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KINEMATIC BENDING OF FIXED-HEAD PILES IN NON-
HOMOGENEOUS SOIL 

 
Raffaele DI LAORA1 and Emmanouil ROVITHIS2 

ABSTRACT 

Kinematic bending of piles in inhomogeneous soil is explored in static and dynamic regime. 
The system under consideration consists of a fixed-head pile embedded in a continuously 
inhomogeneous viscoelastic soil layer resting on a rigid base. A generalized parabolic function is 
employed to describe the variable shear modulus in the inhomogeneous stratum. The problem is 
treated numerically by means of rigorous elastodynamic finite-element analyses and Beam-on-
Dynamic-Winkler-Foundation (BDWF) formulations. A design formula for kinematic pile-head 
moments is derived both for static and dynamic loading by employing a characteristic pile 
wavenumber. A new normalization scheme for dynamic pile bending is proposed by means of a single 
dimensionless frequency parameter governing kinematic pile-head moments. A numerical example is 
also provided. 

INTRODUCTION 

Piled foundations may be subjected to large curvatures during earthquakes due to deformations 
developing in the surrounding soil, even in absence of forces applied at the top. This interaction 
mechanism is known as “kinematic interaction”. Evidence on kinematically-stressed piles has been 
identified in post-earthquake observations (Tazoh et al. 1984, Tazoh et al. 1987, Mizuno 1987, 
Nikolaou et al. 2001) in soils that have not experienced large movements such as those induced by 
liquefaction. The above field data, in conjunction with analytical evidence to be discussed below has 
revealed the possibility of pile damage close to the pile head or near interfaces separating soil layers 
with sharply different stiffness. Pile-soil kinematic interaction has been the subject of systematic 
research (e.g. Margason 1975, Flores-Berrones and Whitman 1982, Kavvadas and Gazetas 1993). 
Thus, a number of design-oriented scientific works (Mylonakis 2001, Nikolaou et al. 2001, Maiorano 
et al. 2009, Di Laora et al. 2012) provided simplified solutions for kinematic pile moments at the 
interface between two consecutive layers with sharply differing stiffness, considered as a critical 
condition by modern seismic codes (CEN 2003, Norme Tecniche per le Costruzioni, 2008). However, 
pile-head kinematic moments may be equally important for soils with small stiffness near surface 
where kinematic forces tend to dominate over inertial ones, especially for large-diameter piles (Di 
Laora and Mandolini 2011). With reference to a two-layer soil, the issue has been investigated 
recently by means of Finite-Element analyses (Dezi et al. 2010; de Sanctis et al. 2010), leading to 
approximate correlations between pile-head kinematic moments and maximum acceleration at the 
surface. Later, Di Laora et al. (2013) investigated the interplay between interface and pile-head 
kinematic moments, concluding that pile-head curvature is approximately equal to soil curvature at 
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surface in the case of deep interfaces, whereas it assumes lower values for low interface depths, due to 
the restraining action provided by the deeper and stiffer soil layer.  
Along these lines, kinematic bending moments at the pile-head are explored in this paper referring to a 
long pile embedded in a continuously inhomogeneous layer over a rigid base. The variation of soil 
stiffness with depth is described by a generalized parabolic function accounting both for zero and 
finite shear modulus at the surface. The problem is treated numerically by means of rigorous Finite-
Element analyses in static and dynamic regime. A simplified Beam-on-Dynamic-Winkler-Foundation 
(BDWF) model in conjunction with a layer transfer-matrix approach known as the Haskell-Thompson 
technique (Thompson 1950) is also employed to elucidate the role of Winkler modulus on kinematic 
pile-head bending. The scope of the study is: (a) to elucidate the role of key dimensionless parameters 
of the problem; (b) to propose a new formulation for the active length of piles in continuously 
inhomogeneous soils; (c) to introduce the notion of an effective soil curvature being equal to pile-head 
kinematic curvature both in static and dynamic regime and (d) to implement a unique dimensionless 
frequency governing dynamic pile-head kinematic bending.  
 

 
 

Figure 1. Problem under consideration: a single elastic fixed-head pile embedded in a continuously 
inhomogeneous layer over rigid rock. 

PROBLEM STATEMENT 

The system under consideration consists of a fixed-head pile embedded in a continuously 
inhomogeneous viscoelastic soil layer on a rigid base (Fig. 1). The pile is modelled as a linearly elastic 
cylindrical solid beam of diameter d, length L, elastic modulus Ep and mass density ρp. Soil mass 
density, ρs, Poisson’s ratio, vs, and hysteretic damping ratio, βs, are considered constant with depth, 
whereas shear modulus Gs(z) is assumed to increase according to the generalized power law function: 

 

  
n

s sd

z
G (z) = G a + (1 a)

d
   

 (1) 

 
where a = (Gso / Gsd)

1/n and n are dimensionless inhomogeneity factors, Gso being the shear modulus at 
ground surface (z = 0) and Gsd referring to the shear modulus at the depth of one pile diameter (z = d). 
In this manner, the adopted stiffness variation allows study of a wide range of soils not covered in the 
pile dynamics literature. For a soft or moderately over-consolidated cohesive soil, a linear relationship 
between stiffness and depth is generally adequate. Cohesionless soils follow a less-than-linear 
distribution of shear modulus with depth, associated with n < 1. Naturally, for values of the 
inhomogeneity factor n close to zero or Gso / Gsd ratio close to 1, Eq. 1 describes a homogeneous 
medium (i.e. Gso = Gsd), whereas for n = 1 a Gibson-type soil is modeled having either zero or finite 
stiffness at the free surface depending on the value of parameter a. Representative Gs(z) profiles 
normalized by the shear modulus of the inhomogeneous layer at the depth of one pile diameter (Gsd) 
are plotted in Fig. 2a, referring to a uniform (n = 0), a proportional-with-depth (a = 0, n = 1), a 
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parabolic (a = 0, n = 0.5) and a linear (a = 0.5, n = 1) distribution of soil stiffness. The pile-soil system 
is subjected to harmonic S-waves having different frequencies propagating in the soil mass. 
 

 
 

Figure 2. Representative soil profiles referring to a uniform (n=0), proportional (a = 0, n = 1), parabolic (a = 0, n 
= 0.5) and linear (a = 0.5, n = 1) distribution of soil stiffness (a) and corresponding free-field response in terms 

of normalized (b) displacement, (c) curvature and (d) shear strain with depth.  

STATIC BEHAVIOR  

One-dimensional soil response  

Under constant ground acceleration (as), equilibrium of an one-dimensional soil column with 
constant mass density ρs and variable shear modulus, G(z), is described by the differential equation: 

 

 s s

dτ(z)
= a ρ

dz
                            (2) 

in which the product (asρs) represents the body force imposed to an infinitesimal soil element of height  
dz and (z)  is the shear stress related to shear strain γ(z) [= dus(z) / dz] through: 

 

   sdu (z)
(z) G(z)

dz
                                                 (3) 

 
where us(z) is soil displacement. Accordingly, Eq.2 takes the form  
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 
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                                                 (4) 

 
Upon integrating twice and imposing the boundary conditions of zero shear stress at soil surface 

[(0) = 0] and zero soil displacements at the base [us(H) = 0], soil lateral displacement is obtained as: 
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           (5) 

 
The solution in terms of soil shear strain and soil curvature is expressed by: 
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         (7) 

 
Equations 5, 6 and 7 are plotted in dimensionless form in Fig. 2b, 2d and 2c, respectively, 

referring to the inhomogeneous profiles shown in Fig. 2a. 

Effective soil curvature (1/R)s,eff 

For homogeneous soils, a common kinematic interaction factor for evaluating head bending is 
represented by pile-soil curvature ratio, defined as pile-head curvature over soil curvature at soil 
surface. In the case of an inhomogeneous soil with stiffness increasing proportionally with depth, such 
as that described by Eq. 1 for a = 0 and n = 1, the above ratio cannot be employed since soil curvature 
at ground surface is infinite (Fig. 2c) as evident from Eq. 7. An alternative representation of kinematic 
bending was reported in Mylonakis (2001) by implementing a strain transmissibility function (εp/γs), 
relating peak pile bending strain (εp) at the outer fiber of the pile section and soil shear strain (γs). 
Accordingly, the above kinematic index is not applicable at the level of the pile head since shear strain 
at ground surface can be either zero or infinite, depending on the rate of soil stiffness distribution with 
depth (Rovithis et al. 2011), whereas a fixed-head pile will always experience a finite curvature.  

Towards the definition of a physically-based interaction factor to be applied in any subsoil 
condition, one could think that pile-head curvature (1/R)p should depend on the whole distribution of 
free-field deformations along the pile (Fig. 3). Hence, in this study the notion of an effective soil 
curvature (1/R)s,eff is introduced as: 

  

 s eff
s,eff

eff

γ (z )
(1/R) =

z
 (8) 

 
where zeff stands for an effective depth of soil contributing to kinematic pile-head bending 

(whose value will be identified in the ensuing) and γs(zeff) is the corresponding shear strain of soil 
computed at z = zeff by means of Eq. 6: 

 

 
1

s s eff eff
eff

sd

a ρ z z
γ(z ) = a + (1 a)

G d


   

 (9)  
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Figure 3. Distribution of free-field and pile curvatures along depth and definition of soil effective curvature. 

 
Table 1. Parameters values employed in the parametric study. 

ρp / ρs Ep / Esd a n νs 

1.25 600 0 0 0.3 
1.5 3000 0.25 0.25 0.499 

  0.5 0.5  
  0.75 0.75  
  1 1  

 
(1/R)s,eff in Eq. 8 may be viewed as an average soil curvature along zeff which always has a finite 

value and reflects the physics of the interaction phenomenon (Fig. 3). 
The ratio of pile-head curvature to effective soil curvature [(1/R)p / (1/R)s,eff] will be employed in 

the ensuing to describe pile-head kinematic bending in inhomogeneous soils. 

Pile-head curvature: numerical analyses 

With reference to long piles [i.e. piles with length larger than the active one (Randolph 1981)], 
the main parameters affecting pile-soil interaction in static regime are: pile diameter d, Young’s 
modulus Ep and density ρp, and soil properties expressed by density ρs, coefficients a and n, Young’s 
modulus at one diameter of depth Esd and Poisson’s coefficient s. 

In light of dimensional analysis, it is straightforward to show that three out of the eight 
parameters mentioned above are dimensionally independent. Thus, (1/R)p/(1/R)s,eff ratio may be 
expressed as a function of five dimensionless parameters: 

 

 p p p
s

s,eff s sd

(1/ R) ρ E
= , ,a, n,

(1/ R) ρ E
f
 

 
 

  (10) 

 
A parametric investigation was performed to evaluate kinematic pile-head bending by means of 

rigorous finite-element analyses. The specific values of the dimensionless parameters in Eq. 10 
combined within the parametric study are summarized in Table 1 leading to a total of 136 cases.  

FE model  

Following Wilson (1965), the original three-dimensional soil-pile system may be conveniently 
reduced to a two-dimensional one, taking advantage from the axisymmetric geometry and the anti-
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symmetric load. Numerical analyses were conducted using the commercial FE code ANSYS (Ansys 
Inc. 2005). Four-noded axisymmetric 2D elements were used to mesh soil and pile, having a vertical 
dimension equal to d/4 and an horizontal dimension varying from d/6 (at pile-soil interface) to 1.5d (at 
the lateral boundaries). Vertical displacements were merely restrained at the lateral boundaries of the 
model, located far enough from the pile, to allow diffracted waves to attenuate due to the soil material 
damping. More specifically, lateral boundaries were placed 400 pile diameters away from pile axis to 
model accurately low soil damping. Base nodes were restrained against both horizontal and vertical 
motion to model a rigid bedrock. The height of the soil layer was set equal to 30 pile diameters, 
whereas pile length was considered equal to 25 pile diameters. 

The analyses performed in the parametric study were carried out in the frequency domain, 
where soil possesses a constant hysteretic (frequency-independent) damping ratio equal to 5%. The 
load consists of a horizontal acceleration and is applied in the form of a body force imposed to the 
elements.  

Effective soil curvature as a measure of pile-head curvature  

The effective depth zeff introduced in Eq. 8 may be derived by considering that the effective 
portion of soil controlling pile head bending is proportional to a characteristic wavelength of the pile-
soil system. To this end, an average wavenumber μ may be introduced as (Mylonakis 1995): 

 

 
aL

0
a

1
μ = λ(z)dz

L   (11) 

 
where the active pile length La may be taken equal to 10 pile diameters, as a first approximation, 

for typical values of pile-to-soil stiffness ratio, based on the corresponding expression proposed by 
Randolph (1981), andzis the Winkler wavenumber: 

 

 

1 4

x

p p

k (z)
λ(z) =

4E I

 
 
  

 (12) 

 
Τwo assumptions are made to compute μ (measured in units of 1/Length). First, μ and λ are 

treated as real-valued functions implying low-frequency loading. The validity of this assumption has 
been demonstrated by Krishnan et al. (1983) and Gazetas and Dobry (1984). Second, it is assumed that 
the Winkler springs modulus kx(z) varies with depth with the same law as soil Young’s modulus Es(z) 
does (Mylonakis and Roumbas, 2001):    

 

 
n

x d

z
k (z) = k a + (1 a)

d
   

 (13) 

In the above equation, kd refers to the spring coefficient at one pile diameter depth given by the 
corresponding Young’s modulus of soil (Esd) times a proportionality coefficient δ [i.e. kd = δEsd] 
(Roesset 1980, Dobry et al. 1982, Gazetas and Dobry 1984). The effect of δ on kinematic pile-head 
bending is discussed in the sequel as part of a sensitivity analysis. The solution of the integral in Eq. 
11 may be expressed as: 

 

 

  
   

4 n 4 n
d 4 4

a an

4
a

4
μ ad ad L aL

d L 4 n a 1

         
 (14) 
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Figure 4. Correlation between pile-head curvature (obtained from Finite Element analysis) and soil effective 

curvature (computed by means of Eqs 8 and 16) 

 
where λd corresponds to the (static) wavenumber of a pile in a homogeneous layer with Young’s 

modulus equal to Esd: 
 

 

1 4

d
d

p p

k
λ =

4E I

 
 
  

 (15) 

 
In Fig. 4, finite-element results in terms of pile-head curvature are compared to the effective soil 

curvature computed by means of Eq. 8, where zeff is assumed as equal to: 
 

 eff

1.25
z =

μ
 (16) 

 
Each circle point in Fig. 4 corresponds to a different soil-pile configuration of Table 1. The 

excellent correlation between the above parameters is evident. 

Active pile length in inhomogeneous soils 

Under kinematic loading, active pile length La is defined in this study as the length beyond 
which a pile behaves as infinitely long in terms of pile-head curvature, meaning that further increase in 
pile length does not exert any significant effect on pile-head bending.  

Based on the above definition, a set of finite element analyses was performed to derive a simple 
expression of La that may be readily employed in design and analysis procedures. For this reason, a 
cylindrical pile of increasing length embedded in the inhomogeneous soil profiles shown in Fig. 2a 
was employed. Pile-head curvature to effective soil curvature (1/R)p/(1/R)s,eff ratios are plotted in Fig. 
5a against the dimensionless pile length μL. It is observed that for values of μL larger than 2.5, the 
curves converge leading to (1/R)p/(1/R)s,eff ratios equal to 1. The above value may be interpreted as an 
active dimensionless pile length, leading directly to a simple expression for La:  

 

 a

2.5
L =

μ
 (17) 
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Since the exact value of La can be derived only iteratively (recall that  depends on La), the value of La 

= 10d mentioned above is suggested as a starting point for calculating  in Eq. 14; however, even a 
single iteration leads to quite accurate results. A comparison between Eq. 17 and earlier definitions of 
La reported in Davies and Budhu (1986), Budhu and Davies (1987) and Gazetas (1991) is given in Fig. 
5b as a function of pile-soil stiffness ratio Ep/Esd.   

Upon combining Eqs 1, 8, 9, 16 and 17, the following design formula for kinematic pile-head 
bending is obtained: 

 

      
s s s s

p
eff a

a ρ a ρ
1/ R =

G z G L / 2
   (18)  

 
The above expressions imply that the effective depth zeff has the following properties: (a) it is half of 
the active pile length; (b) the soil shear modulus G(zeff) represents the stiffness of an equivalent 
homogeneous soil that leads to equal kinematic pile-head bending as in the inhomogeneous case. With 
reference to short piles (i.e. μL < 2.5), Fig. 5a allows a simple expression for the kinematic head 
curvature to be employed for practical purposes: 

 

  2p

s,eff.

(1/R)
= 0.3 μL

(1/R)
 (19) 

 

 

(a) 
 

(b) 
 

Figure 5. (a) Pile-head curvature to effective soil curvature ratio as function of pile mechanical slenderness L 
(b) Comparison between proposed formulation for active pile length and existing formulae. 

Winkler spring stiffness effect 

Mention has already been made to the stiffness (kx) of the Winkler springs representing soil 
reaction, defined by the product of soil Young’s modulus times a proportionality coefficient δ. Various 
formulations have been proposed to compute δ under inertial or kinematic action. Following the early 
work of Blaney et al. (1976), Roesset (1980) proposed the value: 
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 δ = 1.2  (20) 
 

regardless of the mechanical parameters involved in the interaction problem. Improvements over the 
above formula have been presented in Dobry et al. (1982), Gazetas and Dobry (1984) and Syngros 
(2004), referring to pile-head loading. For kinematic pile bending of long piles in a two-layer soil, 
Mylonakis (2001) simplified the original expression proposed by Kavvadas and Gazetas (1993) by 
relating δ to pile-to-soil stiffness ratio according to the equation: 

 

 

1 8

p

s1

E
δ 6

E


 

  
 

 (21) 

where Es1 is the Young’s modulus of the upper layer.  
A sensitivity analysis was performed to investigate the effect of δ on kinematic pile-head 

bending. A hybrid numerical-analytical solution was adopted in the realm of a Beam-on-Dynamic-
Winkler-Foundation (BDWF) model in conjunction with a layer transfer-matrix approach known as 
the Haskell-Thompson technique. Further details may be found in Rovithis et al. (2013). The spring 
stiffness of the Winkler medium was defined by means of Eqs 20 and 21 (by replacing Es1 with the 
characteristic soil Young’s modulus Esd) whereas δ = 2 was also examined as a third case. 

Comparative results between FE and Winkler analyses in terms of pile-head curvature are 
shown in Fig. 6a, referring to the complete set of the examined soil-pile configurations (Table 1). It is 
observed that Winkler spring stiffness has a minor effect on kinematic bending. However, a value of δ 
close to 2 may be considered suitable when pile-head curvature is to be matched, in agreement with 
results obtained by Anoyatis et al. (2013). 

 

 

0 0.5 1 1.5

aeff = / Vs,av

0

0.5

1

1.5

upper bound: (1 + 0.2 aeff
3)-1

mean: (1 + 0.3 aeff
3)-1

all cases

(b)

 
 

Figure 6. (a) Effect of spring stiffness coefficient  on pile-head curvature (b) Dynamic reduction of pile-head 
curvature as function of the dimensionless frequency parameter aeff. 

DYNAMIC BEHAVIOR    

Towards an identification of the key parameters involved in kinematic pile-head bending under 
dynamic action, an average shear wave velocity Vs,av. is defined as:  

 

 

eff

eff
s,av z

s0

z
V

dz

V (z)
=  (22) 
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providing equal travel times between a homogeneous soil with Vs=Vs,av and an inhomogeneous 
soil. Upon introducing Eq. 1, the above expression may be rewritten as: 

 

 

eff
s,av 1 n 2

1 n 2 eff

z (a 1)(n 2)
V

z
2d a + a + (1 a)

d




 
      

   

=         (23) 

 
In this manner, a new normalization scheme for dynamic pile bending is proposed by means of 

the dimensionless frequency parameter aeff: 
 

 
eff

s,av

ω
a =

μV
         (24) 

 
(1/R)dyn./(1/R)st ratios for the complete set of inhomogeneous soils under investigation are 

plotted in Fig. 6b against aeff.. The evident similarity of the curves indicates that kinematic pile-head 
moments in inhomogeneous soil are essentially governed by the single dimensionless frequency 
parameter given in Eq. 24. Approximate mean and upper-bound curves are also suggested as a useful 
manner to determine dynamic effects in kinematic pile-head bending.  

APPLICATION EXAMPLE 

The case of a fixed-head solid cylindrical concrete pile embedded in normally-consolidated clay 
is employed as an application example of the proposed analysis. The pile has diameter d = 0.8 m and 
Young’s modulus Ep = 30 GPa. The evaluation of kinematic demand is performed under the 
conservative assumption of low frequency excitation. Soil shear modulus varies linearly with depth 
according to the law G(z) = 500 + 1500 z, where G(z) is expressed in kPa and z in meters, 
corresponding to a = 0.6 and n = 1 in Eq. 1. Shear modulus Gsd at a depth of one pile diameter is, 
therefore, equal to 1700 kPa. Poisson coefficient and mass density were set at 0.5 and 1.8 Mg/m3, 
respectively, corresponding to undrained conditions. The design acceleration at soil surface is as = 
0.3g; g being the acceleration of gravity.  

Under the reasonable assumption δ = 2, the wavenumber λd is obtained from Eq. 15 as: 
 

 

1 4
1

d 4

2 1700 3
λ = 0.255m

4 30000000 0.8 / 64
       

                             (27) 

The characteristic pile wavenumber μ may then be calculated from Eq. 14, by taking La = 10d,  
which is sufficiently accurate as a first approximation: 
 

   
   

4+1 4+1
14 4

1

4

4 0.255
μ 0.3 0.8 - 0.3 0.8+10 0.8-0.3 10 0.8 0.343m

0.8 10 0.8 5 0.3-1

          
  (28) 

 
resulting in an effective depth zeff = La/2 = 1.25/μ = 3.642 m. Soil shear modulus may be 

calculated as: 
 

 
  500 1500 3.642 5963effG z kPa                (29) 

 
Accordingly, the kinematic bending moment Mkin at the pile head is: 
 

    4s
kin p p

eff

a 0.3 9.81
M = E I 30000000 0.8 / 64 536 kNm

G z 5963


     

     
   (30) 
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Note that if a homogeneous soil of equal shear modulus with the inhomogeneous soil at surface 
had been adopted, the corresponding value of kinematic bending moment would have been equal to  
6391 kNm resulting evidently in a conservative design of pile reinforcement (10 times larger).  

CONCLUSIONS 

Kinematic pile-head bending in a continuously inhomogeneous soil with shear modulus 
described by a generalized parabolic function was explored in both static and dynamic regime. The 
main findings of the investigation can be summarized in the following points:  

 A simple expression for the active pile length (i.e., the length beyond which a pile 
behaves as an infinitely long element) in inhomogeneous soil (Eq. 17) was derived 
based on an average pile wavenumber; 

 The notion of an effective soil curvature has been introduced (Eq. 8) as an average 
index of soil shear deformations over an effective depth which was found to be one half 
of the active pile length. The above response parameter leads to excellent predictions of 
kinematic pile-head moments for long piles in both static and dynamic regime, thus 
allowing a direct implementation in pile design practice; 

 Kinematic head bending of short piles may be computed by means of a simple 
approximate expression (Eq. 19);  

 A new normalization scheme for dynamic pile bending is proposed by means of a single 
dimensionless frequency parameter governing kinematic pile-head bending moments. 
Approximate mean and upper-bound curves for dynamic-to-static pile-head curvature 
ratios are suggested that can be used for pile analysis or design;   

 With reference to Winkler modelling issues, kinematic bending shows a minor 
dependence on the stiffness of the Winkler springs. A value of the dimensionless 
parameter  close to 2 may be suitable when pile-head curvature is of the main concern. 

The importance of soil stiffness profile in assessing kinematic pile head bending is proven by a 
application example of the proposed method.   
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