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of the bootstrap estimate of variance to the asymptotic variance. Nor does weak
convergence to normality of the empirical distribution of the centered pseudoval-
ues guarantee corresponding convergence of the jackknife estimate of variance.
The situation begs for robustification—replacement of the variance functional
by a scale equivariant functional that equals variance at normal distributions,
but is weakly continuous there while retaining high asymptotic efficiency. One
possibility is a standardized trimmed variance.

A similar argument exists for replacing the mean functional by a symmetri-
cally trimmed mean (say) in bootstrap and jackknife estimates of bias.
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Professor Wu is to be congratulated on a very interesting paper that advances
our knowledge of jackknife methods and illustrates some problems of hetero-
scedastic data. Of course, Professor Wu’s paper does not demonstrate a superior-
ity of the jackknife over the bootstrap and is not intended as such. The
bootstrap is a more general method. The bootstrap philosophy is to estimate the
probability distribution of the data as accurately as possible and then find or
approximate the sampling distribution of the relevant statistic under this esti-
mated distribution. We agree with this philosophy. The present paper does a
great service in underscoring the need for care about assumptions, both in this
specific case and in statistics in general.

The robustness of the jackknife variance estimator to nonconstant variance is
an interesting and potentially useful property, but what is its real importance for
statistical practice? To answer this question we need to ask, “What types of
heteroscedasticity can we expect in practice and what should be done about
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them?” There are at least three basic forms of heteroscedasticity:

(1) o; is unrelated to x; or is only slightly dependent on x,.

(2) o; varies systematically and smoothly with x;, perhaps as a function of the
mean xB.

(3) o, is (nearly) constant for most observations but is large for one or at most a
few cases, which will typically be response outliers.

A particularly simple case included in (1) is where the ¢’s are mutually
independent, identically distributed, and independent of the x’s. Unconditional
on the unkown o’s the errors u; = o;¢; are homoscedastic though heavier-tailed
than the e’s. The least-squares estimator should probably be replaced by a
robust estimate, but the usual (exchangeable errors) bootstrap can be used.

In case (2) careful data analysis will often allow us to model the relationship
between ¢ and x. We examined several Monte Carlo samples from the “unequal
variances” model in Section 10. For most samples the pattern of the residuals
indicates that o is an increasing function of x. In such a situation one very well
might postulate the model ‘

(1) o; = ox{,

which is in fact the true model here. Other models, e.g., that ¢ is a linear
function of x, would serve as acceptable approximations to the true model.
Heteroscedastic regression models where the variance depends on unknown
parameters are the subject of an extensive literature, e.g., Box and Hill (1974),
Jobson and Fuller (1980), Carroll and Ruppert (1982, 1987). For larger data sets
and possibly even when the sample size is as small as here (n = 12), o can be
estimated nonparametrically as a smooth function of x (Carroll, 1982).

We performed a Monte Carlo study of an estimator based on the true model
(1) applied to Wu’s unequal variances model. The parameters o and 6 were
initially estimated by nonlinear least squares:

(/6] - 1) = min,

i=1

where r; = (¥, — x!8)/(1 — w,). These estimators of 6 and ¢ are asymptotically
equivalent to the MLE. In practice, one will want to estimate 8 by generalized
least squares (least squares with inverse estimated variances as weights), and
usually better estimates of § can be obtained by GLS residuals. Most often in
our study § was close to the true value 6 = 0.5, but occasionally 6 fell below 0 or
was greater than 1. Typically the statistician has some prior knowledge of the
possible types of heteroscedasticity, for example that o neither decreases with x
nor increases too rapidly with x, and this prior information can be particularly
important for small data sets. We used the estimators § = min{1, max{0, d}} and

7= % [ =)/ DI/ - ).
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Then we estimated the covariance matrix of the unweighted LS estimate § by
(XX) " (XEX)(XX) ™,
where $ = diag{(6x?)]. The relative biases are

(0,0) ©,1) (0,2) (1, 1) 1,2) (2,2)
0.149 —0.120 0.118 0.095 —0.096 0.098.

Except for (0,0) and (0,1) the relative biases are close to those of the best
jackknife estimators, and for all elements of the covariance matrix the squared
biases were always less that 6% of the MSE. There are several advantages to
modeling the heteroscedasticity rather than using least squares and a robust (to
heteroscedasticity) variance estimate. The generalized least-squares estimator is
asymptotically fully efficient. Prediction intervals for y given a “new x” can be
extremely biased if a homoscedastic model is incorrectly assumed, even if the
covariance matrix of 8 is properly estimated. The weighted residuals are (ap-
proximately) exchangeable and can be bootstrapped. The bootstrap would pick
up the extra variability in the generalized least-squares estimator due to estima-
tion of the weights. Even when the heteroscedasticity is modeled, there may be
residual heterogeneity of variance due to modeling error, and a variance estima-
tor robust to heteroscedasticity might sometimes be appropriate. For the same
reason, a robust M-estimator would be preferable to least squares.

Heteroscedasticity of type (3) can occur when the regressicn model breaks
down or the response suddenly becomes more variable at the extremes of the
factor space. An interesting example of this is the Pamlico Sound salinity data in
Carroll and Ruppert (1985). In such situations o is large for high leverage points
and the assumption of homoscedasticity can cause a severe downward bias in the
estimated variance of f. In this case Wu’s jackknife estimates may be very
useful, though it is quite likely that the bootstrap methodology can be extended
to apply here as well. In any case a bounded influence estimate (Krasker and
Welsch (1982)) would be preferable to least squares. It is interesting to note that
Huber’s (1983) objection to bounded-influence estimation, namely that the
saddlepoint (where the Krasker—Welsch estimator is minimax) “corresponds to
the (unrealistically pessimistic) assumption that Nature selectively places most
of the contamination on points with the highest leverage,” does not apply here.
The pessimistic assumption is realistic in this situation, as well as in many
others.
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The remarks that follow are mainly critical, but that is not unusual when
statisticians discuss difficult new areas of research. My criticism is not meant to
obscure the paper’s many positive achievements: the neat development of
resampling methods for the linear regression problem, in particular Theorem 2;
the extended class of weighted jackknives introduced in Section 4, and their
justification in Theorem 3; and the intriguing suggestion in Section 8 for a more
general weighted jackknife based on the Fisher information. The paper’s main
fault, in my opinion, is not the absence of interesting new ideas but rather an
overinterpretation of results, which leads to bold distinctions not based on
genuine differences.

(A) I reran part of the simulation experiment of Section 10, exactly as
described except for the following change: Instead of taking the e, ~ N(0, x,/2),
I took them N(0,|x; — 5.5|). This gives nearly the same set of variances for the
errors e;, but with the large variances occurring at both ends of the x range,
rather than just at the right end. Only the estimation of Var(g,) (actually equal
3.64 in this situation) was considered, and only by the two estimators v,
definition (5.1), and 9, definition (2.9).

Here are summary statistics for 400 Monte Carlo trials:

mean st. dev. rms
0 3.47 3.14 3.14
D 2.40 1.20 1.73

(rms indicates root mean square error). Now &, the ordinary estimator (and also
the “residual bootstrap” estimator v, (2.9)), is biased sharply downward instead
of upward as in Table 1; v, is nearly unbiased, as it was designed to be.

However v,,, is much more variable than o, having nearly three times the
standard deviation and twice the rms error for estimating Var(B,). The per-
centiles of the two Monte Carlo distributions

5% 10% 16% 50% (true) 84% 90% 95%
Uy 0.57 0.83 1.02 2.47 (3.64) 6.15 7.80 9.63
) 0.88 1.12 1.27 2.14 (3.64) 3.65 4.06 4.56



