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Discussion of “Statistical Modeling of
Spatial Extremes” by A. C. Davison,
S. A. Padoan and M. Ribatet
Benjamin Shaby and Brian J. Reich

The review paper on spatial extremes by Davison,
Padoan and Ribatet is a most welcome contribution.
The authors cover quite a lot of ground, making con-
nections between different approaches while highlight-
ing important differences. In particular, we applaud
their careful attention to model checking, which can
be difficult in general but particularly so for spatial ex-
treme value models.

1. PREDICTION AND MODEL VALIDATION

With its extensive set of diagnostics for evaluating
model fit, this paper provides a nice template for practi-
tioners to follow. However, perhaps the most important
feature of spatial models is their ability to predict at
unobserved sites. The account presented here does not
address the prediction problem, which is both a critical
task in its own right and a tool for comparing mod-
els. More traditional spatial analyses typically include
various performance metrics to evaluate prediction at a
withheld test set of observation locations. While spatial
prediction is difficult for the max-stable process mod-
els described in the paper, computational tools to ac-
complish this task do exist (Wang and Stoev, 2011).
Spatial prediction for copula models is considerably
more straightforward.

However, we note that even with predictions at hold-
out locations in hand, evaluating model skill at repro-
ducing extremal quantities requires some care. Clearly,
the metrics used in traditional geostatistical analysis
such as mean squared prediction error are unsatisfy-
ing for block-maximum data. Rather, we recommend
the quantile score and the Brier score for threshold ex-
ceedences, as discussed and justified by Gneiting and
Raftery (2007). These metrics are specifically tailored
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to evaluate the tail of the predictive distribution and
therefore seem more appropriate in this context.

2. TOWARD HIERARCHICAL BAYESIAN
MAX-STABLE MODELS

In their discussions of the relative merits of vari-
ous approaches, the authors highlight the ability of hi-
erarchical Bayesian models to represent richly flexi-
ble structures for underlying marginal parameters. As
they point out, however, the conditional independence
assumption made in the Bayesian analyses they dis-
cuss hamstrings the model’s ability to produce spa-
tial association in process realizations. Indeed, others
have also shown that failing to properly account for
spatial dependence can lead to dramatic underestima-
tion of uncertainty, and thus undercoverage of poste-
rior intervals, for the GEV parameters and return levels
(Fuentes, Henry and Reich, 2011).

The authors correspondingly laud the ability of max-
stable processes to capture joint behavior across spatial
locations, but lament the restriction to relatively simple
underlying structures that pairwise likelihood fitting of
max-stable process models imposes. The trade-off be-
tween flexible marginal modeling and realistic spatial
dependence modeling is almost treated as an inherent
conundrum, almost analogous to a Heisenberg’s uncer-
tainty principle for spatial extremes. But we want to
have it both ways!

The authors rightly note that the unavailability of
joint likelihoods for max-stable process models ap-
pears to render their inclusion in hierarchical Bayesian
models problematic. We view surmounting this obsta-
cle as a welcome challenge! As they note, progress has
already been made. For example, Ribatet, Cooley and
Davison (2012) specifies such a hierarchical model, but
replaces the joint likelihood with a pairwise likelihood
and modifies the resultant MCMC sampler using an
asymptotic argument. The resultant sample from the
“posterior” distribution appears to have desirable fre-
quentist properties. While this approach may not be
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completely satisfying in that it is computationally in-
tensive and it does not pass the Bayesian purity test, it
represents nice out-of-the-box thinking and is a clear
step in the right direction.

The authors also mention our recent manuscript,
which describes an approach to hierarchical max-stable
process modeling that we really like because it is
fully Bayesian, straightforwardly produces predictions
at unobserved locations, and can be fit to large data
sets. Our approach suffers a bit because it does not
readily generalize to most of the max-stable process
models mentioned here by the authors. While possi-
bilities certainly exist to expand on our approach, and
efforts are underway to do just that, we expect that
completely novel angles and insights will be brought
to bear on the rapidly-evolving field of Bayesian anal-
ysis for spatial extremes.

3. SPATIAL MODELING OF HIGH QUANTILES

Finally, we note that while the authors focus exclu-
sively on the asymptotic extreme value thoery, other
approaches do exist. Asymptotic arguments and para-
metric assumptions are clearly needed to estimate very
extreme quantities, such as the 10,000 year return level
required by the Dutch Delta Commission. However,
there are many important applications where the fo-
cus is less extreme. For example, one may be inter-
ested in determining the effect of climate change on
the 10-year return level of daily maximum temper-
ature. Given the vast amount of meteorological data
collected in the past century, there may be sufficient
data to justify a less restrictive and more robust ap-
proach such as quantile regression. Classical quantile
regression (Koenker, 2005) gives a nonparametric es-
timate of covariate effects on a quantile (equivalent
to a return level) of interest. Recently, semiparamet-
ric Bayesian quantile regression models have been pro-

posed, including methods for spatial data (Lum, 2010;
Reich, Fuentes and Dunson, 2011; Reich, 2012; Tokdar
and Kadane, 2012). An advantage of the Bayesian ap-
proach to quantile regression is the possibility of cen-
tering the prior of a flexible quantile model on a para-
metric extreme value distribution, and thus hopefully
exploiting asymptotic arguments as the data deem ap-
propriate. Comparing, and ideally merging, quantile re-
gression with extreme value analysis may be a promis-
ing line of future research.
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