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1 Introduction

In his review of Soren Bisgaard’s contributions in the field of design of experiments, Vining (2018) devotes
Section 4 to Bisgaard’s 2000 Journal of Quality article ‘The Design and Analysis of 2k−p

× 2q−r Split-Plot
Experiments’. Throughout that section, Vining (2018) makes several statements concerning Bingham and
Sitter’s work on fractional factorial split-plot designs, which appeared in various articles between 1999 and
2001 (Bingham and Sitter, 1999a,b, 2001), following an earlier publication by Huang et al. (1998) on the
same topic. Vining (2018) also makes a few statements concerning the work of Letsinger et al. (1996) and
the use of the optimal experimental design framework for creating split-plot designs. In this discussion, we
argue that Vining misrepresents both the Bingham and Sitter approach and the optimal design framework
for split-plot designs and we discuss some of the useful follow-up work that has been done, building on
Bingham and Sitter (1999a,b, 2001) and Bisgaard (2000).

2 The work of Bingham and Sitter

Like Huang et al. (1998), Bingham and Sitter (1999a,b, 2001) construct two-level fractional factorial split-
plot designs using the minimum aberration criterion, which is a refinement of the resolution criterion for
selecting fractional factorial designs (Fries and Hunter, 1980). Two designs may have the same resolution,
but perform differently in terms of the aberration criterion. In designs with a smaller aberration, roughly
speaking, fewer low-order effects are aliased with other low-order effects.

In this discussion, we focus on the following statements of Vining (2018):

A Page 15: “Maximizing the overall resolution of the experiment, taken to its logical conclusion, is to
have as many whole plots as possible with as few sub-plots as possible, making the resulting design
look as close as possible to a completely randomized design, . . . .”

B Page 15: “The Bingham and Sitter approach uses a search algorithm to find the minimum aberration
design over all of the estimable effects.”
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C Page 16: “Soren makes the point that it is a mistake to expect the design resolution for the whole-plot
effects to be as high as for the sub-plot factors. This latter point is especially important because the
algorithmic approach (of Bingham and Sitter) attempted to make both the whole-plot and sub-plot
resolution the same.”

D Page 16: “A general algorithmic approach, such as the one proposed by Bingham and Sitter, typically
cannot take into account the specific research questions and the proper trade-offs to consider in creating
the specific experimental plan.”

E Page 18: “The criterion used by the Bingham and Sitter work, along with the criteria in much of the
optimal split-plot literature, suggests as a logical conclusion that one should use only one sub-plot per
whole plot, which converts the split-plot experiment into a completely randomized design! Something is
very amiss with such a conclusion.The problem is the failure to recognize that there is less information
about the whole plots, in some cases dramatically less.”

Bingham and Sitter (1999a) present a generic construction of minimum aberration two-level fractional-
factorial split-plot designs. More specifically, they completely enumerate all possible (non-isomorphic) frac-
tional factorial split-plot designs. For each number of whole plots and sub-plots, and for each number of
whole-plot and sub-plot factors, they then select and report the minimum aberration design. Therefore,
their designs guarantee that as few low-order effects are aliased with other low-order effects as possible.

Bingham and Sitter (1999a) basically first fix the number of whole plots and sub-plots per whole plot.
Second, they set up the whole-plot basic factors and the sub-plot basic factors. Third, they add the whole-
plot added factors and the sub-plot added factors in all possible ways, subject to two restrictions:

1. Whole-plot added factors can only be constructed based on interactions involving whole-plot basic
factors. Otherwise, the whole-plot added factors’ levels would not remain constant within a whole
plot, which would violate the split-plot structure.

2. Sub-plot added factors can be constructed based on interactions between whole-plot basic factors and
at least one sub-plot basic factor or based on interactions involving sub-plot basic factors only.

As a result, in the work of Bingham and Sitter (1999a), the number of whole plots and sub-plot is an input
parameter, as is the total number of observations. Also, the whole-plot factors and sub-plot factors are
identified at the start of the design construction. Consequently, there is no recommendation whatsoever
to have as many whole plots as possible, and the corresponding statements in citations (A) and (E) from
Vining (2018) are wrong.

We now study Vining’s statements (B) and (C). Suppose that Vining’s statements (B) and (C) are true
and that we face a design problem with 3 whole-plot factors, 3 sub-plot factors and 16 observational units,
as in the example on page 19 of his review paper. Statement (B) would imply that the search algorithm
would find the resolution-IV minimum aberration 26−2 design in all cases. This is in contradiction with
the actual outcomes of the search algorithm, which are reported in Table 2 of Bingham and Sitter (1999a).
In that table, two split-plot design options are presented. The first one, designated design 3.3.0.2, involves
8 whole plots of 2 sub-plots each. The second one, designated design 3.3.1.1, involves 4 whole plots of 4
sub-plots each. Design 3.3.0.2 indeed corresponds with the minimum aberration 26−2 design of resolution
IV. Design 3.3.1.1, however, in no way corresponds to the minimum aberration 26−2 design. Instead, it
corresponds exactly to the design presented on page 21 of Vinings paper. This illustrates that the algorithm
of Bingham and Sitter (1999a) finds minimum aberration designs subject to the constraints on the numbers
of whole plots, sub-plots, whole-plot factors and sub-plot factors imposed by the experimenter. In addition,
the whole-plot and sub-plot resolutions are not the same. We conclude that Vining’s statements (B) and
(C) do not represent a realistic view of the work of Bingham and Sitter.

By using the minimum aberration criterion without distinguishing between main effects and interac-
tions of whole-plot plot factors, main effects ant interactions of sub-plot factors and interactions between
whole-plot and sub-plot factors, Bingham and Sitter (1999a,b, 2001) assume that, to the experimenter, all
effects are of equal interest. This is typical for screening experiments in which there is no prior information
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concerning the importance of the factors or the effects, and in which there are no specific effects on which
the experimenter wants to focus. Obviously, in the event some specific effects are of more interest to the
experimenter than others, the design selection criterion has to be adjusted to reflect this. Bingham and
Sitter (2001) certainly realize this, writing that “. . . the [minimum aberration] criterion treats all factors
and effects of the same order equally. If one has particular interest in a subset of effects, then some other
criterion is required.” This complements their earlier statement that “there are cases in which it is preferable
to use the second or third best [fractional factorial split-plot design]” (Bingham and Sitter, 1999a). Thus,
we believe that Vining’s statement (D) is unjustified.

Our view on the work of Bingham and Sitter (1999a,b, 2001), and later Bingham and Sitter (2003)
and Bingham et al. (2004), is that they present extremely useful catalogs of split-plot designs, which allow
practitioners to look up sensible designs without having to do the algebra with design generators themselves.
Unless the practitioners have a very specific interest in certain factors or effects, the designs offered in
the catalogs will be good starting points for designing their split-plot screening experiments. For the vast
majority of the practitioners, we believe that the published catalogs are even essential to be able implement
the approach of Bisgaard (2000). To illustrate this, suppose that a practitioners needs to design a split-plot
experiments involving 2 whole-plot factors, 8 sub-plot factors, 4 whole plots and 4 sub-plots per whole plot.
For this complex a problem, it is extremely hard for a practioner to turn the general principles presented
by Bisgaard (2000) into a useful design. If he/she does succeed in making one design, it is likely that the
practitioner would be satisfied and would not search for any possibly better design. We therefore consider it
very useful that Bingham and Sitter, in their Technometrics paper (Bingham and Sitter, 1999a), indicate that
there are three different minimum aberration designs for this case. It is even more useful for practitioners
to consult Bingham and Sitter’s Journal of Quality Technology paper (Bingham and Sitter, 2001), because,
there, they also discuss the differences between the three designs in detail. In particular, they explain that
the designs differ in the number of sub-plot factor interactions that are confounded with the whole plots. The
three designs have 7, 8 and 12 sub-plot interactions that are confounded with whole plots. More specifically,
4, 4 and 8 of these interactions are aliased with main effects of the whole-plot factors. We can therefore
question whether any of the three designs is likely to give useful results. However, given the restrictions in
whole plots, sub-plots, whole-plot factors and sub-plot factors, these three designs are the best we can get,
and Bingham and Sitter (2001) do an admirable job discussing the properties of the designs. This example
with three different designs additionally shows that the statement in the last sentence of citation (E) is not
justified. Indeed, the fact that there is less information about the whole plots, in some cases dramatically
less, is clearly recognized here.

3 Optimal design approach for split-plot experiments

Vining (2018) states that the analysis approach of Letsinger et al. (1996) for data from split-plot experiments
is “extremely flawed” (page 15), without providing any arguments for that strong statement. This is re-
markable given that the analysis approach of Letsinger et al. (1996) is standard practice in many application
areas of statistics. What Letsinger et al. (1996) recommend is nothing but generalized least squares for
response surface models based on split-plot data and restricted maximum likelihood for estimating the vari-
ance components in split-plot models. This approach, which was mentioned already in an example in Littell
et al. (1996), recommended by Gilmour and Trinca (2000) for blocked experiments and studied in detail
by Langhans et al. (2005) and Goos et al. (2006), has become the standard approach to analyze data from
split-plot response surface experiments and has been implemented in the best industrial statistics software
packages. It generalizes the traditional analysis of variance, allows experimenters to go beyond traditional
balanced, orthogonal experimental designs, and can be used to generate pure-error estimates and conduct
lack-of-fit tests too (Goos and Gilmour, 2017).

Finally, like Bingham and Sitter’s work, most papers on optimal design of split-plot experiments assume
that the number of whole plots as well as the number of sub-plots per whole plot is dictated by the exper-
imental situation (Goos and Vandebroek, 2003; Jones and Goos, 2007, 2012; Mylona et al., 2014; Sambo
et al., 2014; Trinca and Gilmour, 2015, 2017; Borrotti et al., 2017). In addition, it has been shown, within
the optimal experimental design framework, that optimal split-plot designs outperform completely random-

3



ized designs. For instance, Goos and Vandebroek (2004) used an algorithm that optimizes the number of
whole plots (with an option to impose an upper bound on that number) as well as the number of sub-plots
within a whole plot, and found that a completely randomized design is generally suboptimal. So, optimal
experimental design does not at all suggest to use only one sub-plot per whole plot either.

4 Follow-up work

When performing a split-plot experiment in the context of robust parameter design, it is often natural to
focus more on the whole-plot-by-sub-plot interaction effects because the whole-plot factors generally corre-
spond to noise factors, the sub-plot factors correspond to control factors, and control-by-noise interactions
are key in designing robust products and processes. To deal with such a situation, Bingham and Sitter (2003)
presented an alternative version of the minimum aberration criterion for robust parameter experiments. In
their nuanced discussion, Bingham and Sitter (2003) once more point out that there may be instances in
which designs other than the minimum aberration designs would be sensible choices too.

Bingham and Sitter (1999a,b, 2001) assume that every combination of whole-plot factor levels is visited
exactly once. Bingham et al. (2004) relax this assumption and allow the combinations of whole-plot factor
levels to be visited more than once. They present an extra catalog of useful fractional factorial split-plot
designs.

All of this work of Bingham and Sitter (1999a,b, 2001, 1999a) and Bingham et al. (2004) involves design
generators and requires the number of experimental runs as well as the number of whole plots to be a power
of 2. Sartono et al. (2015) present a general methodology to construct orthogonal two-level fractional fac-
torial split-plot designs, based on linear programming. This methodology combines two different two-level
orthogonal arrays, one for the whole-plot factors and one for the sub-plot factors, and can be used whenever
the number of whole plots is a multiple of 4 and the number of runs within a whole plot is even.

In recent years, strip-plot designs have received quite a bit of attention as well. Vivacqua and Bisgaard
(2004, 2009) constructed regular fractional factorial strip-plot designs, for which the number of runs, the
number of rows and the number of columns are all powers of 2. These articles inspired Goos and Jones (2011)
to devote a chapter to strip-plot experiments in their book on optimal experimental design. Arnouts et al.
(2010, 2013) present an alternative construction based on optimal experimental design methodology. The
combination of split-plot designs and blocking has been discussed in Capehart et al. (2012), while staggered-
level designs have been proposed by Arnouts and Goos (2012, 2015) as an alternative to split-plot designs
when there are multiple so-called hard-to-change factors.

Several sets of authors have also presented general construction methods for two-level multi-stratum de-
signs, which is a class of designs that includes split-plot, split-split-plot and strip-plot designs, among others.
These methods are described in Bingham et al. (2008) and Cheng and Tsai (2011).

All of these published paper show that the attention Soren Bisgaard helped drawing to split-plot designs
has resulted in a substantial amount of useful follow-up research, to cover experimental scenarios other than
those he studied.
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