
Discussion 

Practical Aspects of Turbine 

Cylinder Joints' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

GEORGE L . BASCOME.2 The author's remarks relative to 

several factors which must be considered in the design of the 

longitudinal joint of a steam-turbine casing, subjected to high 

pressure and temperature, apply as well to a bolted flanged joint 

for steam piping. 

Some years ago the writer was engaged in the testing of various 

types of flanged joints under consideration for a 1500-lb 900 P 

installation, for the power station of the Houston Lighting and 

Power Company. These tests were conducted jointly by the 

engineers of the utility and the fabricating companies responsible 

for the installation of the piping. At that time little was known 

concerning the behavior of the steel at high temperatures, so that 

in conducting these tests nothing was taken for granted, and 

careful micrometer measurements were made of bolts and 

flanges before and after each test. Thermocouple attachments 

were made at various locations about each joint, in order that 

temperature changes might be noted between the several parts. 

At the beginning, it was felt that a type of joint, with ground 

faces, without a gasket would prove most satisfactory, but within 

a few hours the joint leaked. A close examination showed that 

due to the high temperature a slight warping of ground faces had 

occurred. This indicated that a metal-to-metal type of joint for 

this class of service should be thoroughly stress-relieved prior to 

finishing the surfaces. It is not recalled that the author made 

mention of this fact, but I presume that the turbine casings are 

stress-relieved prior to machining, in order to prevent distortion 

from heat under operating conditions. 

In order to determine the best bolting material and a safe 

working stress, a crude but satisfactory relaxation-test method 

was employed. The bolts were stressed to 40,000 lb per sq in., be-

tween the faces of a cylindrical sleeve, or cage, carefully microme-

tered, and then submerged for a week in melted lead at 900 F. 

At the end of the period the increase in bolt length over the initial 

length was noted. This information determined the bolting steel 

best fitted for this service and also the permissible stress which 

might be employed. Micrometer measurements of the bolts dur-

ing erection insured that proper unit pressure was provided to 

the joint faces. 

The author stated that a net unit pressure between joint faces 

of the turbine casings of three times the internal pressure was 

necessary to maintain a tight joint under loaded conditions. 

The tests on pipe joints just referred to, indicated that the net 

pressure need be between two and three times the internal pres-

sure when the joint was under pressure, including calculated 

bending moments. It is surprising that these early tests made 

•with limited facilities should agree so closely with the author's 

•findings. 

It might be stated that the final design of the joint for this in-

stallation included a thin gasket to care for any slight warping of 

the joint faces, with a calculated gasket area, such as to provide 

the suitable net unit pressure with a safe working stress in the 

bolting material. It was stated that no leakage occurred during 

the first two years of service in any of the joints so designed and 

erected. 

In conclusion it seems that if due consideration is given to all 

factors, a bolted joint can be designed to meet the most exacting 

service, and such information as was disclosed by the author is of 

great value to the profession. 

C . RICHARD SODERBERG.3 The relation between bolt pitch 

and flange dimensions which is given in the equation h rVNM

V M - 0  appears somewhat arbitrary, although it is 

probably a safe working rule. The following presents a point of 

view which throws further light on this important question. 

Jn a straight joint of the type shown in Fig. 3 of the paper, the 

flange may be represented as a double beam, each half of dimen-

sionszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA b X h held together by a series of concentrated forces P 

produced by the bolts. See Fig. 1 herewith. The material be-

tween the neutral axes of the beams is elastic under the influence tronlifeaPJA
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FIG. 1 STRAIGHT JOINT WITH CONCENTRATED BOLT LOADS 

of the compression forces. Considering one of these beams, 

therefore, it may be regarded as supported on an elastic founda-

tion, the modulus of which is 

•ID 

1 B y C. B. Campbell. Published in the June, 1938, issue of the 

JOURNAL OF APPLIED MECHANICS, Trans. A . S . M . E . , vol. 60, 1938, p. 

A-49 . 
8 Valuation Engineer, State Corporation Commission, Richmond, 

V a . M e m . A . S . M . E . 
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The influence of relief and bolt holes will be neglected, although 

there are no serious difficulties in taking these into account, at 

least approximately. If the two beams deflect symmetrically 

toward each other a distance y, the resulting compression load 

per unit length is 

q = ky lb per in [2] 

Thus, if the deflection of the beam can be expressed as a function 

of x, the resulting load distribution is also obtained. 

The theory for a beam on an elastic foundation is well known,4 

and the results may be used to gain an insight into the present 

problem. Considering first the effect of a single force P in a long 

beam, the results of this theory give for the load distribution 

q = qa<p [31 

3 Department of Mechanical Engineering, Massachusetts Institute 

of Technology, Cambridge, Mass . M e m . A . S . M . E . 
4 "Appl ied Elasticity, " by S. Timoshenko and J. M . Lessells, 

Westinghouse Technical Night School Press, E . Pittsburgh. Pa., 

p. 132, et seq. 
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wherezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA <p is a function of Bx. 

<p = e~fix (cos Bx + sin Bx) [4] 

k -\/G 

h 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

go 
Pk \/6 P 

8p3EI 2 h 

1.565 
• [5] 

P 
0.783 - . 

h v [ 6]  

This distribution is shown in Fig. 2. At about fix = 2.4, the 

load becomes zero, and for larger values it is negative. Negative 

-6 -5 -4- -3 -2 -I O I Z 3 A- S S 

F I G . 2 L O A D D I S T R I B U T I O N OF O N E B O L T 

loads are excluded for practical reasons, but this is not serious 

since the case of a single bolt has only theoretical interest. The 

characteristic feature of the load distribution lies in the fact that 

it is a periodic function having a wave length 

L = 2tt//3 4h. [7] 

To obtain the load distribution for a series of bolts spaced at a 

pitch r, it is necessary to add a series of such functions. The 

convergence is rapid for the pitches of practical interest, so that 

only a few terms are necessary. For convenience, it is assumed 

that the pitch is made a certain fraction v of the wave length, so 

that 

vL . yxwutsrqponmligfedcbaVUTSRPONMLKIFEDCA•  [8]  

Referring to Fig. 1, it is easily seen that the load distribution 

becomes 

Bolt 0 Bolts 1,3, . . . Bolts 2,4, . . . 

q = q0 [<vpkgaXWVUTSRQPNMIEAP(PX) + <P(?TTP — Bx) + P(2w + fix) 

+ <p( inv — Bx) + <p(4TTf + Bx) + ....} 

[9] 

where q0 represents the maximum load due to a single bolt. 

Fig. 3 shows the load distributions obtained in this manner for 

v = r /L = co(
 3/<, '/a, Vs, and '/<• Fig. 4 shows the ratio of 

plotted as a function of v. 

These results must be regarded in the light of rough approxima-

tions of the real problem, but they permit the following conclu-

sions: 

1 The longitudinal load distribution is a sensitive function of 

the ratio of flange thickness h to bolt pitch r. 

2 The load midway between two bolts will fall to zero if the 

bolt pitch is greater than (3 / ( )L = 3h, which corresponds to 

h S ( V , ) T . .[ 10]  

l.o 

O.S tronlifeaPJA
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Flange thicknesses equal to or below this value must be regarded 

as definitely unsatisfactory. 

3 In order to obtain approximately uniform load distribution 

along the flange, it is necessary that the bolt pitch be greater than 

(1/t)L, which corresponds to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA•[IX] 

A satisfactory simple rule, therefore, is to make flange thickness 

and bolt pitch equal. 

It is important to note that the width of the flange does not 

influence the longitudinal load distribution. This is not true, of 

course, if the flange is made so wide as to have appreciable de-

flection over the relieved portion. The design rules proposed by 

the author will satisfactorily guard against this. 

AUTHOR'S CLOSURE 

Mr. Bascome is correct in assuming that the turbine cylinder 

casings are stress-relieved prior to final machining. 

As stated by Mr. Soderberg, the relation between bolt pitch 

if / P YIY I 
and flange thickness ft ^ <i2 + I — ) is arbitrary, and is 

purely a rule of thumb which results in rational and well propor-

tioned design. Combined with Mr. Soderberg's conclusion 

that flange thickness should be equal to or greater than the bolt 

pitch, we find that the distance d, Fig. 3 of the original paper, 

should not exceed 0.9 X bolt pitch, an entirely rational result. 

Stress Model of a Complete Airship 

Structure1 

L. B. TUCKERMAN.2 The evident care and foresight used by 

the authors cannot but impress anyone who appreciates the pit-

falls which may lie on the path from test to structure. It would 

be difficult to find any essential property of their model which 

has been overlooked. 

The discussion of the scales N is complete, and it is particu-

larly gratifying to find second-order effects associated with 

buckling considered adequately. The model girder is ingenious, 

with its slotted tubes so placed that advantage is taken of the 

slot to reduce the torsional stiffness without affecting the flexural 

stiffness. Finally, the spacing of the tubes in the middle solves 

well the problem of controlling the axial stiffness. 

A nice instance of the care exercised is shown in the method 

used in soldering the wires and allowing for the reduced tension 

in the bulkhead wires due to the installation of the shear wires. 

In speaking of the wires, it is the hope of the writer that the 

authors will publish a full description of their specially designed 

tensometer for measuring the tension in a taut wire. The 

writer has seen what he believes is this instrument or one like it, 

and it should be better known. 

The many check tests, and especially those which lead to the 

results shown in Figs. 14, 15, and 16 inspire confidence. It is 

easy to say that the precautions taken throughout are fairly evi-

dent. So they are in many cases after they have been pointed 

out. Unfortunately, however, much testing is done in which 

adequate consideration is not given to what should be evident. 

It is a pleasure to find an experimental investigation carried out 

with the attention to important detail which the authors have 

shown. 

1 B y L. H . Donnell, E . L. Shaw, and W . C. Potthoff. Published in 

the June, 1938, issue of the JOURNAL OF APPLIED MECHANICS, Trans. 

A . S . M . E . , vol. 60, 1938, p. A - 6 7 . 
2 Assistant Chief, Division of Mechanics and Sound, National 

Bureau of Standards, Washington. D . C. 

An Improved Method for Calculating 

Free Vibrations in Systems of Sev-

eral Degrees of Freedom1 

GEOMETRIC INTERPRETATIONS OP THE METHOD OF SUCCESSIVE 

APPROXIMATIONS 

M. A. BIOT.2 The method of successive approximations using 

matrix algebra is based on the same fundamental principles as 

what is generally known as Vianello's or Stodola's method. 

Starting from an arbitrary deflection of the system, the corre-

sponding dynamic forces are evaluated assuming a given angular 

frequency, for instance, w = 1. A new set of deflections due to 

these dynamic forces is found, and with this new set, the process 

can be repeated. A certain number of such processes leads 

toward a convergent shape of the deflection, which is the shape 

of the fundamental mode, and the ratio of two successive deflec-

tions is equal to the square of the fundamental angular frequency. 

It will be shown hereafter that a 

simple geometrical interpretation exists 

for this method. 

Consider a system of two masses mi 

and m.2 connected to each other and to 

a fixed base B by springs, as shown in 

Fig. 1. It is assumed that there are 

only two degrees of freedom determined 

by the displacements Xi and x2 of the 

masses. 

Two loads Pi and P2 applied, respec-

tively, to the masses mL m2 produce de-

flections 

x, = dnPi + di2?2 

»2 = dz\Pi + d: ifVPID
• 12P2 I 

2 2 P 2) v
[ 1 ]  

when the d's are the influence numbers. 

According to Maxwell's reciprocity 

theorem, we have 

du = (hi [ 2 ] aZVJ

V/ / / / / / / / / / / / Z 
B 

FIG. 1 

The elastic potential energy under the loads Pi P2 is 

W = V»(siPi + xj\) = y2[d„Pi2 + 2d,2P1P., + d22P2
2]... [3] 

Equations [1 ] of this discussion may be written as 

xt = dW/dP, 

x2 = dW/dP: 
a
J 

[4] 

For the sake of simplicity let us first assume that the two masses 

are both equal to unity. The problem of finding the natural 

vibrations of our system will be solved if we know values of Pi 

and P2 such that they are proportional to the displacements a;i 

and X2 produced by these forces, that is 

P1/X1 = Pi/Xi = to2 [5] 

This follows from the fact that w2Xi and w2xi are the inertia forces 

when the angular frequency is w. 

This problem is illustrated geometrically as follows: 

Consider a coordinate system Pi P2. Equations [1] of this 

discussion define a linear transformation of the vector P of com-

ponents Pi P2 into a vector X of components Xi x2. The vector X 

1 B y Winston M . Dudley. Published in the June, 1938, issue 

of the JOURNAL OF APPLIED MECHANICS, Trans. A . S . M . E . , vol. 60, 

1938, p. A -61 . 
2 Professor, Department of Physics, Columbia University, N e w 

York , N . Y . 
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