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A finite-sample version of this disaster is even easier to arrange. For example,
ifl1 <i<n,let

8, = 0 with probability 1 — A/n,
8,=Vn W, with probability A/n.

The moral seems clear: Second-order moment conditions or no, with skew
long-tailed errors that change from observation to observation, the jackknife
cannot be relied upon. On the other hand, preliminary calculations suggest that
in our special case, with independence, in the presence of Lindeberg’s condition
both the jackknife and the bootstrap will perform adequately. Wu admits
dependent errors, and this introduces further complications.
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Professor Wu is to be complimented for bringing out several important issues
on jackknife, bootstrap and other resampling methods in regression analysis.
Using a representation of the full-data least-squares estimator as a weighted
average of corresponding least-squares estimators for appropriately chosen sub-
sets, he has been able to motivate very successfully general-weighted jackknife in
regression. I agree with the author that a jackknife that allows for the deletion
of an arbitrary number of observations at a time is more flexible than the
delete-one jackknife. However, I will be surprised if, for estimating nonsmooth
functions such as the median, a delete-d jackknife estimator will necessarily
rectify the deficiency of a delete-one jackknife estimator.

Although v,,, enjoys the same robustness property of vy, when the errors
are independent, but not identically distributed, and the design matrix satisfies
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conditions (C1)—(C3) given in Section 5 of this paper, I will be hesitant to
recommend use of either v,,, or vy, when there is dependence among the
errors. To see this, consider the following two sample problem.

Let y, =8+ e, (i= ,nj; j=1,2), where E(e,j) 0, V(ie,;) =02
Cov(e,J, e;;) = p;o 20 < P; < 1) when i # 1 and Cov(eu, = 0 when j # J’,
1<i<nj j=1,2. This s1tuat10n arises quite often in mlxed models and is a

generalization of the model considered by Professor Wu in Section 6 of his paper
when p, = p, = 0. In our setup, the design matrix X can be written as

(1) XT=(xu’“-:xnll’xm’---»xn 2)s

where x] = (1 0) and x5 = (0 1). Also, writing I, for the identity matrix of
order u and 1, for the u-component column vector w1th all its elements equal to
1, one can express the variance—covariance matrix = as

@ =e)L, + e, 17 0
0 (1 = p)1,, + pol, 17

ng ny

(2)

Since, in this case 2X = X@ with @ = diag(1 + (n, — 1)p,,1 + (n2 1)p,), the
BLUE S of B is the same as its LSE (see Zyskind (1967)) and is given by

B, Y,
Thus,

(3) V(B) = o’diag(n; (1 + (n, — 1)p,), n3'(1 + (ny — 1)py)).

We shall now see that Ev,;,, + V(B) when min(n,, n,) — oo.
To see this, define

r,-j=y,-j—xiTj,é=yij—5'j, i=1,...,n; j=1,2.
Easy calculations give
(4) E(r;) =0, E(rl%») = 02(1 - n;‘)(l - p;).
Also, write w; —-x,j(XTX) 'x;; so that

(5) w;;=n;' foreveryi=1,...,n;and j=1,2.
Note that

6 ~ 2 N . ~
( ) 0J(1)= (XTX) Z Z _21( 'wij) lj ij (XTX)

so that after some algebra, one gets
(7) E[v,4,] = o’diag(n; (1 - py), 2y (1 — p,)).

Thus, when min(n,, n,) - o, E[v,,] > 0, while V(B) — o%diag(p,, p,).
A similar phenomenon holds for vy,,. Our model is suitable when there is
exchangeability among observations receiving the same treatment, and is as
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realistic as the assumption of their independence. Routine use of v, or vy,
without any modification seems to be dangerous in this situation as it may lead
to inconsistent estimators of V().

As a second example, consider the simple linear regression model y, = a +
B(x; — X) + e;, where E(e;) =0, V(e;) = 0¢® and Cov(e,, e;) = pa?(0 < p <1),
1 < i # j < n. This example, though similar to the previous one, brings out some
extra features not found earlier. In particular, we shall see that while the
appropriate component of v,,, unbiasedly estimates V(f), the other diagonal
element of v, gives an inconsistent estimator of V(a&).

To see this, write

(8) XT=( v xl_f) and 3 = V(e) = o2[(1 — p)I, + p1,17].

xl_f e n

Hence, 2X = X@ with @ = diag(1 + (n — 1)p,1 — p). Thus, once again, the

BLUE of ( 3] is the same as its LSE, and is given by , where & = ¥ and
B

&
B

.é Zyi(xi_-’f)/z (xi_f)z-
i=1 i=1

Hence,
V(&) = o’ 1+ (n—1)p),  V(B) =o%(1 - p)/ Y (2~ %),
i=1
and Cov(a&, ,é ) = 0. Also, using Professor Wu’s notation, in this case
w ="+ (2= 2 X (- B,
i=1 ,

E(r;)=0and E(r?) = o%1 - p)(1 — w,). Hence,

Eloy] = 051~ p)(X7X) " = 071 - p)diag(n-l,( > (5, x)))

i=1

Thus as n — oo, V(&) — pa?, but the corresponding component of E[v )
converges to zero. What I would like to see is a general theory for jackknife with
some correlated error structure as in the preceding text.

It is possibly difficult to make analytic comparison of the MSE’s of the
different estimators of V(£), but it would have been instructive to see their
Monte Carlo performances at least in some of the specific examples considered
by the author.
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