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In light of the analysis and the experimental results described 

previously we may attempt to give some cautious answers to 

the questions set forth in the Introduction to this paper: 

Figs. 9, 10, and 13 and the related experiments clearly indicate 

that, in ideal brittle materials, the so-called "sliding" and "tear-

ing" modes of crack extension do not take place. The mode of 

fracture seems to be always a crack opening. 

The simple explanation of the crack extension in two-dimen-

sional problems given in paragraph 2 is based on the three hy-

potheses: (a) crack grows radially; (6) growth direction is 

perpendicular to maximum tension; (c) maximum stress theory 

is applicable, and may be considered as a satisfactory model for 

brittle materials. The first one is quite plausible and does not 

require any supporting argument. In support of (6), we mention 

the results given in Table 1 and Fig. 5. Table 1 gives an average 

fracture angle of 70 (leg as compared to the calculated value of 

70.5 deg. In the case of biaxial loading, even though there is 

more scatter, the agreement between observed and calculated 

fracture angles given in Fig. 5 seems to be satisfactory. 

The results shown in Fig. 0 indicate that the maximum stress 

hypothesis (c) should be regarded as a practical design criterion 

only. At least for the material under consideration, it seems to 

be a conservative theory. Unless Barenblatt's suggestions con-

cerning the finiteness of the stresses at the crack tip is blended 

into Griffith's energy concepts, it is difficult to explain the pres-

ence of the maximum stress theory in fracture mechanics. Ob-

viously, more woik is needed to be done in this area. The test 

results of Fig. 6 suggest somewhat more strongly the validity of 

a more plausible criterion as given by equation (10). Here the 

difficulty is mathematical in nature and lies in the evaluation of 

the coefficients a t j corresponding to maximum elastic energy 

release per unit crack extension AzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA U/8. 

As pointed out in the reasoning which led to equation (10), 

A U/8 is a quadratic form in the stress intensity factois irrespec-

tive of the direction of the crack extension. Hence, in simple 

cases like pure shear or pure twist A f / / 5 will be proportional to the 

square of the respective stress intensity factors,yxwvtrponmlkjihgfedcaWVUTSQPNMLKJIHGDCBA k2 or K2, and 

since A U/8 = constant initiates the crack growth, one may talk 

about critical stress intensity factors. For example, in plane 

shear ki = 0 and AU/8 = a^kic* = constant would initiate the 

crack extension. It has to be noted that the constant 022 is not 

equal to 7r(/c + l ) / (4G) as given in equation (9) and for plexiglass 

(hi > t (k + l ) / (4G) . The results given in Figs. 8 and 12 seem 

to support this conclusion. The wide scatter in Fig. 12 is mostly 

due to the difficulty in the detection of the initiation of crack 

extension. The cracks shown in Fig. 13 are very stable and at a 

reasonable loading rate (say ' / 2 hour for k2c), they grow very 

slowly. 

The bending problem needs to be studied theoretically first. 

Its physical picture also seems to be veiy complicated. We may 

mention an easily observable peculiarity which is that the 

plane tangent to the crack extension is not perpendicular to 

the plane of the plate, it is inclined toward the crack itself on 

the tension side. In plane loading, all the fracture surfaces were 

perpendicular to the plane of the plate. 

In conclusion, it should be pointed out that most of the fore-

going conclusions cannot be expected to hold if any plastic zone 

develops around the crack tip. Preliminary tests with aluminum 

plates indicate that the only conclusion which may be applicable 

to ductile materials is the existence of a possible fracture criterion 

as given by equation (10); in fact, the scatter for aluminum is 

considerably smaller than that for plexiglass shown in Fig. 6. 
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D I S C U S S I O N 

F. A. McClintock4 

The authors need not apologize for studying fracture in terms 

of local stress and strain concentrations instead of energy release 

rates, for Griffith himself stated the "general condition for rup-

ture will be the attainment of a specific tensile stress at the edge 

of one of the cracks" [11).6 Orowan [12] developed this idea for 

elliptical cracks in tension, pointing out that it gave the following 

expression for the fracture stress in terms of the theoretical or 

ideal cohesive strength, <rfl the radius of curvature at the tip, p, 

and the half length of the crack, a: 

a- = (Tt \/p/4a. (15) 

He also showed that a reasonable approximation to the surface 

energy converts the usual equation based on surface energy to 

<r = <r( Vp/ira, (16) 

These equations differ only by the factor V V / 4 . The theory 

used by the authors can be cast in a similar form, using a kind of 

Neuber criterion [13, 14] by requiring that the ideal strength of 

the material, <r,-, be attained at a distance p from the tip of the 

crack, giving 

a- = (Ti V2p/a. (17) 

This differs from the two previous equations by a larger numerical 

factor, but still is of the proper form. Because of this similarity 

of the theories based on the ellipse and on the slit for the tensile 

case, it is interesting to compare the two for the case of combined 

tension and shear discussed by the authors as well as for the case 

of combined compressive stress discussed by Griffith and modified 

by McClintock and Walsh [15] to include the effects of friction 

acting across the crack face. 

It is convenient to discuss elliptical cracks in terms of elliptical 

coordinates. The one describing the surface of the ellipse is de-

fined in terms of the crack half length, a, and the radius of curva-

ture at the tip, p, by : 

* Professor, Mechanical Engineering Department, M.I.T., Cam-
bridge, Mass. Assoc. Mem. ASME. 

• Numbers in brackets designate Additional References at end of 
discussion. 
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a , = A / p / a . sr ( 18)  

The coordinate describing position along the length of the ellipse 

is given in terms of the local slope of the surface. If the Xi coordi-

nate is parallel to the major axis, and the x% coordinate parallel to 

the minor axis, the local slope is cb^/dxi and the second elliptical 

coordinate is 

f}e = — tan _ 1 [a, / (dx2 /dxi) ] . (19) 

The general stress distribution, given by Inglis [16], is quite 

complicated, but for the case of sharp cracks, the stress parallel to 

the surface of the crack is given closely in terms of the normal 

and shear stress by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2accrMa, - 2/?,<Ti2m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V + ft2 ' 
°>(J = ( 20)  

Differentiation of this with respect to ft to find the location of 

maximum stress for given applied stresses, substitution into 

equation (19) to find the local slope of the ellipse, and taking the 

local normal, dxi/dxt, gives the fracture angle 6o, at which the 

crack first leaves the original crack in terms of the angle (3 be-

tween the direction of the crack and the applied stress: yvutsrponkihgfedcaUTSRPNMLKJIHGEDCA

9o = (90 - f3)/2. vtsroihfebOC (21) 

Similarly, substitution of the critical value of the coordinate jS« 

into equation (20) gives the following fracture locus: 

a 

a. <fi 

1 + " T [ l - V l + r 2 / < r 2 ] 
T 2 

V f + r2 / t rJ 
(22) 

Equations (21) and (22) are plotted in Figs. 14 and 15, along 

with the authors' theoretical and experimental results. It will 

be seen that they, based on the maximum stress on an ellipse, give 

by no means as good a fit as the authors' analysis, based on the 

stress near a slit. 

On the other hand, consider the case of fracture under combined 

compressive stress, assuming that a negligible normal stress across 

the crack surface will cause it to close, and that shear across the 

crack is impeded by a coefficient of friction of approximately 

unity, as discussed by McClintock and Walsh [15]. For a crack 

making an angle /8 with the direction of maximum compressive 

stress, —02, and with a minimum compressive stress, —<Ti, the 

residual shear stress available to produce cracking after subtract-

ing out the effect of friction is given by 

r = (in — o-2) sin /? cos (3 — — tri cos2 (8 — 0-2 sin2 /3). (23) 

Differentiation with respect to f3, to find the crack with the most 

residual shear stress, gives the result that for a coefficient of 

friction of unity, the angle (3 is ir/8, and the residual shear stress 

is given in terms of the principal applied stresses by: 

0*2 t r i + <r2 yutsrponmljihfedcbaZVUTSQPONLKJIHD
T = H — . 

V 2 
( 2 4 ) 

20° 40 ° 6 0 " 

CRACK ANGLE - / 3 

EXPERIMENTAL RESULTS 

THEORETICAL RESULTS-SL IT 

THEORETICAL RESULTS - ELLIPSE 

Fig. 14 Fracture angle versus crack angle in a cracked plate under 

uniform tension 

From Fig. 15 of this discussion, the residual strength under shear 

is twice that under pure tension for the elliptically shaped crack, 

and \ / 3 / 2 times that under tension for the slit. Thus the 

strength under combined compression will be much less for the 

slit theory. For example, in the case of uniaxial compression, 

02 = — C, 01 = 0, the ratio of compressive to tensile strength is 9.7 

for the ellipse, but only 4.2 for the slit. Since the usual compres-

sive strength is of the order of 8 times the tensile strength for iso-

tropic materials, the ellipse gives a much better fit than the slit. 

An unrealistically large coefficient of friction would be required 

to bring the slit theory into line with the data, and then the 

strengths under biaxial compression would be much too high. 

Thus the slit gives a better fit for the polymethylmethacrylate 

under combined tension and shear, whereas the ellipse gives a 

better fit for compressive strengths of rocks under uniaxial or 

biaxial compression. It is possible that a theory based on the 

NORMAL COMPONENT, k, / k 1 0 

Fig. 15 k\ versus fe at the beginning of crack extension in a cracked plate 

under plane loading 

ellipse is more realistic, and that the deviation from this theory 

in the case of the polymethylmethacrylate is due to localized 

plastic flow, which has certainly been observed under compression 

tests. On the other hand, it is also possible that the slit theory 

gives the better fit and that modifications are required to the 

theory for fracture of materials under combined stress. Tests on a 

more brittle material, such as glass, would help to resolve this 

question. In the meantime, the two different theories should each 

be used in the regions in which they have been experimentally 

shown to give good correlations. 
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Transverse crocks 

a f t e r unloading 

due to residual 

stress. 

— Crack 

extension 

due to 

compressive 

load utsrponihgebaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 16 Crack propagation in P M M A under compression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Another example of the authors' point about the importance of 

the local stress rather than an overall energy criterion is that 

under uniaxial compression, the cracks tend to run parallel to the 

compression axis and to suffer a decreasing stress concentration 

as they do so, as shown in Fig. 16 [17]. The circular hole was 

drilled to allow the insertion of a wedge to produce the diagonal 

crack. The curved crack from the diagonal arose on compression 

loading (the transverse crack, after release of load, was due to 

residual stress). The presence of any transverse compression 

would stabilize the vertical crack and cause it to stop. If, on the 

other hand, the crack were to continue growing in the original 

diagonal plane, a release of strain energy would still be possible. 

In the case of tension, this distinction does not appear since the 

local state of stress tends to make tlie crack grow in the direction 

in which the large scale strain energy release rate is also a maxi-

mum. 

It should be noted that a factor a appears to be missing from 

the right-hand sides of the authors' equation (4). 

The writer hopes these remarks will further clarify the authors' 

interesting and worthwhile work on fracture under combined 

stress. 
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Authors' Closure 
The authors wish to express their thanks to Professor Mc-

Clintock for the very interesting discussion of their paper. 

As pointed out by Griffith himself [11] in applying his ideas 

concerning the fracture of brittle materials to bodies subjected 

to general three-dimensional loading and containing randomly 

oriented small cracks, the solution to the three-dimensional 

problem in elasto-statics is needed. The solutions given by 

Inglis [16] and that of the present paper are for the case of 

generalized plane stress. 

The solution to the general problem of infinite elastic medium 

subjected to three-dimensional stress state at infinity and con-

taining a plane cavity of zero thickness bounded by a convex 

closed curve is not available. However, from Sneddon's solu-

tion6 for a penny-shaped crack in an infinite elastic medium 

subjected to uniform pressure on the crack surfaces, it may easily 

be seen that "bulk constraining" improves the strength of the 

material (the ratio of tensile stresses initiating the crack exten-

sion in materials with penny-shaped crack and through crack, 

i.e., the case of plane strain, is 7r/2). In the case of pure shear 

of the materials with "contained" cracks, the phenomenon of 

crack growth is more complicated and on the physical grounds it 

is reasonable to expect that the influence of the bulk constraining 

will be more than that for the tension case. Since most of the 

available compression test data are obtained from the materials 

containing internal cracks, a direct application of the results 

of plane stress, to these cases may not be valid. 

The authors also would like to point out that equation (22) 

(in which, incidentally, the bracket should be squared and a fac-

tor of 2 in the numerator of left-hand side is missing), derived by 

Professor McClintock should be applied with some caution. In 

the argument leading to (22) and thereafter it is assumed that the 

parameter a e is constant and has the same value for all cases 

wliich are being compared. Theoretically, in the case of slit, 

a c is zero and according to some school of thought (notably, 

Barenblatt [9]), it remains zero while the crack is propagating. 

However, even if we assume that a e is small but finite, i.e., the 

crack tip initially has a small but finite radius of curvature, in 

most brittle materials, the variation in a , as a result of loading 

is of the same order of magnitude as its initial value. From (22) 

we may write 

T = 0: (jjjjs = 2 <R/A'C 

o = 0:app = r/a"e 

(25) 

where a / and a " are the values of a t in the two limiting cases 

considered. 

On the other hand, starting with a theoretical slit, the radii of 

curvature (or the change in the radii of curvature) after deforma-

tions, for the case of symmetric tension and shear may be ob-

tained as 

r = 0 : p ' = 4.<r2a/E2 

a = 0 : p " = 16 r'a/E* sr
( 26)  

With (18), (25), and (26) points to the fact that, if the initial 

radius of curvature, p, is very small and as a result if we have to 

take into account the variations in p due to the loading, because 

of the large difference in the order of magnitudes of the variations 

in p, we will have a " < a / . For the same opp (25) gives 

n a « 
t . = 2 a c 

<x'e 
(27) 

where subscript c refers to the critical values, i..e, to those stresses 

initiating the crack extension. 

Since Professor McClintock is using essentially the same crite-

rion, one would expect a better agreement between the results ob-

tained from the solutions based on the slit and the ellipse. It 

may be that the explanation of the difference lies in (27). The 

ellipse approach is further complicated by the fact that, some-

times it may even lead to paradoxical conclusions, as for example 

in the case of combined compression and shear, where the pres-

ence of compression tends to reduce a e at a greater rate than its 

increase due to shear [see equation (26)] and hence may increase 

(X(3(5, causing a reduction in compressive strength. 

The authors agree with Professor McClintock in his emphasis 

on the influence of friction in compression tests. I t may be 

pointed out that in the case of natural cracks the coefficient of 

friction may vary very widely even for the same material, as 

the main resistance to the relative displacements on the crack 

surfaces may come from the macroscopic jaggedness of these sur-

6 I. N. Sneddon, "Fourier Transforms," McGraw-Hill Book Com-
pany, Inc., New York, N. Y „ 1951, p. 486. 
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