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DISCUSSION ON THE EXISTENCE AND UNIQUENESS

OR MULTIPLICITY OF SOLUTIONS

OF THE AERODYNAMICAL EQUATIONS

CHAIRMAN: DR. J. VON NEUMANN

Editor’s note. Dr. von Neumann wrote us that his comments were impro-
vised and unsystematic and have retained this character in spite of minor
corrections made afterward. For that reason Dr. von Neumann’s contribution
is rendered as a part of the discussion and not as a separate lecture.

Wednesday morning August 17, 1949

von Neumann:
I would like to make some remarks about the general hydrodynamical discussion

on motions in one dimension, following Riemann’s theory, which was expounded by
Dr. Burgers and subjected to a critical analysis by Dr. McVittie. The question as
to whether a solution which one has found by mathematical reasoning really occurs
in nature and whether the existence of several solutions with certain good or bad
features can be excluded beforehand, is a quite difficult and ambiguous one. This
subject has been considered in the classical literature as well as in the more recent
literature, on widely varying levels of rigor and of its opposite. In summa, it is
quite difficult ever to be sure of anything in this domain. Mathematically, one is
in a continuous state of uncertainty, because the usual theorems of existence and
uniqueness of a solution, that one would like to have, have never been demonstrated
and are probably not true in their obvious forms.

To this day, the only thing of any degree of generality that we possess is the
classical discussion by Riemann, and this very strictly in one dimension and very
strictly in the isentropic case. In this case at least, Riemann proved that there are
no discontinuities. He also gave the exact conditions under which there can be a
solution at all and he proved that in those cases there is only one. So he proved
that the number of solutions is either zero or one. He also showed that it is zero in
general, i.e., unless certain (infinitely many) very stringent conditions are satisfied.
Thus, unless the initial state of the gas fulfills some very particular conditions, the
(continuous) solution will cease to exist after some definite finite time. Riemann
also inferred, essentially by physical insight, what happens when the continuous
solution ceases to exist. He made it very plausible that a discontinuity of a certain
type, a “shock wave”, develops.

This was subsequently independently rediscovered, and further developed, by
Hugoniot. It is also true that in the entire literature up to 1910, i.e., up to the
time of the work of Rayleigh and G. I. Taylor, there was a considerable confusion
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146 J. VON NEUMANN

and disagreement between the authors on exactly what the shock looks like. The
reason is this: If one assumes the continuity of all relevant parameters in gas the-
ory, and uses the differential equations of this theory (I mean those of compressible,
nonviscous, nonconducting media), then all one postulates is the conservation of
matter, of momentum and energy. The conservation of entropy then appears as a
mathematical consequence. One can paraphrase this by reasoning that the system
of mechanics may not conflict with thermodynamics, therefore entropy must not
decrease, and since the equations of mechanics are reversible, entropy cannot in-
crease either. Hence it must stay constant and so it is perfectly fair that one gets
the conservation of entropy.

This argument sounds convincing, but it is wrong. That this is so can be seen
from what happens when shock waves are considered; there the entropy will change,
as a mathematical consequence of matter, of momentum and energy. Because
of this it is no longer true that every solution of the equations of mechanics is
compatible with physics. And it is mathematically, by the way, not true, that for
any reasonable statement of the initial conditions and boundary conditions, there
will always be one and only one solution. The fact is that if you do not permit
discontinuities and demand that the equations of continuum mechanics hold (again
for the nonviscous, nonconducting case), i.e., if you exclude discontinuities and
apply the usual differential equations, which is what Riemann did, then you find
that solutions will not exist in general.

If you permit discontinuities and add to these discontinuities the reasonable con-
ditions of fit (Hugoniot’s shock conditions), then you discover the next peculiarity:
In every case where trouble arises, there are at least two solutions, namely a shock
of the kind that occurs in nature, and the inverse shock, where the discontinuity
reflects a pressure decrease instead of an increase, and entropy decreases instead of
increasing. You consequently have to add to this mathematical system the further
information, which does not come from mechanics, that entropy may change, if
it increases, but not otherwise. Thus one concludes that discontinuities must be
permitted, but every time discontinuities arise, it is necessary to exclude 50% of the
possibilities. This is a beautiful example of how the reversible system of mechanics
can yield a description of an irreversible piece of nature.

This is not a mathematically rigorous statement because the existence and
uniqueness of the solutions under these conditions have never been demonstrated.
Indeed, I doubt that anybody at this moment has any idea as to how to prove it.
As far as I know, even the singularity which describes how a shock develops from
a continuous motion has never been correctly discussed, even in one dimension.
Furthermore, almost nothing is known about the peculiar singularities which ac-
company the development of a shock in more than one dimension, except in very
special cases.

Thus there exists a wide variety of mathematical possibilities in fluid mechanics,
with respect to permitting discontinuities, demanding reasonable thermodynamic
behavior, etc., etc. There probably exists a set of conditions under which one and
only one solution exists in every reasonably stated problem. However, we have
only surmises as to what it is and we have to be guided almost entirely by physical
intuition in searching for it. It is therefore impossible to be very specific about any
point. And it is difficult to say about any solution which has been derived, with
any degree of assurance, that it is the one which must exist in nature.
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One may now ask to what extent the solutions, which were described by Prof.
Burgers are verified and whether one should believe them as a whole? There is a
certain amount of quasi-mathematical plausibility for them. There is, I think, a
reasonable amount of physical plausibility and there is some physical confirmation
in a few critical cases.

Let me describe the situation in a little more detail. Assume that in this diagram
(Figure 1) you have a gas occupying part of the x-axis, let us say to the left of
x = 0, which should represent a wall. The wall is supposed originally to be at
rest and at the instant t = 0 it begins to move in some way. Then the following
is true: Depending on whether the motion is in or out, two completely different
things will take place. If you move it in, a discontinuity, a shock wave, will travel
inwards, as indicated in Figure 1, where for simplicity a constant velocity of the
wall has been assumed. If you start to move it out, another phenomenon takes
place (Figure 2): You obtain a system of rarefaction waves of a type which has
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148 J. VON NEUMANN

been described by Riemann, and which afterwards has found its analogue in the so-
called Prandtl–Meyer expansion, occurring in cases of stationary supersonic motion
in two dimensions. In the system of expansion waves, all hydrodynamical quantities,
pressure, density, temperature, and velocity appear to be constant along straight
lines in the x, t-diagram. When the wall has a constant velocity, all these straight
lines start from the origin as pictured in Figure 2. (The same situation is obtained
in the case considered by Dr. Burgers in his Figure 2.)

Now it is to be observed that when in the case of expansion you consider the
distribution of the pressure at a given instant t = t1, you will find constant pressure
in a region extending to the point A (in this region the gas is still at rest), thereafter
the pressure drops, until we reach the moving wall at B. Although in this case there
is no discontinuity of the pressure itself, there is at A a discontinuity in ∂p/∂x (and
also in ∂p/∂t).

With increasing time the profile expands. In the initial state, we have a dis-
continuity of the pressure itself which immediately afterwards resolves itself; the
resolution at first is extremely steep and then gets flatter and flatter.

In the system of expansion waves of Figure 2 there is conservation of entropy; in
the shock wave of Figure 1 there is increase of entropy. Mathematically a solution
for the case of the outward moving wall can be constructed in which a discontinuity
is propagated without resolution. There is no mathematical reason at all why you
should not use a solution of that type, but it will lead to a decrease of entropy.

It will be clear that the results which have been derived from the continuum
theory can be valid only to the extent to which you can assume that hydrodynamical
properties can be defined locally. You certainly cannot do this in the immediate
neighborhood of the shock. When the ordinary theory is perfected by taking into
consideration viscosity and heat conductivity, the conditions in the neighborhood
of the shock can be analyzed to a certain extent, as was shown long ago, first by
Rayleigh and G. I. Taylor (1910); their work was amplified by R. Becker (1922)
and still further amplified by J. L. Thomas (1943). There is one perfectly plausible
result, namely that a few mean free paths away from the shock, things can be
described satisfactorily by the phenomenological theory. But in the first few mean
free paths, that is, inside the shock region you find out, of course, that there is not
a discontinuity at all, but a region where deviations from the classical Maxwell–
Boltzmann velocity distribution of the kinetic theory of gases occur.

There is a further difficulty in the expansion case considered by Burgers. It was
accepted that the front advances into a vacuum. It is evident that you cannot get
the normal conditions of kinetic theory here either, because the density of the gas
goes to zero at the front, which means that the mean free path of the molecules
will go to infinity. This means that if we are in the expanding gas and approach
the (theoretical) front, we will necessarily come to regions where the mean free
path is larger than the distance from the front. In such regions one cannot use the
hydrodynamical equations. But, as in the case of the shock wave, where ordinary
conditions are reached at a distance of a few mean free paths from the shock itself,
so in the case of expansion into a vacuum, at a short distance from the theoretical
front, one comes into regions where the mean free path is considerably smaller than
the distance from the front, and where again the classical hydrodynamical equations
can be applied. If this is applied to expanding interstellar clouds, I think that in
order that the classical theory be true down to 1/1000 of the density of the clouds,
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it is necessary that the distance from the theoretical front should be of the order
of a percent of a parsec.

Mathematically one may doubt whether the solution considered here, with Rie-
mann’s system of expansion waves, is the only solution. In fact, not only may
one doubt it, but it’s certainly true that there are other solutions, for instance the
negative shock already mentioned before. This negative shock has to be excluded
for thermodynamical reasons. But I do not think that anybody at this moment
knows whether there may not be some supersophisticated combination of shocks
and Riemann expansions and I don’t know what other phenomena might go with
it.

One must be terribly careful in accepting such extra solutions. Occasionally
the simplest hydrodynamical problems have several solutions, some of which are
very difficult to exclude on mathematical grounds only. For instance, a very simple
hydrodynamical problem is that of the supersonic flow of a gas through a concave
corner, which obviously leads to the appearance of a shock wave. In general, there
are two different solutions with shock waves, and it is perfectly well known from
experimentation that only one of the two, the weaker shock wave, occurs in nature.
But I think that all stability arguments to prove that it must be so, are of very
dubious quality.

As far as the Riemann expansion is concerned, there is a certain experimental
confirmation for it. I do not know whether anybody has ever taken the trouble to
measure gas waves with interferometric methods for the case of expansion into a
vacuum. But many experiments of a related kind have been made with so-called
shock tubes, referring to the case of two gases of equal temperature and different
pressures, with a wall between them which is suddenly removed. In this case you
get a Riemann expansion in the gas of high density and a shock wave in that of low
density (compare Burgers’ lecture, Figure 5). The strength of the shock is easy to
measure and if this comes out according to the theory, you may assume that the
rarefaction will also be according to theory. Such measurements have been made
many times. The strength of the shock as a function of the ratio of the pressures
on the two sides, has been repeatedly surveyed, very carefully to one part in 50 for
a ratio of up to 12, and to a lesser degree of exactness for ratios up to 1000. Hence,
I think there is a reasonable kind of physical evidence for the correctness of the
picture.

In addition there is another situation, which is almost equivalent, namely when
phenomena do not take place in one linear dimension and in time, but when they
are taking place stationarily in a supersonic flow in two dimensions. In that case
flow through a concave corner produces the shock wave and flow around a convex
corner gives the Prandtl–Meyer expansion fan. This situation has been investigated
most extensively and most wind tunnel designs are based on this and similar cases.
A vast amount of quantative information is available, all of which shows that the
theory of the Prandtl–Meyer expansion is physically correct.

I want to apologize for having taken up so much of the limited time and I will
stop here and would like to ask what other remarks there are.

Liepmann:
I would like to add a remark about the question of the two shock waves. I think

that the experiments cannot be safely cited to settle whether only the solution with
the weaker shock appears in nature, because the theoretical case refers to an infinite
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150 J. VON NEUMANN

wall (or to the flow along the two sides of an infinite wedge), which case cannot
be realized in practice. With the stronger one of the two shock waves you have
subsonic flow behind the shock wave, which means that behind the shock wave you
have a region where the theory of the elliptic differential equation applies and where
the field is influenced by the boundary conditions at a finite or an infinite distance
downstream. In the case of the other shock wave the velocity remains supersonic,
so that you have conditions such as those obtained with hyperbolic equations. Thus
one cannot exclude a priori that conditions downstream may influence the flow and
thus may lead to a predilection for one type of shock wave about the other type.

In the case of the Prandtl–Meyer fan, for the flow around a corner, it is true that
quite often you get experimentally a combination of shock and expansion waves.
The deviations from the theory here are evidently connected with the existence of
a boundary layer of the corner walls.

In the question of the discontinuity, it seems to me that as soon as you leave out of
the differential equations the terms referring to viscosity and heat conduction, then
you have to introduce a new integral relation, which you take from thermodynamics.
That is, you have to use the entropy concept. This is necessary since you omit a
very large part of the equations. If you do keep viscosity and heat conduction, then
you do not need the explicit introduction of entropy: you get the shock solution
from a continuous field.

If one considers a body of length � moving through a gas at a velocity U it
is possible to define a parameter Re/M2 (Re = Reynolds number and M = Mach
number), which essentially represents the number of molecular collisions in the time
�/U . This similarity parameter can be used to decide over the ranges of applicability
of the equations. With Re/M2 � 1, one can use the equations of nonviscous
hydrodynamics; with Re/M2 ∼ 1, we have viscous and slip hydrodynamics; with
Re/M2 � 1 we come to molecular flow.

von Neumann:
I would like to answer Dr. Liepmann’s remark. In the case of supersonic flow

through a concave corner, there are situations where one can produce the other
shock (the steeper shock). But in all cases I have seen, one could always argue
that the situation was in some sense improperly described. Thus, the boundary
conditions far away are often of such a nature that you explicitly exclude one of the
two shocks and force the appearance of the other one. Besides, these complicated
angular phenomena are probably due—I suppose this was your opinion too—to
some boundary effect, not at the actual wall, but at the end of the boundary layer.

Temple:
I should like to add one further development to a point which you made, Mr.

Chairman, when you studied the solutions of the one-dimensional nonsteady mo-
tion and those of the two-dimensional steady motion. In the latter case it is well
known that a transformation can be carried out and that the two components of the
velocity u and v can be taken as new variables, except in certain exceptional circum-
stances. Those exceptional circumstances are those in which the components u and
v are not independent, but are functions of one another. All these exceptional solu-
tions of two-dimensional steady flow are either Prandtl–Meyer expansions, or cases
where the fan of straight characteristic lines does not just diverge from one single
point, but springs from points on a certain curve. Now if I understand Prof. McVit-
tie’s question, one of the main points which he made in his lecture was that the
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solutions to which Prof. Burgers has directed our attention, are in fact the analogue
of the exceptional solutions in the case of the two-dimensional steady flow. They
are the simplest type of solution, but from a mathematical point of view they are
rather exceptional, because they correspond to the fact that a certain determinant
becomes zero or infinite.

The cases of the Prandtl–Meyer flow can indeed be realized only when very
special precautions are taken to get a uniform field of flow at entry and so forth.
The suggestion is that the solution to which Prof. Burgers has directed our attention
may also require very special initial conditions. It is therefore necessary to examine
whether the astronomical conditions correspond to the initial conditions implicit in
Burgers’ cases.

von Karman:
I would like to say something about this question of uniqueness of solutions. I

don’t think that there is any reason that if you put a problem in a form which
has no physical meaning, there shall not be two solutions. And I think the case of
stationary motion as such belongs to this category, because it can occur only as a
limiting case. Any physical process starts from somewhere and goes to somewhere.
In the case of the two shock waves, if instead of considering a stationary motion you
consider an accelerated motion, you will first get a detached shock wave ahead of
the obstacle (when the Mach number has just passed through unity). Then, with
increasing velocity the solution will approach the correct solution for the steady
case, I should think, without any difficulty. Such a case comes near to what you
can actually realize in an experiment. Is that not correct?

von Neumann:
I may not have chosen that example which fits best to your argument. It has,

of course, to be admitted that to postulate stationarity is to postulate a general
trait of the solution one wants, which may hold only approximately in the physical
situation that can actually be realized. However, it is not necessary to take the
stationary flow through a corner. The following problem also has two solutions.
If you take a plane shock which hits a wall and you consider the reflection of the
shock from the wall, then under a wide variety of conditions (in fact, in most cases)
there are two solutions. In this case stationarity has not been postulated.

von Karman:
I only mean the following thing. I suppose we start from a certain state of rest of

the gas, which must be a solution of our equations. Then we change the conditions
gradually and follow the system step by step. I believe that in such a case you will
always get a solution and only one solution. There is no proof that there is only
one, but I believe it to be so. For, after all, a gas is a molecular system, which
follows the general equations of classical mechanics.

But if you take first an infinite cone, or an infinite wedge—both of which are
situations which can never be realized—and furthermore you ask for a stationary
solution; in such a case there is no reason why there should be only one solution.
Since the equations are non-linear, you can often, without violating continuity, pass
from one solution to another one by following an envelope, and in such a case you
can scarcely find a mathematical reason why one solution should be preferred to
the other. But if you start from an actually existing (observed) state and then
determine the next phase, I believe you will find only one completely determined
result.
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Concerning Dr. von Neumann’s example of the reflection of waves from a wall,
I do not know the answer, but I believe that no case in which infinitely extending
waves or walls are involved is really defined physically.

Heisenberg:
I have one question in connection with these applications of the hydrodynamical

equations. Should one assume from the beginning that these equations actually
could be used to such a large extent? If we take the case of the gas expanding
into a vacuum, the density at the front is so low that the mean free path becomes
larger than the distance to the assumed front. Should one not start from the kinetic
picture and say that at the front the molecules will sort themselves out according
to their velocities? Then the physical front would be formed by a selection of those
molecules which had the highest velocities and did not suffer a collision for a long
time. One should expect that there, especially, we have a velocity distribution
different from the normal one, and therefore we should not apply the ordinary
concepts like temperature and so on. I do not know how big the actual difference
is, but I have tried to estimate it. One feels at least that there is a rather large
region in which ordinary hydrodynamics cannot be applied, simply because the
concepts of temperature and so on would be rather useless.

von Neumann:
I think that Prof. von Karman also alluded to this problem, when he mentioned

the Smoluchowsky region. I suppose he meant that region where you are so close to
the surface that the mean free path of the particles is larger than the geometrical
dimensions to which you should have to apply your differential equations. Then all
the basis for a continuum theory is gone. The only possible course to follow is, I
suppose, the same as is followed in star theories, where the atmosphere is discussed
with completely different methods from those which are used in the interior. The
interior of the sun can be treated in some way like a classical gas, whereas the
corona region, of course, is completely different.

Therefore, while it is certainly not rigorously true, don’t you think it is sensible,
first of all, to apply hydrodynamic theory, and get a solution? If you then discuss
in what portions of the field the mean free path is small compared to the distances
over which all essential changes occur (one of the most important portions is that
where the distance from the boundary is small), it is reasonable to assume that the
hydrodynamical equations may at least be used in such regions. When one has to
deal with the boundary regions, the Maxwell–Boltzmann theory should be called
upon. Now what I have to say is that if one accepts this, and if one estimates
how large these extraordinary regions are, in the cases which are of interest in the
present context, they turn out to be fairly small. Properly speaking, in the case
of the Riemann expansion into vacuum, the region where you have to be careful
is quite large but it involves very little substance and very little energy. Hence, in
many cases, the correction of the hydrodynamical solution in that region need not
be discussed.

Heisenberg:
I certainly agree chiefly with what you say. I only would like to observe that

the failures of hydrodynamical solutions determine the boundary conditions. The
boundary conditions react back on the solutions of the hydrodynamic equations,
and since these boundary conditions cannot be determined from hydrodynamics and
require a detailed study of molecular processes, the two things are interconnected.
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With you, I believe that on the whole we can talk about hydrodynamical equations
and their solutions, but the selection of the solutions to be used depends on the
boundary conditions and to this extent we get these non-hydrodynamical parts of
the field into our problem.

von Neumann:
The boundary layer theory for a fluid of low viscosity certainly furnishes a mon-

umental warning. The naive and yet prima facie seemingly reasonable procedure
would be to apply the ordinary equations of the ideal fluid and then to expect that
viscosity will somehow take care of itself in a narrow region along the wall. We
have learned that this procedure may lead to great errors; a complete theory of
the boundary layer may give you completely different conditions also for the flow
in the bulk of the field. It is possible that the same discipline will be necessary for
the boundary with a vacuum. All I would like to say now is that there is yet no
evidence for this.

It has been observed what happens if you take air at a pressure of 760 mm and
put it discontinuously into contact with various lower pressures. The observations
are fairly precise down to perhaps 10 or 20 mm and at least qualitatively meaningful
down to perhaps 1 mm. The global result is that the expansion conforms to what the
naive theory tells. So the indications so far are that the complications of boundary
layer theory, which we all know occur when a fluid is in contact with a rigid wall,

incoming
shock wave

Figure 4
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do not appear to arise when it is in contact with a very low density gas or with a
vacuum.

Burgers:
Dr. von Neumann mentioned a case of nonstationary theory where you have also

two solutions: a shock wave hitting a wall. But in the picture you gave (Figure 3)
the wall was infinite, so that here again one must ask: How does the situation arise,
when you have an actual, finite wall? It may be that you could treat the problem
for an actual situation, in which a shock wave travelling in unlimited space reaches
the edge of a wall (see Figure 4), you might obtain a definite solution.

von Neumann:
In that case you assume that the state at the time t = 0 is given and you ask

whether there is or is not a unique continuation of the solution at later times. The
answer to this question in its full generality is not known; there seem to be a great
many mathematical difficulties.
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