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We would like to thank the authors for a very interesting paper. Consider a d-dimensional
diffusion processes Xt governed by the stochastic differential equation (SDE)

dXt = α(Xt, θ) dt +
√

β(Xt, θ) dWt

where Wt is standard Brownian motion. It is common to work with the Euler-Maruyama
approximation with transition density fθ(·|x) such that

(Xt+∆t|Xt = x) ∼ N (x + α(x, θ)∆t , β(x, θ)∆t) .

For low frequency data, the observed data can be augmented by adding m− 1 latent values
between every pair of observations. For observations on a regular grid, y1:T = (y1, . . . , yT )′

that are conditionally independent given {Xt} and have marginal probability density gθ(y|x),
inferences are made via the posterior distribution θ, x1:T |y1:T using Bayesian MCMC tech-
niques. Due to high dependence between x1:T and θ, care must be taken in the design of
an MCMC scheme. A joint update of θ and x1:T or a carefully chosen reparameterisation
(Golightly & Wilkinson 2008) can overcome the problem. The PMMH algorithm described
in the paper allows a joint update of parameters and latent data. Given a proposed θ∗, the
algorithm can be implemented by running an SMC algorithm targeting p(x1:T |y1:T , θ∗) using
only the ability to forward simulate from the Euler-Maruyama approximation.

To compare the performance of the PMMH scheme with the method of Golightly &
Wilkinson (2008) (henceforth referred to as the GW scheme), consider inference for an SDE
governing Xt = (X1,t, X2,t)

′ with

α(Xt, θ) =

(

θ1X1,t − θ2X1,tX2,t

θ2X1,tX2,t − θ3X2,t

)

, β(Xt, Θ) =

(

θ1X1,t + θ2X1,tX2,t −θ2X1,tX2,t

−θ2X1,tX2,t θ2X1,tX2,t + θ3X2,t

)

.

This is the diffusion approximation of the stochastic Lotka-Volterra model (Boys, Wilkinson
& Kirkwood 2008). We analyse a simulated dataset of size 50 with θ = (0.5, 0.0025, 0.3),
corrupted by adding a zero mean Gaussian noise. Independent Uniform U(−7, 2) priors
were taken for each log(θi). The GW scheme and the PMMH sampler were implemented for
500,000 iterations, using a random walk update with Normal innovations to propose log(θ∗),
with the variance of the proposal being the estimated variance of the target distribution,
obtained from a preliminary run. The PMMH scheme was run for N = 200, N = 500 and
N = 1000 particles and in all cases, discretisation was set by taking m = 5.

Computational cost scales roughly as 1 : 8 : 20 : 40 for GW : PMMH (N = 200 :
500 : 1000). For N = 1000 particles, the mixing of the chain under the PMMH scheme
is comparable to the GW scheme; see Figure 1. Despite the extra computational cost of
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Figure 1: ACF of θ1 from the output of the GW scheme (solid line) and PMMH schmes with
N = 200 (dashed line), N = 500 (dotted line) and N = 1000 (dot-dashed line).

the PMMH scheme, unlike the GW scheme the PMMH algorithm is easy to implement and
requires only the ability to forwards simulate from the model. This extends the utility of
particle Markov chain Monte Carlo to a very wide class of models where evaluation of the
likelihood is difficult (or even intractable), but forward simulation is possible.
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