock load 

efficient is calculated by equation (37) as follows: Assuming 
e„ = 0.2 

Co = 
fiLzR IT _ 1 X 1CT6 X I s X 1 X 3.14 

2C (1 - «o2)V2 ~ 2 X (0.0005)3 X (1 - 0.22)3/! 
= 6.1 

If the rotor is operated with external unidirectional loads, the 
motion is not purely circular synchronous about the origin and 
the squeeze film contribution due to the e term can not be ig
nored. For example, Fig. 23 is identical to Fig. 14 but with the 
addition of a 100-lb vertical load. Note that the motion is no 
longer circular about the origin but has developed a subhamionic 
Va frequency component (not to be confused with 1/t frequency 
whirl encountered in plain bearings) due to the nonlinear bearing-
forces. The force transmitted has increased by a factor of 9 
from only 70 lb to over 635 lb due to this slight unidirectional 
loading. 

If the squeeze film damper is to be confidently incorporated in 
aviation gas turbines, then the author believes that further non
linear transient analysis of this system is required. Fig. 24 

represents the shaft motion caused by a suddenly applied shock 
load on the system. Note that the motion does not damp out 
nicely as was the case with the suddenly applied unbalance in 
Fig. 13; a large sustained transient orbit has been developed caus
ing a transmitted force of over 2700 lb. The occurrence of such 
a motion in an actual operating system could be disasterous. 
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