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DISCUSSION

BY PETER L. BARTLETT, MICHAEL I. JORDAN AND JON D. MCAULIFFE

University of California, Berkeley

The authors have contributed three significant papers that provide, among other
insights, an understanding of the consistency of several “large margin” methods
for pattern classification. In two-class classification, the aim is to find a function
f :X → R that accurately predicts a binary response variable Y ∈ {±1} using
the covariate X ∈ X, in the sense that R(f ) = E�(Yf (X)), the risk of the
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thresholded function, is minimized. Here, �(z) denotes the indicator function of
the event z ≤ 0. Large margin classification methods use some loss function
φ : R → R, typically convex, and seek a function f from some class F that
minimizes the φ-risk, Rφ(f ) = Eφ(Yf (X)), that is, the expected loss evaluated
at the margin Yf (X). These methods typically minimize the empirical φ-risk,
R̂φ(f ), or a regularized version thereof. Many successful pattern classification
methods fall in this class, including AdaBoost and other greedy algorithms for
forming ensembles of classifiers, and support vector machines. We can categorize
them according to the loss function φ, the class of functions F and the algorithm
used to approximately minimize Rφ .

The three papers in this issue demonstrate the consistency of various methods
of this kind.

• The consistency result in the paper by Zhang applies to several loss functions
and concerns kernel methods, which choose a function f from a reproducing
kernel Hilbert space H of functions on X to minimize a regularized empirical
φ-risk,

R̂φ(f ) + C‖f ‖H ,

where ‖ · ‖H is the Hilbert space norm. This is equivalent (for some λ) to
choosing f from the function class

Fk(H, λ) = {f ∈ H :‖f ‖H ≤ λ}
so as to minimize R̂φ(f ).

• The paper by Lugosi and Vayatis considers the loss function φ(α) = exp(−α),
the function class

Fb(G, λ) =
{∑

i

αigi :‖α‖1 ≤ λ,gi ∈ G

}
,

where G ∈ {±1}X has finite VC-dimension and an algorithm that minimizes
empirical φ-risk. The AdaBoost algorithm is similar, but without the constraint
on the coefficients.

• The paper by Jiang also considers the exponential loss function, the function
class

Fb(k) =
{

k∑
i=1

αigi :gi ∈ G

}
,

and the AdaBoost algorithm, which chooses the αi, gi sequentially, to greedily
minimize empirical φ-risk.

We can identify three key steps in proving consistency results of this kind. The
first involves a “comparison theorem,” relating the excess risk R(f ) − R∗ to the
excess φ-risk, Rφ(f ) − R∗

φ . Here, R∗ is the Bayes risk, that is, the infimum over
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all measurable f of R(f ), and R∗
φ = inff Rφ(f ) is the analogous quantity for

the φ-risk. A result of this kind is present in all three papers: Zhang’s Theorem 2.1
gives an explicit inequality relating the two excess risks; Lugosi and Vayatis’
Lemma 5 gives a limiting result; and Jiang’s Lemma 1 gives a related comparison,
via the L2(P ) distance between f and f ∗

φ = arg minf Rφ(f ).
The second and third steps are more conventional in consistency proofs. The

second step is to show that the functions used by the method are rich enough to
approximate f ∗

φ , the measurable function that minimizes φ-risk. As formulated
above, this involves showing that⋃

λ>0

Fk(H, λ),
⋃
λ>0

Fb(G, λ) and
⋃
k>0

Fb(k)

are sufficiently rich.
The third step is to choose a sequence of subsets Fn ⊆ F with suitably restricted

complexity as a function of the sample size n, so that the φ-risk of the estimated
f̂n ∈ Fn converges to the minimal value, inff ∈Fn Rφ(f ). For example, in the cases
considered in these three papers, the set Fn is defined as the set of combinations
of kn functions from G, or the set of combinations of functions from G with the
coefficient vector having one-norm no more than λn, or a ball of radius λn in
an RKHS H . (In the last case, f̂n is chosen to minimize a combination of the
empirical φ-risk and a regularization term involving the RKHS norm.)

This third step is a little more involved in the case of Jiang’s consistency result,
since that result involves an algorithm that does not minimize an objective function
involving the empirical risk. Thus, it is essential to show that, under certain
conditions, the algorithm finds a good function quickly.

It is interesting to consider what properties of the loss function φ allow
comparison theorems, and hence consistency results, for large margin methods
in general. Jiang’s result is for the exponential loss function, and the proof exploits
a smoothness assumption on the joint probability distribution that ensures that
the optimal f ∗

φ is continuous. Lugosi and Vayatis assume that φ is differentiable,
strictly convex, monotonic, and has a certain limiting behavior. Zhang assumes
that φ satisfies three conditions:

1. For any η = 1/2, any minimizer α∗ of the conditional φ-risk, ηφ(α) +
(1 − η)φ(−α) has the same sign as η − 1/2. Thus, a pointwise minimization of
the conditional φ-risk leads to a function that gives the correct sign everywhere.

2. φ is convex.
3. The minimal conditional φ-risk,

H(η) = inf
α∈R

(
ηφ(α) + (1 − η)φ(−α)

)
,

decreases polynomially with |1/2 − η|.
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Note that the first condition is implied by Lugosi and Vayatis’ assumptions (as can
be verified by a short calculation), and thus holds a fortiori for the exponential
function studied by Jiang. The condition is clearly the weakest possible condition
that can be imposed on φ if we are to obtain consistency—if the minimizer of
φ-risk yields the wrong sign at a given point, then it is easy to concoct a probability
distribution that has zero excess φ-risk but nonzero excess risk. Surprisingly, it
turns out that this condition is not only necessary but is also sufficient for obtaining
a general comparison theorem—no other conditions are needed. We provide a brief
overview of this result here; see [1] for a detailed presentation.

We begin by defining the following functional transform of a loss function φ:

DEFINITION 1. Given φ : R → [0,∞), define the function ψ̃ : [0,1] → [0,∞)

by

ψ̃(θ) = H−
(

1 + θ

2

)
− H

(
1 + θ

2

)
,

where

H(η) = inf
α∈R

(
ηφ(α) + (1 − η)φ(−α)

)
,

H−(η) = inf
α : α(2η−1)≤0

(
ηφ(α) + (1 − η)φ(−α)

)
.

The ψ-transform is defined to be the function ψ : [0,1] → [0,∞) that is the convex
closure of ψ̃ .

Note that it is straightforward to compute the ψ-transform for all of the
examples of loss functions φ studied in the three papers in this issue.

The importance of the ψ-transform is shown by the following theorem.

THEOREM 2. For any nonnegative loss function φ, any measurable
f :X → R and any probability distribution on X × {±1},

ψ
(
R(f ) − R∗) ≤ Rφ(f ) − R∗

φ.

This theorem establishes a general quantitative relationship between the excess
φ-risk and the excess risk.

For this relationship to be useful in particular applications we need to show that
ψ has particular properties—properties that arise from conditions that are imposed
on φ. In particular, let us introduce the condition described above—that pointwise
minimization of the conditional φ-risk leads to a function that gives the correct
sign. We express this condition in the following way:

DEFINITION 3. We say that φ is classification-calibrated if, for any η = 1/2,

H−(η) > H(η).
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Equivalently, φ is classification-calibrated if for any sequence (αi) such that

lim
i→∞{ηφ(αi) + (1 − η)φ(−αi)} = H(η),

we have

lim
i→∞ sign

(
αi(η − 1/2)

)= 1.

In particular, if the infimum H(η) is achieved at a minimizing value α∗, then this
value must have the correct sign. Thus, this condition is essentially an elaboration
of Zhang’s first condition. As pointed out by Lin [2], it can be viewed as a variant
of Fisher consistency that is appropriate for classification.

We have the following result:

THEOREM 4. The following conditions are equivalent:

1. φ is classification-calibrated.
2. For any sequence (θi) in [0,1],

ψ(θi) → 0 if and only if θi → 0.

3. For every sequence of measurable functions fi :X → R and every probability
distribution P ,

Rφ(fi) → R∗
φ implies R(fi) → R∗.

Thus we see that we obtain a meaningful general comparison theorem under
the weakest possible condition on the loss function φ. In addition, it can be shown
that for a given φ, the ψ-transform is optimal in the sense that everywhere on its
domain, the bound given by Theorem 2 cannot be improved in general.

Note in particular that we have not assumed that φ is convex. If we do
assume that φ is convex, then we can say more—in particular, the function ψ̃ in
Definition 1 is then necessarily closed and convex, and thus the ψ-transform
is specified directly via the variational representation ψ(θ) = H−((1 + θ)/2) −
H((1 + θ)/2). Moreover, if φ is convex, then it is possible to show that it is
classification-calibrated if and only if it is differentiable at 0 and φ′(0) < 0.

The comparison theorem in Theorem 2 and the analogous comparison theorems
in the three papers in this issue suggest a general framework for studying pattern
classification methods that involve a surrogate loss function. It is common to view
the excess risk as a combination of an estimation term and an approximation term:

R(f ) − R∗ =
(
R(f ) − inf

g∈F
R(g)

)
+
(

inf
g∈F

R(g) − R∗
)
.

However, choosing a function with risk near minimal over a class F —that is,
finding an f for which the estimation term above is close to zero—is, in a
minimax setting, equivalent to the problem of minimizing empirical risk. For
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typical classes F of interest, this problem is computationally infeasible. Even
worse, for the function classes typically used by boosting and kernel methods, the
estimation term in this expression does not converge to zero for the minimizer of
the empirical risk. On the other hand, the comparison theorems we are considering
suggest splitting the upper bound on excess risk into an estimation term and an
approximation term:

ψ
(
R(f ) − R∗) ≤ Rφ(f ) − R∗

φ
(1)

=
(
Rφ(f ) − inf

g∈F
Rφ(g)

)
+
(

inf
g∈F

Rφ(g) − R∗
φ

)
.

We can view the function ψ provided by the comparison theorem as quantifying
the penalty incurred by using the surrogate loss function φ in place of the
0–1 loss, and linking the excess risk to the approximation error and estimation
error associated with the φ-risk.

In many cases it is possible to minimize the φ-risk efficiently over a convex
class F and, hence, find an f ∈ F for which this upper bound on risk is near
minimal. This holds despite the fact that finding an f ∈ F with near-minimal risk
is typically computationally infeasible.

Another interesting question raised by Theorem 2 and by the papers in this
issue is that of convergence rates. Zhang’s paper makes a start in this direction for
kernel methods, and this is continued in his more recent work with Mannor and
Meir concerning boosting methods [3]. Tsybakov [4] has considered empirical
risk minimization in pattern classification problems with low noise—specifically,
where the PX-probability that P (Y = 1|X) is near 1/2 is small. He showed that
the risk of the empirical minimizer converges to its minimal value surprisingly
quickly in these cases. It turns out that, under Tsybakov’s low noise condition, the
relationship between excess risk and excess φ-risk presented in Theorem 2 can be
improved [1]. In that case, if the loss function φ is uniformly convex and F is
convex, then the excess risk converges to its minimal value [the approximation
error term in (1)] surprisingly quickly.

The problem of classification has been a fruitful domain in which to explore
connections between statistical and computational science. Efficient algorithms
can be designed to solve large-scale classification problems by exploiting tools
from convex optimization, and the statistical consequences of using these tools
are beginning to be understood. The three papers in this issue represent significant
progress on the general problem of incorporating considerations of computational
complexity in statistical theory, providing hints of general tradeoffs between
statistical accuracy and computational resources that are only beginning to be
explored.
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THE GOLDEN CHAIN

BY PETER J. BICKEL AND YA’ACOV RITOV

University of California, Berkeley and Hebrew University of Jerusalem

And through the palpable obscure find out / His uncouth way.
J. Milton, Paradise Lost.

Jiang, Lugosi and Vayatis, and Zhang, in part explicitly and in part implicitly,
have done a great deal in explaining the nature of boosting from a statistical point
of view.

The problem all consider is that of finding classifiers that approximate the Bayes
classifier using only a training sample (Xi, Yi), i = 1, . . . , n, (Xi, Yi) ∼ (X,Y ),
with Y = ±1 (for simplicity). The Bayes classifier is described as sgn(Fp(X)),
where Fp(X) = q ◦ log(p[Y = 1|X]/P [Y = −1|X]), for any strictly increasing
function q with q(0) = 0.

The methods of approximation discussed by these and previous authors
cited in their papers have the common setting that the approximating values
are sgn(F̂ (X)), where F̂ ∈ F̃ ≡ ⋃∞

k=1 Fk , Fk = {∑k
j=1 λjhj :h1, . . . , hk ∈ H,

λ1, . . . , λk ∈ R} and H is a set of base classifiers, h :X → {−1,1}.
All methods are based on the following two observations:

(i) Given W convex, W = R → R
+. Then, at least formally, if F̃ is rich

enough and P denotes expectation, then Fp = arg min PW(YF (X)) as above. The
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validity of this identity is studied extensively by Zhang who relates it to minimizing
the Bregman divergence between F and Fp. The function W(t) = et corresponds
to classical AdaBoost, while W(t) = −2t + t2 is “L2 boosting.” See [5] and [9].

(ii) One “optimizes” PnW(YF (X)) over F̃ , where Pn is the empirical
distribution of (Xi, Yi), i = 1, . . . , n, in the same way to obtain F̂ . The classical
prescription of Breiman [3] is to optimize greedily starting at F0 ≡ 1 using the
Gauss–Southwell approach moving from Fm to Fm+1 on the mth step.

Unfortunately, as is made fairly explicit in these papers, unless P is discrete,
inf

F∈F̃ PnW(YF (X)) = 0, and optimizing to the bitter end leads to overfitting.

Jiang shows for classical AdaBoost that, under some conditions, given conver-
gence of the population algorithm, it is possible to stop the sample algorithm early
and achieve consistency, that is, convergence to the Bayes classifier. Lugosi and
Vayatis and Zhang separately show that by regularizing, effectively changing what
is being optimized, convergence to the Bayes classifier is possible quite generally
and obtain rates for their procedures. Such approaches via sieves have already been
considered by Baraud [1] for “L2 boosting.”

We see four distinct questions:

(i) When are greedy algorithms consistent in the population case?
(ii) When does early stopping in the sample case lead to a consistent

procedure?
(iii) How can early stopping be implemented by cross-validation?
(iv) How can one directly modify the greedy algorithm, retaining its simple

sequential structure and yet achieve optimal rate upon stopping suitably?

In our remark we address points (i) and (ii). Point (ii) is treated separately by
Bickel and Ritov [2], Zhang and Yu [8] and Bühlmann [4] and (iv) is in progress.

1. Weak consistency. Here is a very general framework.
Let �1 ⊂ �2 ⊂ · · · be a sequence of sets contained in a separable metric space

with metric ρ, � = ⋃
�m, where denotes closure. Let K be a target function and

ϑ∞ = arg min� K(ϑ). Let �m :�m+1 → �m. Finally, let Kn be a sample-based
approximation of K . We assume the following:

A1. For any m,ϑ0 :M , �m ∩ {ϑ :ρ(ϑ,ϑ0) < M} is compact. Let K :� → R

and assume that ϑ∞ = arg minϑ∈� K(ϑ) is unique.

A2. K is strictly convex and K(ϑ) ≤ K(ϑ ′) ⇒ ρ(ϑ,ϑ∞) ≤ Aρ(ϑ ′, ϑ∞) for
some A < ∞.

A3. If ρ(ϑm,ϑ0) → ∞ for some, and hence all ϑ0, then K(ϑm) → ∞.

Let �m :�m → 2�m+1 be a sequence of point to set ρ-continuous mappings,
where distance between sets is defined as ρ(A,B), the Hausdorff distance between
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the closures of A and B , and define the following algorithm generating a sequence
ϑ̄m ∈ �m, m = 1,2, . . . , given an initial point ϑ0:

(i) ϑ̄m+1 ∈ �m(ϑ̄m).
(ii) K(ϑ̄m+1) = infϑ∈�m(ϑ̄m) K(ϑ).

Suppose:

A4. If {ϑm} is defined as above with any initial ϑ0, then ρ(ϑm,ϑ∞) → 0.

In boosting, given P , � = {F(X),F ∈ F̃ }, ρ is a metric of convergence in
probability, �m = {∑m

j=1 λjhj , hj ∈ H} and �m(F ) = {F + λh,λ ∈ R,h ∈ H}.
Moreover, K(F) = EW(YF(X)).

Now suppose Kn(·) is a sequence of random functions on � such that:

A5. Kn is convex and sup{|Kn(ϑ) − K(ϑ)| :ϑ ∈ �m, ρ(ϑ,ϑm) < M} P→0
for all finite m, M , ϑ0.

In boosting, Kn(F ) = n−1 ∑n
i=1 W(YiF (Xi)) and A5 corresponds to requiring

that {W(YF(X)) :F ∈ �m, ρ(F,F0) ≤ M} is uniformity class for LLN for P , for
instance, a VC class. Bühlmann [4], Zhang and Yu [8] and Bickel and Ritov [2]
discuss such conditions in different degrees of generality.

The sequence {ϑ̄m} is the golden chain we try to follow using the obscure
information in the sample. Define ϑ̂m,n by the following:

(i) ϑ̂m+1,n ∈ �m(ϑ̂m,n).
(ii) If ϑ ′ ∈ �m(ϑ̂m,n), then Kn(ϑ̂m+1,n) ≤ Kn(ϑ

′) and, in case of equality, also
ρ∗(ϑm+1,n, ϑ0) ≤ ρ∗(ϑ ′, ϑ0) for some metric ρ∗ such that ρ(ϑm,ϑ0) → ∞ ⇒
ρ∗(ϑm,ϑ0) → ∞.

The purpose of introducing ρ∗ is to avoid an unnecessarily large norm of the
estimate. In boosting ρ∗ can be any metric like the L2(µ) metric where µ has
fatter tails than P .

THEOREM 1.1. Under A1–A5 there exists a sequence {mn} such that

ρ
(
ϑmm,n,ϑ∞

) P→ 0.

PROOF. Consider ϑ̂1,n. By definition,

Kn(ϑ̂1,n) ≤ min{Kn(ϑ0),Kn(ϑ̄1)}.(1)

However, for large enough M , we get from A3 that infϑ∈�1,ρ(ϑ,ϑ0)=M K(ϑ) >

K(ϑ0). By A5 we obtain that also

P

(
inf

ϑ∈�1,ρ(ϑ,ϑ0)=M
Kn(ϑ) > K(ϑ0)

)
→ 1.(2)
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Convexity of Kn, (1) and (2) imply that ρ(ϑ̂1,n) is bounded. But then strict
convexity of K and uniform convergence imply that

ρ(ϑ̂1,n, ϑ̄1)
P→0.(3)

We continue now to ϑ̂2,n. Since K is continuous, (3) implies that
inf

ϑ∈�1(ϑ̂1)
K(ϑ)

P→K(ϑ̄2). Applying the same argument as for ϑ̂1,n, we get

ρ(ϑ̂2,n, ϑ̄2) is bounded, and since K is continuous and strictly convex, we get again

that ρ(ϑ̂2,n, ϑ̂2)
P→0. By induction, we obtain that ρ(ϑ̂m,n, ϑ̄m)

P→0 for every m.
Let mn = sup{m :P (ρ(ϑ̂m,n, ϑ̄m) < m−1) < m−1}. Then mn→ ∞ and ρ(ϑ̂mn,n,

ϑ̄mn)
P→0. Apply A4 to conclude the proof. �

Results based on this theorem cannot give an estimate of the speed of
convergence of ϑ̂mn,n to ϑ∞, since the {mn} are not known. As we have mentioned,
regularization can yield such rates but in all cases we are left with a sequence
{ϑ̂1,n, ϑ̂2,n, . . . } of procedures for which we need to select a stopping time τ on the
basis of the data such that ϑ̂τ,n behaves well. A natural comparison is to the oracle
stopping time W , such that EK(ϑ̂W,n) = minm EK(ϑ̂m,n). In the next section we
give a general result guaranteeing that K(ϑ̂τ,n) ≈ EK(ϑ̂W,n) in the context of
classification. We shall show how this result may be applied to the regularized
variants of boosting elsewhere.

2. The beauty of the test-bed. The boosting algorithm can be stopped
appropriately if there are available good data driven bounds on the sample error.
However, it is more practical to use some type of cross-validation. Here is a general
result.

Assume that the observations are i.i.d. from Z = (Y,X1,X2, . . .) = (Y,X),
where Y ∈ {−1,1}. The task is to find a function ϑ(X), such that P (Yϑ(X) > 0)

is maximized. The sample is divided into a main sample, Z1, . . . ,Zn, and a test-
bed ZT

1 , . . . ,ZT
k . The main sample is used to derive a sequence of classifiers

ϑ̂1, ϑ̂2, . . . . The test data is used to pick ϑ̂τ as the classifier to be used, where

τ = arg min
m<M

k∑
j=1

1
(
YT

j ϑ̂m(XT
j ) > 0

)
.

An oracle constrained to use rules of the form sgn(Y T ϑ̂m(XT )) would use

W = arg min
m<M

P
(
YT ϑ̂m(X) > 0|ϑ̂i

)
.

Let ηm = P (Y T ϑ̂m(X) > 0|ϑ̂m(·)), m = 1,2, . . . . The following assumption will
be used:
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ASSUMPTION S (Similarity of the good classifiers). With probability converg-
ing to 1, one of the following holds for every m < K :

1. (logM)−1
√

k(ηm − ηW ) > bn, for some bn → ∞.
2. P (ϑ̂m(X)ϑ̂W (X) < 0|ϑ̂m(·), ϑ̂W (·)) < an, for some an → 0. Moreover, there is

a monotone nondecreasing function �(·), �(0) = 0, such that

E
(
Y
(
1
(
ϑ̂W (X) > 0

)− 1
(
ϑ̂m(X) > 0

))|ϑ̂m(·), ϑ̂W (·)
)

≤ �

(
E(Y (1(ϑ̂W (X) > 0) − 1(ϑ̂m(X) > 0))|ϑ̂m(·), ϑ̂W (·))√

P (ϑ̂m(X)ϑ̂W (X) > 0|ϑ̂m(·), ϑ̂W (·))

)
.

We essentially require that all procedures with close to optimal performance are
similar.

THEOREM 2.1. Let Assumption S hold. Then ητ = ηW + op(�(
√

log M/k )).

PROOF. Let the two sets of indices postulated in Assumption S be S1 and S2,
respectively. Since the estimates

k−1
k∑

j=1

1
(
YT

j ϑm(XT
j ) > 0

)
, m = 1, . . . ,M,

have a uniform error bound of log(M)/
√

k, we have τ /∈ S1. Hence, with
probability converging to 1, the test-bed stopping time is minimizing

Um = k−1
k∑

j=1

(
1
(
YT

j ϑW(XT
j ) > 0

)− 1
(
YT

j ϑm(XT
j ) > 0

))
(4)

over m ∈ S2. But the sum in (4) is of {−1,0,1} i.i.d. random variables, which are 0
with high probability. Let pm and qm be the conditional probabilities (conditioned
on the main sample) that a given term in the sum is 1 or −1, respectively. Then

EUm = pm − qm,

VarUm = (
1 + o(1)

)
(pm + qm)/k.

Hence, with probability converging to 1,

ηW − ητ = max

{
pm − qm :m ∈ S2,

√
k

logM

pm − qm√
pm + qm

< 1

}

≤ max

{
�

(
pm − qm√
pm + qm

)
:m ∈ S2,�

(
pm − qm√
pm + qm

)
< �

(√
logM

k

)}

≤ �

(√
log M

k

)
. �
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DISCUSSION

BY PETER BÜHLMANN AND BIN YU

ETH Zürich and University of California, Berkeley

Jiang, Lugosi and Vayatis, and Zhang ought to be congratulated for
their different works on the original AdaBoost algorithm with early stopping
(Jiang), an �1-penalized version of boosting (Lugosi and Vayatis) and a
convex minimization method which can be viewed as an �2-penalized version
of boosting (Zhang).

1. A motivation for combining trees with boosting. The interesting and
common part of all three papers is that Bayes risk consistency can be achieved by a
linear or convex combination of simple classifiers. The most prominent examples,
exhibiting good performance in a variety of datasets, are combinations of small
or moderate-sized classification trees. Each of the trees is low-dimensional, but
by linear or convex addition of trees we obtain a combined classifier whose
complexity is (much) larger.

A problem with single classification trees is that they are often inflexible or
cannot be constructed large enough for optimal classification performance. We
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show in Figure 1 the test set misclassification loss (0–1 loss) for n = 100 i.i.d.
realizations of (X,Y ) in the model

X = (X1, . . . ,X10) ∼ Uniform([−0.5,0.5]10), Y ∈ {−1,1}
with P[Y = 1] = p(X),

(1)

logit(p(x)) = log
(
p(x)/

(
1 − p(x)

)) = 50
10∑

j=1

xj .

The trees are constructed in a greedy way (as usual) optimizing the Gini index
fitting criterion. We tuned the size of a classification tree by the minimal number of
observations that fall into the terminal nodes, and the largest trees are constructed
under the constraint that there are at least two observations per terminal node. We
see in Figure 1 that on average, the largest classification trees have about 10 or 11
terminal nodes. We also see that the test set error is smallest at our largest tree, but
we cannot make the trees larger (more complex) to potentially decrease the test set
error (we could enlarge them a bit by requiring at least one observation per terminal
node, but this turns out to be rather unstable with low predictive power). This has
to do with two things: first, it is the constrained nature of trees with splits parallel
to coordinate axes; second, a greedily constructed classification tree is restrictive
and hence involves much fewer degrees of freedom (less complexity) than when
constructed in a nongreedy way. Regarding the first issue, other proposals with
splits that are not parallel to axes have been proposed; compare [8]; the second
issue is more difficult, but recently some progress has been made in constructing
trees in a more exhaustive, less greedy way [7]. The second remedy is nontrivial
and with much higher computational costs.

Perhaps a conceptually simpler way, if we are concerned only with good
classification performance, is given by boosting (AdaBoost which may be read
as “ad a boost”), which “boosts” a single classification tree to make it more
flexible and more complex. Figure 1 also shows how much the test set error
could be improved by using LogitBoost (with the log-likelihood loss function)
with stumps, namely by about 30%. Thus, from a practical point of view, linear or
convex combinations of trees overcome the limitation of “bounded” complexity of
single trees. Moreover, as we understand from rigorous results in the L2-boosting
case with squared error loss [3], the increase of complexity occurs in a very
gradual fashion (much slower than counting the number of terms), which allows
adaptation to problems of different complexity. Last but not least, boosting has
also been found to have excellent performance in a wide range of real datasets.
The papers under discussion justify such combination procedures which seem to
act intelligently with the curse of dimensionality.
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FIG. 1. Test set misclassification errors in model (1). Left panel: Classification trees with varying
minimal numbers of observations per terminal node, displayed as a function of average number
of terminal nodes; the lower right circle corresponds to classification trees with at least two
observations per terminal node. Right panel: LogitBoost with stumps as a function of boosting
iterations.

2. Boosting (with early stopping) versus regularized boosting. Jiang ana-
lyzes the original AdaBoost algorithm with early stopping, whereas versions of
regularized boosting are considered by Lugosi and Vayatis (�1-constrained boost-
ing) and also Zhang (�2-penalized boosting).

Computational advantage of boosting (with early stopping). The original
boosting scheme specifies explicitly the numerical algorithm for optimization to be
greedy, in contrast to many other classical statistical estimation schemes which are
defined through an ideal optimization of an objective function. And we believe this
original version of boosting (with early stopping) has an important computational
advantage for coping with high-dimensional complex datasets having dimension
of the predictor in the thousands. We think that it is exactly for such problems
where boosting (using a learner which does variable selection) plays a significant
role, since more traditional methods become very difficult to use and tune; for the
latter, forward variable selection is still feasible, but assigning various smoothing
parameters for selected predictors or terms is very difficult (see also the end of this
section).

�1-constrained boosting is Lasso. The �1-constrained boosting algorithm
proposed by Lugosi and Vayatis can be understood as seeking a combination
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of base learners with an �1-constraint on the combination weights, that is, one
minimizes the empirical risk An(f ) under the constraint

∑N
j=1 wj ≤ λ (notation

as in Lugosi and Vayatis). This is best known in the statistics community as the
Lasso method ([11] or also as basis pursuit [4]) in signal processing.

Efficient computation of Lasso or basis pursuit is in general a nontrivial issue
([4] and [10]). A notable point is that Lasso solutions are usually not computed
using greedy algorithms which are in danger of being overly greedy and can
get stuck in suboptimal solutions. Lugosi and Vayatis use in their examples the
MarginBoost.L1 algorithm from [9]. It is a gradient descent, greedy forward
method, very similar to boosting, which normalizes the �1-norm of the weights
along the way. Interestingly, this MarginBoost.L1 algorithm can be used for many
base learners and is not restricted to specialized problems like linear regression
or expansions from an over-complete dictionary. Lugosi and Vayatis do not
discuss to what extent the MarginBoost.L1 algorithm yields approximate solutions
to Lasso-type problems or whether the MarginBoost.L1 algorithm corresponds
exactly to the �1-constrained boosting for which theoretical results are proven by
Lugosi and Vayatis. In particular, at first sight, it seems that the greedy nature of
the MarginBoost.L1 algorithm used by Lugosi and Vayatis for their regularized
boosting is in conflict with the nongreedy Lasso algorithms in [4] and [10].

Using the LARS (least angle regression) algorithm for finite linear regression
models, Efron, Hastie, Johnstone and Tibshirani [5] recently made a connection
between Lasso and boosting with infinitesimal shrinkage factor (or ε-boosting),
or equivalently, linking nongreedy linear programming algorithms for Lasso with
greedy, gradient descent methods for boosting with infinitesimal steps: ε-boosting
(or “stagewise” as called by Efron, Hastie, Johnstone and Tibshirani [5]) adds
normalized base learners to the current fit by an infinitesimal amount ε (but
fixed among the boosting iterations). Under some positive cone conditions for
the predictor variables, Efron, Hastie, Johnstone and Tibshirani [5] show that
Lasso and ε-boosting are equivalent. In practice, the ε or infinitesimal amount
of shrinkage has to be chosen as a small constant as has been advocated by
Friedman [6]. However, it is worth noting that ε-boosting is not the same as
MarginBoost.L1, but we believe they are closely related.

Although this connection in the finite predictor (or finite base learner) case
is intriguing, it is unclear how to generalize the LARS algorithm to the infinite
base learner case. [One such example is trees, although for a given n, there are
only finitely many possible trees with any fixed number of terminal nodes and
split points in the middle between observations. However, this finite number is
already equal to dim.(predictor) · (n − 1)+ 1 for stumps and even much bigger for
larger trees; asymptotically, it is infinite.] This infinite base learner scenario is the
most relevant to the success of boosting with empirical datasets because the base
learner fitted at each step is taken from a pool of infinitely many base learners.
For this case, we believe boosting (with small steps) provides the most flexible
solution and, in some sense, generalizes LARS from the finite learner case. It is
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interesting to note that the convergence analysis of Zhang and Yu [12] suggests
that small step sizes are necessary for the convergence of the boosting algorithm
as the iteration goes to infinity. For good statistical performance, however, we
almost always stop before convergence and we believe that boosting is, in general,
different from �1-constrained boosting or MarginBoost.L1. This difference can
also been seen in the experiments provided by Lugosi and Vayatis on AdaBoost
and MarginBoost.L1.

�2-regularization is Ridge. Zhang proposes a convex combination of base
learners: his way of estimation and regularization is via the more established
�2-penalty. Because of the �2-penalty, his algorithm can be viewed as a Ridge
method. In general, the solution is not expected to be sparse. On the other hand,
boosting with a base learner that does variable selection can be shown to have the
interesting feature to do variable selection and assign varying amounts of degrees
of freedom to different selected variables (e.g., in a linear model) or terms in an
expansion (e.g., in fitting an additive model). The same holds for Lasso, which is
also reflected by the “equivalence” of ε-boosting and Lasso [5].

Adaptivity of boosting (with early stopping). We have shown in [3] that
boosting with the squared error loss function, which we called L2Boost, adapts
to higher-order smoothness for curve estimation in nonparametric regression.
For example, when using cubic smoothing splines as base learners with a fixed
conventional smoothing parameter λ0, L2Boost with a suitable number of boosting
iterations achieves the minimax optimal MSE rates over Sobolev classes. Even
though we are using a cubic smoothing spline as a base learner, L2Boost achieves a
faster MSE rate than O(n−4/5) (the optimal rate for the Sobolev class of degree 2)
if the underlying true function is in the Sobolev space of degree larger than 2
(essentially more than twice differentiable). With non-boosted smoothing splines,
we would only get the minimax optimal MSE rates when knowing the smoothness
of the underlying function. Thus, L2Boost has the interesting theoretical property
of adapting automatically to higher-order smoothness, and interestingly, this is
achieved by a greedy forward algorithm!

Because of the connection between the �2-penalized convex combination
algorithm of Zhang, when used with the squared error loss and the classical
smoothing splines, we doubt that this adaptivity holds for Zhang’s �2-regularized
boosting algorithm. It remains to be seen whether the �1-constrained boosting has
this adaptivity, but we conjecture that it does due to its connection to ε-boosting.

3. Final remarks. Jiang solved the problem of consistency for original
boosting with early stopping which we think is a very effective statistical
methodology and at the same time computationally feasible for high-dimensional
data-sets. Breiman [1] pointed already at the issue of consistency for AdaBoost
but Jiang was the first to prove consistency of AdaBoost. Since we believe that
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boosting (with early stopping) is very useful in general, we have followed up on
Jiang’s work. In [2], consistency of L2Boost (with early stopping) is proved for
regression or probability estimation in classification (which is more general than
Bayes risk consistency). More recently, Zhang and Yu [12] showed consistency of
boosting with early stopping under general loss functions.

Lugosi and Vayatis present elegant consistency theorems which work under
“minimal” assumptions. Since they analyze �1-constrained boosting, we may think
that their result also hints at consistency for Lasso-type methods in classification.

Zhang’s work has an interesting part on implementing loss functions for
classification, providing consistency for Ridge-type methods in classification.

In summary, the three papers under discussion present some important recent
understanding of boosting, as a result of the joint efforts of the statistics and
the machine learning communities. We believe that this interaction of statistics
and machine learning is bearing or will bear fruit on understanding many other
procedures such as support vector machines and independent component analysis.
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DISCUSSION

BY JEROME FRIEDMAN, TREVOR HASTIE, SAHARON ROSSET,
ROBERT TIBSHIRANI AND JI ZHU

Stanford University

1. Introduction. We congratulate the authors for their interesting papers
on boosting and related topics. Jiang deals with the asymptotic consistency of
AdaBoost. Lugosi and Vayatis study the convex optimization of loss functions
associated with boosting. Zhang studies the loss functions themselves. Their
results imply that boosting-like methods can reasonably be expected to converge
to Bayes classifiers under sufficient regularity conditions (such as the requirement
that trees with at least p + 1 terminal nodes are used, where p is the number of
variables in the model). An interesting feature of their results is that whenever
data-based optimization is performed, some form of regularization is needed in
order to attain consistency. In the case of AdaBoost this is achieved by stopping
the boosting procedure early, whereas in the case of convex loss optimization, it
is achieved by constraining the L1 norm of the coefficient vector. These results
reiterate, from this new perspective, the critical importance of regularization for
building useful prediction models in high-dimensional space. This is also the
theme of the remainder of our discussion.

Since the publication of the AdaBoost procedure by Freund and Schapire [6],
there has been a flurry of papers seeking to answer the question: why does boosting
work? Since AdaBoost has been generalized in different ways by different authors,
the question might be better posed as: what are the aspects of boosting that are the
key to its good performance?

2. Our view: boosting performs a high-dimensional Lasso. We would like
to present our current view of boosting here. In recent years, a new paradigm has
emerged in flexible function fitting. There are three ingredients:

• A large dictionary D of basis functions for representing the function, typically
as a linear expansion f (x) =∑

h�∈D h�(x)β�.
• A loss function L(Y,f (X)) appropriate for the problem, for example, for

regression or classification.
• A regularizer J (β) to control the size of the coefficients in the model.

One then fits the model by minimizing the sum over the data

N∑
i=1

L
(
yi, f (xi)

)+ λJ (β),(1)

where λ is a tuning parameter that controls the trade-off between average loss and
penalty. If constructed appropriately, the resulting problem is convex and hence
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can be solved by convex optimization methods. Support vector machines fall into
this paradigm: they use an L2 penalty, a piecewise-linear (“hinge”) loss function
and a basis dictionary generated by a positive definite kernel. Although such bases
can have infinite dimension, the “kernel trick” results in a finite representation and
simplifies the optimization [12].

Boosting methods use adaptively constructed basis functions and a forward
stagewise procedure to build the model. In [9] we showed that AdaBoost fits an
additive model in its basis functions, using a particular exponential loss function.
This framework led to alternative and potentially better forms of boosting, by
allowing the use of other loss functions and improvements in the forward stagewise
procedure ([9] and [7]).

In this work we noticed that slowing down the procedure through shrinkage—
a kind of slow learning—always seemed to help. This led us to our current
view of boosting. We think of the forward stagewise procedure as a numerical
device for approximating a sequence of solutions to (1) when J (β) is an L1
penalty. The sequence is obtained by continuously relaxing the parameter λ.
Chapter 10 of [10] has a discussion of this point. More recently, Efron, Hastie,
Johnstone and Tibshirani [5] proved a result in the simplified framework of least
squares regression. Given a centered outcome variable Y = {yi}n1 and standardized
predictors Xj = {xij }n1, j = 1,2, . . .p, consider the following forward-stagewise
procedure for estimating the coefficients β = {βj }p1 :

1. Start with βj = 0 for all j , and the residual r = Y .
2. Find the predictor Xj most correlated with r , and increment its coefficient βj

by some small amount ε in the direction of this correlation,

βj ← βj + ε · sign[corr(r,Xj )].
Adjust r accordingly,

r ← r − Xj · ε · sign[corr(r,Xj )].
3. Repeat step 2 many times.

We call this “incremental forward stagewise regression.” If this procedure is
run for many steps, it eventually reaches the full least squares solution (modulo
the granularity in ε). But more interestingly, we show in [5] that the resulting
coefficient profiles approximate the solution to an L1-constrained regression
(“Lasso”) β(λ) = arg min

∑n
i=1(yi − ∑p

j=1 xijβj )
2 + λ

∑p
j=1 |βj |. That is, the

profiles of the coefficients resulting from incremental forward stagewise regression
look much like the lasso solutions β(λ), as λ is varied from +∞ (maximum
constraint) to 0 (no constraint). Figure 1 shows an example, taken from [10].

What does this have to do with boosting? Take as basis functions the set of all
possible regression trees that can be grown from the given features. Suppose we
want to compute the lasso path of solutions. This cannot be done directly since
the number of trees is so large. Instead, take the incremental forward stagewise
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FIG. 1. Profiles of estimated coefficients from linear regression, for the prostate data studied in
Chapter 3 of [10]. The left panel shows the results from the Lasso, for different values of the bound
parameter t =∑

j |βj |. The right panel shows the results of the incremental forward stagewise linear
regression algorithm, using M = 250 consecutive steps of size ε = 0.01.

regression and replace the predictors Xj with basis functions that are the set of
all possible regression trees that can be grown from the given features. The least
squares boosting procedure of Friedman [7] looks like the following:

1. Start with F(x) = 0 and the residual r = Y .
2. Fit a tree f (x) to the outcome r , increment F(x) with a shrunken version

of f (x),

F(x) ← F(x) + εf (x),

and update r ,

r ← r − εf (x).

3. Repeat step 2 many times.

Now in step 2 when we fit a tree to r , we are approximately finding the tree
(among all possible trees) that is most correlated with r . Hence least squares
boosting can be viewed as a numerically savvy way of carrying out incremental
forward stagewise regression on the space of regression trees. The latter, in turn, is
an approximate way of computing the lasso path in this space.
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For simplicity, our discussion has focussed on least-squares boosting. It also
applies to other forms of boosting that use different loss functions [8], for example,
AdaBoost, which is based on exponential loss [11].

3. The “bet on sparsity” principle. Now for any of this to be of practical im-
portance, there must be an inherent reason (other than the ease of implementation)
to prefer an L1 penalty, to say an L2 penalty, for these kinds of problems. Sup-
pose we have 10K data points and our model is a linear combination of a million
trees. Suppose also that the true population coefficients of these trees arose from
a Gaussian distribution. Then we know that in a Bayesian sense the best predictor
would be a ridge regression; that is, we should use an L2 rather than an L1 penalty
when fitting the coefficients. On the other hand, if there are only a small number
(e.g., 1000) of nonzero true coefficients, the Lasso (L1 penalty) will work better.
We think of this as a sparse scenario, while the first case (Gaussian coefficients)
as dense. Note however that in the dense scenario, although the L2 penalty is best,
neither method does very well since there is too little data from which to estimate
such a large number of nonzero coefficients. This is the curse of dimensionality
taking its toll. In a sparse setting, we can potentially do well with the L1 penalty,
since the number of nonzero coefficients is small. The L2 penalty fails again.

In other words, use of the L1 penalty follows what we call the bet on sparsity
principle for high-dimensional problems:

Use a procedure that does well in sparse problems, since
no procedure does well in dense problems.

These comments need the following moderation:

• For any given application, the degree of sparseness/denseness depends on the
unknown true target function and the chosen dictionary D .

• The notion of sparse vs. dense is relative to the size of the training data set
and/or the signal-to-noise ratio (SNR). Larger training sets allow us to estimate
coefficients with smaller standard errors. Likewise in situations with large SNR,
we can identify more nonzero coefficients with a given sample size than in
situations where the SNR is smaller.

• The size of the dictionary plays a role as well. Increasing the size of the
dictionary may lead to a sparser representation for our function, but the search
problem becomes more difficult.

Figure 2 illustrates these points in the context of linear regression. The details
are given in the caption. Note that we are not using the training data to select λ,
but rather are reporting the best possible behavior for each method in the different
scenarios. The L2 penalty performs poorly everywhere. The Lasso performs
reasonably well in the only two situations where it can (sparse coefficients). As
expected the performance gets worse as the SNR decreases and as the model
becomes denser.
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FIG. 2. Simulations that show the superiority of the L1 (Lasso) penalty over L2 (Ridge) in
regression. Each run has 50 observations with 300 independent Gaussian predictors. In the top row
all 300 coefficients are nonzero, generated from a Gaussian distribution. In the middle row, only 10
are nonzero generated from a Gaussian, and the last row has 30 nonzero. In each case the coefficients
are scaled so that the signal variance var(XT β) is 1. The noise variance varies from 0.1 to 0.5 (noise
to signal ratio). Lasso is used in the left column, Ridge in the right. In both cases we used a series
of 100 values of λ, and picked the value that minimized the theoretical test error. In the figures we
report the percentage variance explained (in terms of mean squared error), displayed as boxplots
over 20 realizations for each combination.
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These empirical results are supported by a large body of theoretical results [1–4]
that support the superiority of L1 estimation in sparse settings.
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1. Boosting: numerical and statistical aspects. These three interesting
papers explore (from somewhat different points of view) convergence properties
of boosting methods of binary classification. It has become common to interpret
these methods as minimization of empirical risk with an asymmetric loss function
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(often chosen to be convex) that penalizes heavily for incorrect classification and
even penalizes to some extent for correct classification with a small classification
margin. Such a choice of the loss function allows one to improve the accuracy of
approximation of the true risk by the empirical risk and to make empirical risk
minimization computationally tractable (at the same time). It also explains the fact
that classifiers obtained using these methods tend to have large positive margins.
Boosting type algorithms search for large margin classifiers in the convex hull of
a given base class of functions, the empirical risk minimization problem being
solved using a functional version of iterative gradient descent method (which can
be also interpreted as a stagewise fitting of additive logistic regression). The most
famous representative of this class of algorithms is AdaBoost invented by Freund
and Schapire several years ago. The properties of AdaBoost and subsequent
boosting type algorithms, including their superb generalization ability and relative
immunity to overfitting, are not as surprising now as they used to be when
the algorithms were first suggested and tested in numerous experiments, but the
theoretical explanation of these properties is still far from being complete. One of
the difficulties with their analysis is related to the fact that these methods combine
techniques of numerical optimization with techniques of statistical estimation, and
therefore the analysis requires a subtle combination of the tools coming from both
areas.

The problem of Bayes risk consistency of boosting methods was looked at
by Leo Breiman a couple of years ago [1]. He eliminated the statistical part of
the question by assuming that the amount of training data is infinite. This (not
very realistic) assumption allowed him to explore approximation properties of a
population version of AdaBoost giving a solution of approximation and numerical
analysis parts of the problem (showing the convergence of the algorithm to the
Bayes risk). From a somewhat different point of view, the numerical analysis part
was also explored by Mason, Baxter, Bartlett and Frean [5]. The current paper
of Tong Zhang (and some other related papers of this author) takes this line
of research further. His main concern is a thorough study of the approximation
error (in the current paper) and convergence properties of optimization algorithms
involved in boosting in some other papers; see [7] and [8].

The paper of Lugosi and Vayatis, on the contrary, does not take into account
the iterative nature of boosting algorithms, but views them as methods of precise
minimization of the empirical risk and studies regularized versions of these
algorithms (with the restrictions imposed on the sums of the weights of base
classifiers). The main goal here is to prove consistency of regularized boosting
(i.e., convergence a.s. of the generalization error of classifiers produced by the
algorithm to the Bayes risk as the amount of the training data tends to infinity).

Jiang’s idea is different. His version of regularization of AdaBoost is based on
early stopping of the algorithm. He shows that the number of rounds of AdaBoost
can be chosen (depending on the sample size) in such a way that the classifier
output by the algorithm is consistent. In this context, I would like also to mention



BOOSTING 109

the paper of Mannor, Meir and Zhang [4] and the more recent paper of Zhang and
Yu [8] that develop Jiang’s idea in a different fashion, that is, much closer to the
work of Lugosi and Vayatis.

2. A simple proof of consistency. In this section (which will be much more
formal than the previous one), I would like to explain my own understanding of
the work of Lugosi and Vayatis (and of some elements of the work of Zhang). In
particular, I would like to show a very easy proof of a slightly generalized version
of Theorem 1 of Lugosi and Vayatis (based on empirical processes bounds from [2]
they used as well). I will have to introduce some notation.

Let (X,Y ) be a random couple in S×{−1,1}, P being the distribution of (X,Y )

and � being the distribution of X. For a classifier g :S �→ {−1,1},
L(g) := P {(x, y) :y = g(x)}

denotes its generalization error. The Bayes risk L∗ is the minimum of L(g) over
all measurable classifiers g :S �→ {−1,1}. This minimum is attained at the Bayes
classifier

g∗(x) := I
(
η(x) > 0

)− I
(
η(x) ≤ 0

)
,

where η(x) = E(Y |X = x) is the regression function. The following representation
is well known:

L(g) − L∗ =
∫
{g=1}�{g∗=1}

|η|d�.(1)

Given a sample (X1, Y1), . . . , (Xn,Yn) of i.i.d. copies of (X,Y ) [defined on
some probability space (�,�,P)], let Pn denote the empirical distribution based
on the sample. A sequence of classifiers ĝn (also based on the sample) is called
consistent iff L(ĝn) → L∗ as n → ∞ a.s.

Consider a class F of functions f :S �→ R. The complexity of function classes
used in learning problems is often characterized by the following quantity, called
the Gaussian complexity:

Gn(F ) := E sup
f ∈F

∣∣∣∣∣n−1
n∑

i=1

gif (Xi)

∣∣∣∣∣,
where {gi} are i.i.d. standard normal r.v.’s independent of {Xi}.

Let � : R �→ (0,+∞) be a continuous loss function with �(u) → 0 as u → +∞
and �(u) → +∞ as u → −∞. In what follows we denote (� • f )(x, y) :=
�(yf (x)), (x, y) ∈ S × {−1,1}. Boosting type methods are often viewed as
functional gradient descent algorithms of minimizing the empirical risk Pn(� • f )

over f ∈ F := conv(H), where H is a base class of functions.
Let

Q(u, τ ) := �(u)
1 + τ

2
+ �(−u)

1 − τ

2
, u ∈ R, τ ∈ [−1,1].
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We assume in what follows that, for any τ ∈ (−1,1), u �→ Q(u, τ ) has the unique
minimal point m(τ):

min
u∈R

Q(u, τ ) = Q(m(τ), τ ).

We also set m(1) = +∞, m(−1) = −∞ [the uniqueness of the minimum m(τ)

holds, e.g., when � is strictly convex]. Clearly, un → m(τ) iff Q(un, τ ) →
Q(m(τ), τ ) [by uniqueness of m(τ) and continuity of Q]. Finally, we assume that
m(τ) > 0 (< 0) iff τ > 0 (< 0). This condition holds if �(u) > �(0) > �(−u) for
all u < 0.

The following representation is easily proved by conditioning:

P (� • f ) =
∫
S
Q(f,η) d�.(2)

It immediately implies that the function f ∗(x) := m(η(x)), x ∈ S, minimizes the
risk P (� • f ) over the class of all measurable functions f :S �→ R.

Let now Fn be a sequence of classes of functions on S and let f̂n ∈ Fn denote a
function that minimizes the empirical risk Pn(� • f ) over Fn. Let

ĝn(x) := I
(
f̂n(x) > 0

)− I
(
f̂n(x) ≤ 0

)
.

Suppose that all the functions in Fn are bounded by a constant Cn > 0 and let Mn

denote the sup-norm and Ln the Lipschitz constant of � on the interval [−Cn,Cn].

THEOREM 1. Suppose that

inf
f ∈Fn

P (� • f ) → P (� • f ∗) as n → ∞,(3)

Mn

√
log n√
n

→ 0 and LnGn(Fn) → 0 as n → ∞.(4)

Then {ĝn} is consistent.

Let

�n := sup
f ∈Fn

∣∣(Pn − P )(� • f )
∣∣.

We will use the following empirical process bound that was involved in the proofs
of many statements in [2] (see Theorems 1 and 2 there):

P

{
�n ≥ √

2πLnGn(Fn) + tMn√
n

}
≤ e−2t2

, t > 0.(5)

We also use a well-known characterization of convergence in measure:
a sequence of functions converges in measure iff it is possible to extract from
any of its subsequences a subsequence that converges a.s.
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PROOF OF THEOREM 1. Using conditions (4), bound (5) immediately implies
that �n → 0 P-a.s. ( just take tn := √

log n and use the Borel–Cantelli lemma).
Since

P (� • f̂n) − inf
f ∈Fn

P (� • f ) ≤ Pn(� • f̂n) − inf
f ∈Fn

Pn(� • f ) + 2�n = 2�n,

we also have, using (3), P (� • f̂n) → P (� • f ∗), P-a.s. Representation (2) yields∫
S

[
Q(f̂n, η) − Q(m(η), η)

]
d� → 0 as n → ∞, P-a.s.,

which implies (since the integrand is nonnegative) that P-a.s. Q(f̂n, η)
�→

Q(m(η), η). Recall that m(η) is the unique minimum of u �→ Q(u,η) and Q(u,η)

is continuous with respect to u. Therefore, by the characterization of convergence
in measure, f̂n

�→ m(η). It remains to apply formula (1),

L(ĝn) − L∗ =
∫
{f̂n≤0}�{η≤0}

|η|d� =
∫
S
ηn d�,

where

ηn := |η|(I (f̂n ≤ 0, η > 0) + I (f̂n > 0, η ≤ 0)
)
,

and to recall that η > 0 (≤ 0) iff m(η) > 0 (≤ 0). Therefore, the convergence

f̂n
�→ m(η) implies ηn

�→ 0 (everything is happening P-a.s.!). Thus, by dominated
convergence, L(ĝn) − L∗ → 0, implying the statement. �

To apply Theorem 1 in a standard framework of boosting type algorithms, take
Fn := CnF , where F := conv(H), H is a �-Donsker class (in particular, it can
be a VC-class) uniformly bounded by 1, and Cn → ∞. Then

Gn(Fn) ≤ CnGn

(
conv(H)

) = CnGn(H) ≤ KCn√
n

,

since for �-Donsker classes Gn(H) ≤ K√
n

with some constant K > 0. Therefore,

condition (4) is satisfied as soon as LnCn√
n

→ 0 and Mn
√

log n√
n

→ 0, which
immediately implies one of the main results of Lugosi and Vayatis (their
Theorem 1). One could expect that many other consistency results (e.g., for
kernel machines) should follow easily from Theorem 1. Also, one can replace
the assumption that f̂n is a precise minimizer of Pn(� • f ) over Fn by a
weaker assumption that it is an approximate minimizer (for instance, an output
of an iterative minimization algorithm after a certain number of iterations). In
combination with the result of Zhang [7] on convergence rates of such optimization
procedures for convex loss functions this leads to a consistency result for a version
of boosting with an early stopping, somewhat in the spirit of Jiang’s paper, but
different (see also [4]).
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3. What is next? Clearly, convergence rates of boosting type methods to
the Bayes risk is a very important problem to look at. Some preliminary results
are easy to obtain based on the estimates used in the proof of consistency (see,
e.g., [4]). However, these rates are rather slow and it is well known that the
convergence rates in classification problems can be very fast (can approach n−1

in the zero error case, i.e., when L∗ = 0). More surprisingly, recent results of
Mammen and Tsybakov [3] and subsequent results of Tsybakov [6] showed us that
very fast convergence rates can also occur in the case when L∗ > 0 [under special
conditions on the distribution function of |η(X)|]. Tsybakov also defined adaptive
classifiers for which these rates are attained. They are based on the empirical risk
minimization over δ-nets chosen in the families of possible classifiers. Since the
cardinalities of these δ-nets grow exponentially with the sample size, the algorithm
becomes computationally intractable. It is reasonable to try to replace Tsybakov’s
algorithm with a boosting type algorithm, searching for a good classifier in the
convex hull of a properly chosen base class (recent work of Bartlett, Jordan and
McAuliffe deals with this type of problem). However, reproducing Tsybakov’s
convergence rates for boosting type methods will not be the end of the story. In
my view, the main difficulty one has to deal with in classification problems is
that there is no unique way to define the complexity of the problem, but rather
a variety of possible ways. For many years, VC-dimension and related quantities
have been viewed as very natural measures of complexity of classes of functions
(sets) involved in the problem. The discovery of support vector machines and
boosting methods changed this view rather dramatically. It became clear that
relevant complexity measures are more complicated, for instance, they should take
into account classification margins. The comprehensive nonparametric theory of
classification will have to study how the optimal convergence rates are related to
various notions of complexity brought into the learning theory in the recent years.

REFERENCES

[1] BREIMAN, L. (2000). Some infinity theory for predictor ensembles. Technical Report 577, Dept.
Statistics, Univ. California, Berkeley.

[2] KOLTCHINSKII, V. and PANCHENKO, D. (2002). Empirical margin distributions and bounding
the generalization error of combined classifiers. Ann. Statist. 30 1–50.

[3] MAMMEN, E. and TSYBAKOV, A. (1999). Smooth discrimination analysis. Ann. Statist. 27
1808–1829.

[4] MANNOR, S., MEIR, R. and ZHANG, T. (2002). The consistency of greedy algorithms for
classification. In Proc. 15th Annual Conference on Computational Learning Theory.
Lecture Notes in Comput. Sci. 2375 319–333. Springer, New York.

[5] MASON, L., BAXTER, J., BARTLETT, P. and FREAN, M. (2000). Functional gradient tech-
niques for combining hypotheses. In Advances in Large Margin Classifiers (A. Smola,
P. Bartlett, B. Schölkopf and D. Schuurmans, eds.) 221–247. MIT Press.

[6] TSYBAKOV, A. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32
135–166.

[7] ZHANG, T. (2002). Sequential greedy approximation for certain convex optimization problems.
Technical Report RC22309, T. J. Watson Research Center, IBM, Yorktown Heights, NY.



BOOSTING 113

[8] ZHANG, T. and YU, B. (2003). Boosting with early stopping: Convergence and consistency.
Technical Report 635, Dept. Statistics, Univ. California, Berkeley. Available from
www.stat.berkeley.edu/˜binyu/publications.html.

DEPARTMENT OF MATHEMATICS

AND STATISTICS

UNIVERSITY OF NEW MEXICO

ALBUQUERQUE, NEW MEXICO 87131-1141
USA
E-MAIL: vlad@math.unm.edu

DISCUSSION
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Columbia University and Princeton University

The notion of a boosting algorithm was originally introduced by Valiant in the
context of the “probably approximately correct” (PAC) model of learnability [19].
In this context boosting is a method for provably improving the accuracy of any
“weak” classification learning algorithm. The first boosting algorithm was invented
by Schapire [16] and the second one by Freund [2]. These two algorithms were
introduced for a specific theoretical purpose. However, since the introduction of
AdaBoost [5], quite a number of perspectives on boosting have emerged. For
instance, AdaBoost can be understood as a method for maximizing the “margins”
or “confidences” of the training examples [17]; as a technique for playing repeated
matrix games [4, 6]; as a linear or convex programming method [15]; as a
functional gradient-descent technique [3, 7, 13, 14]; as a technique for Bregman-
distance optimization in a broader framework that includes logistic regression
[1, 10, 12]; and finally as a stepwise model-fitting method for minimization of
the exponential loss function, an approximation of the negative log binomial
likelihood [8]. The current papers add to this list of perspectives, giving a view
of boosting that is very different from its original interpretation and analysis as
an algorithm for improving the accuracy of a weak learner. These many different
points of view add to the richness of the theory of boosting and are enormously
helpful in the practical design of new or better algorithms for machine learning
and statistical inference.

Originally, boosting algorithms were designed expressly for classification. The
goal in this setting is to accurately predict the classification of a new example.
Either the prediction is correct, or it is not. There is no attempt made to estimate
the conditional probability of each class. In practice, this sometimes is not enough
since we may want to have some sense of how likely our prediction is to be correct,
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or we may want to incorporate numbers that look like probabilities into a larger
system.

Later, Friedman, Hastie and Tibshirani [8] showed that AdaBoost can in fact be
used to estimate such probabilities, arguing that AdaBoost approximates a form
of logistic regression. They and others [1] subsequently modified AdaBoost to
explicitly minimize the loss function associated with logistic regression, with the
intention of computing such estimated probabilities. In one of the current papers,
Zhang vastly generalizes this approach showing that conditional probability
estimates P {y|x} can be obtained when minimizing any smooth convex loss
function, not just exponential loss or negative log binomial likelihood. Moreover,
he relates the loss to a specific Bregman distance between the true conditional
probability and its estimate. This fascinating result leads one to wonder how
special the exalted log likelihood loss function really is for this task when
apparently any convex function will do.

It seems that most if not all of the consistency results in these papers depend
on the ability of boosting-like methods to estimate probabilities. That is, this work
tends to divide the inference process into two steps: (1) estimate the conditional
probability of y given x, and (2) use this estimate to make a prediction, for
example, select the class with highest estimated conditional probability. Although,
as noted above, this can be very useful in some applications, in other cases we
really are only interested in being able to make accurate predictions with no
opportunity to hedge with a probability estimate. In this case, there is no need
to estimate conditional probabilities. Such estimates are in no way necessary
for classification. For instance, such estimates are not used when analyzing
boosting in terms of the margins of the training examples [11] and [17], nor
in the theory of support-vector machines [20]. It is perhaps inevitable in the
quest for consistent learning algorithms that we end up thinking about conditional
probability estimates. But if the goal is classification accuracy, then we may
be seeking something that is more than we really need. This is Vapnik’s basic
message: do not try to estimate probabilities (or conditional probabilities) if your
goal is classification; simply try to minimize the empirical error and use uniform
convergence bounds to estimate the out-of-sample performance.

These three papers also all seem to require an assumption of the denseness of the
estimating class. Again, if the goal is consistency, then such an assumption seems
unavoidable. Unfortunately, this can be a rather strong assumption. For instance,
using decision stumps apparently does not satisfy the denseness requirement.
Decision trees probably do satisfy this requirement, but there is no efficient method
for provably finding the best decision tree on a given dataset. Denseness means
that the approximating class must be very rich, rich enough to approximate nearly
any function. Lacking additional assumptions it seems that this precludes the
possibility of inferring the label of any instance that is not in the training set.
Thus, the need for regularization. This unfortunately adds a degree of complexity
to the practical application of these algorithms. Moreover, AdaBoost usually seems
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to work fine without regularization, bringing into question its necessity (though
raising the possibility of it benefiting from its use).

In most applications, we know full well that the true distribution is far from
any distribution in our class. For example, nobody using HMMs for speech
analysis really thinks that speech can be synthesized by these HMMs. Are there
other modes of analysis that do not require such strong assumptions? Given a
“reasonable” class, but one that does not admit zero approximation error, what
can be said about how well these algorithms perform?

Although interesting and important, the analyses given in these papers do
not seem to offer insight as to why boosting and support-vector machines are
effective in higher dimensions, a phenomenon that is perhaps better captured by
the respective margins theories. Consistency does not seem to be related to the
effectiveness of an algorithm in high dimensions. For instance, k-nearest neighbor
algorithms are known to be consistent, but are also known to suffer considerably
from the curse of dimensionality [9].

Both Zhang and Lugosi and Vayatis carry out their analysis only with regard to
the loss function that they are studying. In other words, they do not consider at all
the algorithm that is used to minimize that loss function. However, in studying a
learning algorithm like AdaBoost, the loss function alone cannot tell us the whole
story. For instance, suppose the data is linearly separable so that there exist a set
of weights w1, . . . ,wN and a set of base classifiers g1, . . . , gN such that, for each
training example (xi, yi),

yi

∑
j

wjgj (xi) > 0,

that is, yi is equal to the sign of f (xi) = ∑
wjgj (xi). AdaBoost attempts to

minimize the exponential loss ∑
i

exp
(−yif (xi)

)
.

Clearly, if we multiply each weight wj by a large positive constant c, then this
loss will quickly be driven to zero. Thus, the fact that AdaBoost minimizes the
exponential loss only tells us that it finds a separating hyperplane (with which
it can drive the exponential loss to zero). It does not tell us anything about which
hyperplane was selected, and it is well known that we can expect some hyperplanes
to be much better than others (witness the success of support-vector machines). So
it is not enough to look only at the loss function—we also need to consider the
mechanics of the specific algorithm that is being used.

Exponential loss is in terms of the unnormalized margin yf (x), whereas the
margins theory [17] is about the normalized margin (in which we divide f by the
sum of the weights of the base classifiers). In the example of linearly separable
data above, minimizing exponential loss implies maximizing the unnormalized
margins by forcing all of them to approach (positive) infinity. As noted above,
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this tells us nothing about which separating hyperplane was selected. On the other
hand, AdaBoost is known to approximately maximize the normalized margins,
a property that does very strongly constrain the separating hyperplane that is
selected, and that, it can be argued, goes far in explaining why boosting is more
effective than choosing just any old hyperplane.

The comments in Section 6 of Lugosi and Vayatis are quite amusing. It has
previously been observed that intuitively AdaBoost and other boosting algorithms
attempt to force the weak classifiers to behave as if they were independent. Indeed,
Lugosi and Vayatis’s comments can be generalized to the case where the weak
classifiers are not independent: in this case, if the t th weak classifier ht has error p

on the distribution Dt on which it was trained (which will automatically be true if
they are independent as in the Lugosi and Vayatis paper) then the error L(f ) of
the resulting combined classifier will again be(

2
√

p(1 − p)
)N

.

In fact, there is another boosting algorithm, called the boost-by-majority algo-
rithm [2], that gives a bound on the error that is not a Chernoff bound, but is
instead an exact binomial tail:

N/2∑
i=0

(
N

i

)
pN−i(1 − p)i.

Understanding the properties of this algorithm in the frameworks employed in
these papers would certainly be an interesting challenge.

More broadly, all this points to a strong connection between probability theory
and game theory. This is spelled out beautifully by Shafer and Vovk [18].
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REJOINDER

BY WENXIN JIANG

Northwestern University

1. Comments and discussion. I thank the discussants for their insightful
comments and new contributions, and thank Jon A. Wellner for arranging
this discussion. I also congratulate the authors of the other papers under
discussion and thank them for their significant works that are both independent
and also collaborative in a general sense. My paper is a small step built on
important previous works of other people: Freund and Schapire [7] invented
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the popular AdaBoost algorithm. Brieman [2] and Schapire and Singer [18]
identified the exponential criterion in relation to AdaBoost. Friedman, Hastie and
Tibshirani [9] found the minimizer of the exponential criterion in the population
case. Breiman [3] solved the difficult convergence problem for AdaBoost in the
population case, showing that the iterations indeed approach the right minimum.

When I started to work on this topic a few years ago, AdaBoost seemed a
mysterious and interesting puzzle. Although it performs well and is often resistant
against overfitting, I soon found that in all analytic examples I can work out,
AdaBoost can overfit when run for a sufficiently long time, for example, of order
t ∼ n2 logn, where n is the sample size; see [12] and [13]. [Of course, overfitting
has been noticed in experiments or anticipated conceptually by other people as
well, e.g., Grove and Schuurmans [10], Mason, Baxter, Bartlett and Frean [16],
Friedman, Hastie and Tibshirani [9] and Bickel (private communication).] So when
Breiman brought to my attention his paper proving that the population version
(n = ∞, roughly speaking) of AdaBoost does not overfit and is consistent at
t → ∞, there seemed to be an apparent contradiction that I had to resolve.

To find a compromise, I regard Breiman’s situation as t ≺ n (since n is already
infinite), while the situations considered in [13] are t � n. The situations are
different. It then occurs to me that Breiman’s result suggests that a consistent
AdaBoost solution may be obtained in the finite sample situation as well, if t is
chosen to increase with n at a rate that is not too fast, so as to prevent the overfitting
situation that I considered before.

Starting with this conjecture, I wrote up this note. It was originally intended to
be a short communication, since I was not satisfied with the restrictive framework,
conditions and results. However, to my relief, I noticed follow-up works that have
made significant improvements in several directions. So now I think this short
communication is at least very successful in this regard, for example, to induce
other works that are better and more comprehensive.

Several interesting new results are described in the discussions. Bartlett, Jordan
and McAuliffe obtain a general comparison theorem with necessary and sufficient
conditions relating the consistency in prediction and the consistency in minimizing
the “working” cost function. Bickel and Ritov, in a very efficient way, outline a
consistency proof for boosting with truncation with a general cost function, and
justify the use of cross-validation for implementing the truncation. Bühlmann and
Yu point out the computational advantage of the truncation method and introduce
some of their promising work in this direction that is independent of Bickel and
Ritov: Bühlmann’s work on consistency of L2Boost, and Zhang and Yu’s work on
convergence and consistency of boosting with a general cost function.

Friedman, Hastie, Rosset, Tibshirani and Zhu investigate the close relationship
between boosting and L1 penalty and show how this might benefit in the case
of “sparsity.” This connection was also discussed by Bühlmann and Yu and both
discussions refer to the interesting work by Efron, Hastie, Johnstone and Tibshirani
[1] on boosting with infinitesimal steps. Koltchinskii provides an alternative proof
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for the consistency result in Lugosi and Vayatis’ paper under discussion. Freund
and Schapire raise several interesting points that are common to all papers under
discussion. I will only focus on a few of their remarks. I am sure the other authors
can provide better replies and I will rely on them to respond to the other points.

Freund and Schapire rightly pointed out that the consistency results do not
seem to explain the good finite sample performance of the boosting algorithms
when handling high-dimensional data. They recommend explanations from mar-
gin theory. On the other hand, most other discussants implicitly or explicitly
(e.g., Bartlett, Jordan and McAuliffe; Koltchinskii) suggest future work in studying
convergence rates. I also think the study of convergence rates is more promising.
The currently available margin bounds do not compare to the Bayes error and typ-
ically cannot be tight in the case of noisy data.

Freund and Schapire also raised the question of regularization of AdaBoost: is
it unnecessary or potentially beneficial? I tend to agree with the second choice.
Especially in noisy cases, regularized variants have been reported to lead to
improvements. See, for example, [4, 8, 14, 16].

2. Future directions. Future efforts are most effective if both experimental
people and theorists (they can be the same persons of course) collaborate very
closely. Analytic studies alone can reveal some insights but are often limited to
idealized cases. Experimental studies sometimes fail to generate information that
might be important in reaching a good understanding.

For (an old) example, as far as I know, there is still no complete understanding
of the most mysterious behavior of AdaBoost: In some situations the training
error becomes zero, but the prediction error still continues to decrease. Partial
explanation was made in [17] based on semiempirical upper bounds. Theoretical
studies obtained exact solutions only in the one-dimensional case, where it is
proved that AdaBoost with trees generates zero training error in finite time and
converges to a nearest neighbor rule (see [12]). On the other hand, in higher
dimensions a rule that fits the training sample perfectly can be very different
from the nearest neighbor rule. After a perfect fit on the training sample, does the
prediction error approach something that is about the same as the nearest neighbor
error, or not as good, or magically better? Apparently, only in the last possibility
will this mystery be worth studying, for otherwise one could use a nearest neighbor
rule to do as good a job or better. However, in the experimental results that reported
such a mystery, in no case was the noise level or nearest neighbor error reported.
The reporting of the nearest neighbor error in such cases with zero training error
could help us understand when such a mystery will occur (in noisy or noiseless
cases), and whether this mystery is worth studying (whether it will beat the natural
benchmark, the nearest neighbor error). A coordinated effort in both experiments
and theory seems needed.

As many discussants point out, another promising direction is the study of
convergence rates for variants of boosting algorithms, possibly regularized, in
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various combinations of base learners and situations of data (e.g., noisy or
not, sparseness or denseness, as Friedman, Hastie, Rosset, Tibshirani and Zhu
commented). There are already some preliminary steps made in this direction,
for example, [5, 12, 15]. Studying the convergence rates in various interesting
situations for various methods could further our knowledge on when boosting will
work well and when it can be improved and how. In the next section I will try to
explain these points by a simple example.

3. A simple example. The following example involves a regularization
method that averages over AdaBoost predictions from several subsamples. It is
motivated from slightly diffferent bag-boosting schemes described by Bühlmann
and Yu [4] and Krieger, Long and Wyner [14], and is closer to the latter reference.
I became interested in this regularization scheme due to the good performance
reported in the experiments of Krieger, Long and Wyner, and due to the modularity
of its implementation. Again, I can only obtain analytic results in the idealized
one-dimensional case described below.

Consider a setup similar to Section 5.2 of [12], X ∼ Unif[0,1]. The base
hypothesis space is the space of “stumps” or a more general space which contains
piecewise constant hypotheses, having splits chosen from mid-data points. The
regularization scheme involves averaging subsample predictions as follows.

ALGORITHM (Averaged AdaBoost from subsamples).

(i) Divide the training sample (Xi,Zi)
n
1 randomly into K subsamples of

size m. (For convenience we assume n = Km.)
(ii) For subsample k = 1, . . . ,K , run AdaBoost t-steps and define the

resulting prediction rule (at any x ∈ [0,1]) as ẑ
(t)
k (x).

(iii) Compute the average of these predictions z̄
(t)
K = K−1 ∑K

k=1 ẑ
(t)
k and use

Ẑt
K(x) ≡ sgn(z̄

(t)
K (x)) to predict the value of the unknown label Z for a future

observation with X = x.

We will study cases with large t’s so that AdaBoost already overfits the
individual subsamples, and investigate how averaging over K subsample results
remedies the overfit. Here K provides additional freedom for regularizing
AdaBoost and measures the level of regularization (nonregularized AdaBoost has
K = 1). We will consider what convergence rate of the resulting prediction can
be achieved in the following three situations. Denote the (conditional) probability
function π(x) = P (Z = 1|X = x).

(A) (Noiseless with finite number of jumps). π(x) ∈ {0,1} for all x and is
piecewise constant with at most J jumps. (J is a positive integer.)

(B) (Lipschitz). |π(x) − π(x′)| < Dε whenever |x − x′| < ε for all small ε.
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(C) (Finite number of finite “sign-changes”). |π(x) − 0.5| ≥ δ for all x, for
some δ ∈ (0,0.5]. Also, sgn{π(x−) − 0.5} = sgn{π(x+) − 0.5} for at most
J locations of x. (J is a positive integer.)

PROPOSITION (Averaged AdaBoost and convergence rates). Denote L =
P [Ẑt

K(X) = Z] as the prediction error, L∗ = E min{π(X), 1 − π(X)} as the
Bayes error. The following results hold for all t ≥ 2m2 log(m+1), where m = n/K

is the size of the subsamples and t is the number of boosting steps.

(a1) (Remark 3(c), Jiang [11]). For the noiseless class (A), taking K = 1 (no
subsampling) leads to

L − L∗ ≤ 2Jn−1 log n{1 + on(1)}.
(a2) (Theorem 3, Jiang [12]). In the general noisy situations, however, taking

K = 1 for our current case of large t can lead to inconsistency:

L − L∗ = E
[
2|π(X) − 0.5|min

{
π(X), 1 − π(X)

}]+ on(1).

(b1) For the Lipschitz case (B), denote the “noise level” E var(Y |X) = σ 2 and
assume σ > 0 [here Y = (Z + 1)/2 is the binary response]. Let the “signal
to noise ratio” SNR = D/σ where D is the Lipschitz constant. Then, taking
K ≈ (n/SNR)2/3 leads to

L − L∗ ≤ 2σ(n/SNR)−1/3 log(n/SNR)1/3{1 + on(1)}.
(b2) For smooth cases in (B) with continuous derivative π ′(·), result (b1) can be

strengthened by taking SNR = E|π ′(X)|/σ (assume E|π ′(X)| > 0) in the
formulas of K and L − L∗.

(c) For the possibly noisy case (C) with a finite number of finite “sign-changes,”
if we take K ≈ (2δ2)−1 logn, we have

L − L∗ ≤ 0.5Jδ−4n−1(logn)2{1 + on(1)}.

REMARKS.

1. These results show that different data situations entail different regularization
strategies and allow different convergence rates. An important indicator for
characterizing various situations is the noise level, which can be defined in
several ways: as the average conditional variance (which is essentially the
nearest neighbor error), as the average conditional standard deviation or as the
Bayes error. When π ∈ {0,1}, all such measures should indicate zero noise.

2. In the noiseless case (A), boosting without regularization, K = 1, is already
near optimal, that is, achieves a rate n−1 logn that is within log n of the
minimax rate n−1 for noiseless learning (see, e.g., [6], Theorem 14.1 or [11],
Proposition 4).
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3. In the noisy situations, nonregularized boosting is generally inconsistent.
However, for noisy cases in (B), regularization with averaged subsample
predictions can achieve a near optimal rate n−1/3 logn, within log n of the
minimax rate n−1/3 for a Lipschitz family (see, e.g., [19]).

4. In the noisy case described in (C), a better rate n−1(log n)2 can be obtained,
which is within (logn)2 of the best possible [the minimax rate 1/n for
the noiseless case (A) holds here too since (A) ⊂ (C)]. This has no actual
contradiction to the minimax result n−1/3 above for case (B), since (B) can
allow “difficult” functions such as π = 0.5 + 0.5x2 sin(x−1), which can cross
0.5 infinitely often (lack of “sparsity”), and can become arbitrarily close to 0.5,
while such probabililty functions are excluded from (C).

5. Note that the results in this proposition suggest different levels of regularization
for different types of problems. In noisy situations, overfitting is prevented by
averaging over multiple subsamples. However, case (C) suggests the use of
much fewer subsamples than case (B). But if the data are noiseless after all, it
is possible that regularization might actually hurt the performance.

6. Even when restricted to consider smooth probability functions in case (B),
results (b1, 2) still suggest that one should use more subsamples when there
is higher noise σ and fewer when σ is low. Prior knowledge of the noise level
or knowledge of σ from a two-stage procedure (using the maximum possible
σ -value 0.5 in the first stage) might help.

7. In case (B), the regularization level used in results (b1, 2) actually produces
reliable estimation of the probability function π(x). The average of AdaBoost
predictions z̄

(t)
K (x), before the sign transformation, estimates the mean function

E(Z|X = x) = 2π(x) − 1 at a near optimal rate.
8. The implementation of this regularization scheme is simple and modular,

since it only involves manipulation of outcomes from the standard AdaBoost
algorithm. Subsamples can also be processed in parallel. Although all the
results are derived for one-dimensional X, we suspect that the performance
of this algorithm, with suitable choice of the number of subsamples and the
number of boosting steps, will also be good in higher dimensions. A similar
“bag-boosting” algorithm, where the subsamples can overlap, has shown good
numerical performance in higher dimensions in both noisy and noiseless
situations [14].

9. The key to the proof of these results is to notice that for sufficiently large t , the
AdaBoost prediction from each subsample becomes the nearest neighbor rule.
Then averaging these nearest neighbor rules, based on independent subsamples,
can be easily shown to prevent overfit, even when the subsamples have already
been overfitted individually. In practice, using smaller t (and K) may also
generate good performance; see [14].

For a particular dataset, using a “dataset-based” procedure (such as cross-
validation) to determine the level of regularization can generate better results
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than just relying on what is suggested by convergence rate analyses. However,
the procedure can then become either more computationally involved or can
less efficiently utilize the whole dataset. A purely “dataset-based” approach
also provides less understanding of the general behavior of boosting algorithms,
compared to a “situation-based” convergence rate analysis. It may also be possible
to combine the two approaches in some sense, by using some kind of a two-stage
analysis (see Remark 6), or by incorporating the knowledge from a convergence
rate analysis to reduce the range of searching for a best regularization parameter
in cross-validation.

Clearly, further studies on regularization schemes are needed, with attention
paid to all three sides: the theoretical side (on consistency and convergence rates in
various interesting situations), the numerical side (on finite sample performance),
as well as the practical side (on the ease of implementation and computation).
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We thank the discussants for the interesting comments which shed light on many
different aspects of boosting and related methods for classification and regression.
In this rejoinder we summarize what we have learned about boosting since the
writing of the paper, in great part thanks to these discussion pieces.

The new and elegant proof of the consistency theorem of Koltchinskii is not
only amusing but also shows how many seemingly different classifiers, including
regularized boosting and support vector machines, can be analyzed in a single
framework. The main message of Bartlett, Jordan and McAuliffe is similar in
that they consider so-called large-margin classification methods which minimize
a certain empirical loss function of the margin different from the empirical
probability of error and characterize the loss functions which lead to consistent
classification. The generality of these conditions is surprising and again, develops a
unified treatment that encompasses not only various versions of boosting methods
but also support vector machines and related kernel-based methods.

We agree with Freund and Schapire that consistency is just a minimal
requirement and does not explain the good practical behavior of boosting.
Once consistency is established, attention should be turned to a finer analysis.
Koltchinskii points out the importance of establishing rates of convergence.
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However, it is not completely obvious what reasonable assumptions are for the
distribution in high-dimensional classification problems. We share the view of
Friedman, Hastie, Rosset, Tibshirani and Zhu that sparsity should play a key role.
We believe that the analysis of consistency provides valuable insight into the
behavior of boosting. Indeed, building partly on the techniques of the discussed
papers by Zhang and us, and on the recent paper of Bartlett, Jordan and McAuliffe
(cited in their discussion), in a recent joint work with Gilles Blanchard [1] we
have been able to derive rate-of-convergence results for regularized boosting
methods similar to the ones studied in our paper. As it turns out, some regularized
boosting methods produce classifiers whose probability of error converges to
the Bayes error at a rate independent of the dimension [faster than O(n−1/4)

and sometimes as fast as O(n−1/2)] for large classes of distributions. This is
an interesting feature not shared by classical nonparametric methods such as
the k-nearest neighbor classifier, as also pointed out by Freund and Schapire.
The distributions under which such a rate of convergence holds are those for
which the function f ∗ minimizing the cost function A(f ) = Eφ(−f (X)Y ) can
be approximated arbitrarily (say, in the L∞ sense) by linear combinations of
base functions with coefficients bounded in L1. The characterization of these
distributions is far from being trivial in general, but in some cases it is well
understood. As an example, we cite the following special case from [1]:

COROLLARY 1. Let X ∈ R
d with d ≥ 2. There exist a regularized boosting

classifier f̂n based on the logit cost function and decision stumps such that if
there exist functions f1, . . . , fd : R → R and a positive constant B such that the
sum of the total variations of the fi is bounded by Bd and such that log η(x)

1−η(x)
=∑d

i=1 fi(x
(i)), then for every n, with probability at least 1 − 1/n2, the probability

of error L(f̂n) satisfies

L(f̂n) − L∗ ≤ C
√

d logd n−(1/(2(2−α)))((Vd+2)/(Vd+1)),

where C is a universal constant, Vd ≤ 2 log2(2d) and the value of α ∈ [0,1]
depends on the distribution.

This result quantifies the observation of Friedman, Hastie and Tibshirani [2]
who pointed out a close relationship between boosting and additive logistic
regression. The example described by Bühlmann and Yu fits exactly in the
framework of this corollary and explains the good behavior of LogitBoost in
their simulations. Interestingly, the same result is not true when the exponential
cost function is used. In that case, even though the rate of convergence in terms
of the sample size remains the same, the dimension-dependent constant in front
grows exponentially rapidly with d . It is a remarkable fact that the dimensionality
only appears in the multiplicative constant of the rate of convergence. We believe
that, even though now we are closer to the understanding of boosting and related
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methods, there is still a lot to discover and interesting unexplored questions
abound.

Freund and Schapire point out that in very high-dimensional problems boosting
may not be computationally feasible if the base class is one of the usual classes
(e.g., decision trees with d + 1 extremal nodes) which guarantee universal
consistency. In such cases one may have to resort to smaller base classes such
as decision stumps. The corollary above shows that boosting based on stumps
has excellent behavior if the distribution happens to follow an additive logistic
model. However, one should proceed with care when using such “incomplete”
base classes. It is shown in [1] that boosting (and other large-margin methods
which minimize an empirical cost functional) may have catastrophic behavior if
the function f ∗ cannot be approximated by linear combinations of base functions
in the sense that the resulting classifier may have a probability of error which
is much larger not only than the Bayes error but also than the error of the best
classifier realizable by linear combinations of base classifiers. Thus, an interesting
open problem is to find “simple” base classes which are dense in the sense
that all possible classifiers can be approximated by convex combinations of base
classifiers. In a recent manuscript [4] we show the existence of such a class of VC
dimension 1, independently of the dimension of the space. While the construction
given in that paper is probably of little practical value, a better understanding of
the tradeoff between computational complexity and approximation ability is an
important challenge.

Another important issue that Freund and Schapire raise is that by minimizing
an empirical cost function such as the exponential or the logit functions one
implicitly estimates the whole conditional probability function η(x) (more
precisely, a monotone function of it). By doing that, one does more than necessary
since in binary classification the only thing that matters is whether η(x) is greater
or less than 1/2. The results of Bartlett, Jordan and McAuliffe refine this point
of view by showing that under conditions on the behavior of η(x) around 1/2
(introduced by Tsybakov) the rate of convergence of boosting methods speeds up
considerably. [The constant α in the corollary above is determined by the behavior
of η(x) in the vicinity of 1/2.] There is one convex cost function, the “hinge
loss” used by support vector machines, which has the distinguishing property that
its minimizer is the Bayes classifier g∗ itself; see Lin [3]. Thus, as opposed to
boosting, support vector classifiers do just what they are supposed to do and do
not “waste energy” in estimating the function η(x) in irrelevant ranges. However,
this does not necessarily mean that support vector machines perform better, as for
the hinge loss it seems to become more difficult to approximate the minimizer
f ∗ by linear combinations of base classifiers. Once again, the relationship of
minimizers of different empirical cost functions is complex, very far from being
well understood.
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The discussion of Bühlmann and Yu tackles algorithmic issues of regularized
boosting procedures. In our experiments we used MarginBoost.L1 as a convergent
algorithm giving a nearly optimal output in the λ-blowup of the convex hull of
the base class (for a fixed value λ of the smoothing parameter). Running this
algorithm for various values of λ revealed that this smoothing parameter was
effectively acting as a relevant complexity measure even for small sample sizes.
The discussion of Friedman, Hastie, Rosset, Tibshirani and Zhu, pointing out the
connection of regularized boosting methods with L1-penalty to Tibshirani’s Lasso,
provides strong intuition on how the practical problem of finding efficient greedy
algorithms can be dealt with.

Bühlmann and Yu also comment on the importance of distinguishing between
regularizing by an explicit constraint on the sum (or other norm) of the weights
and by early stopping. This is an important and difficult question. The very
interesting results of Bickel and Ritov show in a general framework that stopping
by cross validation works in a strong sense. While early stopping is alluring
from a practical point of view (it reduces to AdaBoost, plus a stopping rule), its
theoretical analysis is more problematic. Indeed, in most cases, it turns out that
there is an optimal value for the smoothing parameter λ = λ∗ (corresponding to the
L1-norm of the weights of the optimal combination). The successive iterations in
AdaBoost can be conceived as drawing a path in the space of the weights crossing
the iso-surfaces defined by constant values of the L1-norm of the weights, and
early stopping returns an output on this path which may be close to the optimal
vector of weights. Since there is no known guarantee that during the iterations
the weight vector passes through a near-optimal value for the best choice λ∗, it
seems to be difficult to derive rate-of-convergence results such as the corollary
above for AdaBoost or LogitBoost with early stopping. To better understand the
relationship between explicitly regularized boosting and early stopped AdaBoost is
a challenging problem that requires careful study of the approximation properties
of the iterative construction of the boosting estimator based on highly redundant
dictionaries of base classifiers. We entirely agree with Friedman, Hastie, Rosset,
Tibshirani and Zhu, who point out the importance of sparsity. We believe that these
perspectives motivate interesting research at the interface of statistics, optimization
and approximation theories.
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The discussants contributed different views on several aspects of large
margin classification methods and outlined some interesting future directions.
I would like to thank them for the stimulating comments. In the following
I will mainly focus on two issues. One is the conditional probability modeling
aspect of large margin classification methods and the other is related to
properties of greedy algorithms used in boosting procedures.

1. Consistency and conditional probability model. The basic technical
ideas used in all the papers for proving consistency were summarized both in
the Bartlett, Jordan and McAuliffe discussion and in Koltchinskii’s discussion.
Koltchinskii presented a simplified proof of consistency, with a flavor similar to
that of [7]. Bartlett, Jordan and McAuliffe divided the consistency proof into three
main components and focused on “comparison results” that relate the classification
error of a classifier that approximately minimizes a loss function to the Bayes error.
In particular, they presented some nice results from their recent paper [1] that are
clean extensions to related bounds in my paper.

An interesting issue regarding such comparison results is that the risk of a
decision function may converge to the optimal value at a different rate than its
corresponding classification error does. This difference of convergence speed is
reflected by the parameter s in Theorem 2.1 of my paper. The value of s only
depends on local properties of the loss function φ around zero. In particular, if
φ is linear around zero (such as SVM), then we may take s = 1, which is the best
possible value. The property is also related to the fact that SVM determines the
sign of the conditional probability minus 0.5 instead of estimating the conditional
probability itself. For loss functions that decrease sublinearly around zero, we will
have s > 1 (and usually s = 2).

This suggests that the SVM loss may have an advantage over some other convex
loss functions when the corresponding risks converge to the optimal values at
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comparable rates. This may happen in certain cases (though not always). In fact,
since SVMs directly model the sign of the conditional probability minus 0.5, using
the SVM loss with a function class that includes the Bayes classification rule
is similar to direct classification error minimization. As argued by Freund and
Schapire in their discussion, this may be a better method for binary classification
because we do not have to obtain a good estimation of conditional probability
in order to perform classification. This opinion is certainly valid and a similar
argument was made in [2], where the authors showed that for some problems,
binary classification is easier than conditional probability estimation. It should be
interesting to note that for many nonparametric models, classification can be as
hard as regression, at least when measured by the minimax rate of convergence [9].
However, this does not mean that it will not be beneficial to use a classification
error minimization based method for such problems. In fact, my opinion is that
if binary classification is our goal, then in most cases it will be better to directly
minimize the classification error with an appropriately chosen function class than
to use convex risk minimization. In practice, however, due to computational
difficulties, direct classification error minimization is often not possible. It is also
unclear whether there is still an advantage of performing some variants of direct
classification minimization for multi-class classification problems.

The main advantage of convex risk minimization is the ability to provide con-
ditional probability information. In many, if not all applications, such information
will be useful. If an application relies on conditional probability estimation, then it
is necessary to understand the implication of using different convex loss functions.
We shall provide two real-world pattern recognition examples the author worked
on recently to illustrate this point.

2. Some empirical examples on real-world datasets. The first example
is taken from [10], where the problem of building recommender systems was
considered. A recommender system uses historical data on user preferences and
other available data on users (e.g., demographics) and items (e.g., taxonomy) to
predict items a new user might like. Such systems have been used widely in
electronic commerce. For example, Amazon.com recommends new books to a
user based on the user’s historic buying pattern. Commonly used systems are often
based on variations of the nearest-neighbor method.

In general this problem can be posed as a classification problem: one wants to
predict how likely a user is interested in each item, based on historic data. The
system can then recommend those items that (it believes) a user is most likely to
buy to that particular user. We illustrated in [10] (as well as in some IBM internal
experiments performed with product groups) that convex risk minimization leads
to better prediction accuracy than many existing alternatives. Without a correct
understanding of the role of loss functions, one may tend to think that the SVM
method can be a good choice due to its success in other related classification
tasks. However, it performs poorly here because it does not estimate conditional
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FIG. 1. Histograms of prediction outputs for recommending an item with 2% in-class probability:
ridge regression (top row) versus SVM (bottom row).

probability, as required for this application. In fact, ridge regression with the least
squares loss function performs significantly better due to its ability to provide
conditional probability estimation.

Figure 1 shows the histogram of prediction outputs for all users with classifiers
trained with the least squares loss and the SVM loss, respectively, on a specific
item that has a 2% in-class population. We plot the histograms separately for users
that bought the item (in-class), users that did not buy the item (out-class), and the
previous two groups combined. We note that the SVM classifier outputs −1 for
all users since it only predicts the sign of the conditional probability compared
with 0.5. The least squares method, although unable to significantly separate in-
class users from the out-of-class users for the purpose of good classification, is able
to provide sufficiently useful conditional probability information for the purpose of
ranking items to be recommended to the users. It will also be interesting to mention
that logistic regression does not do well for this application. Although in theory
logistic regression can be used to estimate conditional probability, as mentioned
in my paper, it has difficulty modeling a conditional probability P (Y = 1|X) ≈ 0,
which is required for this application.

The above example shows that it is important to understand the behavior of
different loss functions for practical applications. Useful intuition can be obtained
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by studying the optimal minimizer f ∗
φ . For example, Lin has also observed that

one may take

f ∗
φ (η) = sign(2η − 1)

for SVM in [6], and this observation was later used in [5] to design very interesting
multi-category support vector machines that are Bayes consistent.

One can also see that f ∗
φ does not fully characterize the behavior of a loss

function φ. For example, exponential loss and logistic regression loss share the
same form of f ∗

φ ; SVM loss and L1-regression share the same f ∗
φ ; and least

squares, modified least squares and modified Huber losses share the same f ∗
φ .

What really differentiates these loss functions are the induced distance functions.
In particular, using their corresponding distance functions, we can see that the
modified Huber’s loss leads to a more robust conditional probability model than
that of the least squares loss.

Although the difference between the least squares loss and the modified
Huber’s loss may not always be observable, it can become important in certain
applications. For example, the difference is significant in some natural language
processing problems that we have worked on. One such problem is the named
entity recognition task, which is to find people names, organizations and locations
(plus some other possible entities) from electronic text documents. For example,
we want to annotate the following sentence as: Only [LOCATION France] and
[LOCATION Britain] backed [PERSON Fischler]’s proposal.

This problem can be modeled as a multi-class classification problem based on
conditional probability estimation. Convex risk minimization can then be used
to obtain such conditional probability models. In fact by using modified Huber
risk minimization, we achieved the best performance in a recent benchmark
contest among seventeen participating systems [4]. The performance of a named
entity recognition system is usually measured by the so-called F -measure, which
is two times the number of correctly predicted entities divided by the sum of
the number of predicted entities and the number of true entities. For the above
mentioned benchmark experiment, the F -measure of a certain modified Huber loss
minimization based system on the English test set is 85.5, which can be compared
with an F -measure of 81.6 using least squares loss minimization (under exactly the
same configuration otherwise). The histograms of classifier outputs corresponding
to the predicted class with these two different loss functions are presented in
Figure 2. From the plots, we observe that the class of most instances (typically
words that are not entities) can be predicted very accurately, with estimated
probability at about 1. An L2 minimization based model requires the prediction
outputs to be concentrated around 1. A modified Huber loss based estimator can
model probability 1 with prediction outputs larger than 1. This is an important
advantage that makes a difference for this application.
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FIG. 2. Histograms of prediction outputs for named entity recognition systems using the least
squares loss and the modified Huber’s loss.

3. Greedy algorithm and sparsity. The greedy search aspect of boosting
algorithms has been discussed by Bickel and Ritov, Bühlmann and Yu, and
Friedman, Hastie, Rosset and Tibshirani and Zhu. A number of interesting
questions and research directions were laid out in Bickel and Ritov’s discussion.
Friedman, Hastie, Rosset and Tibshirani and Zhu argued that the success of greedy
boosting is due to the fact that it approximately solves an L1 regularized problem
(Lasso).

Although there is a close relationship between greedy boosting and L1
regularization, which has been known in the boosting community, the two
approaches are not equivalent. This point has been made in Bühlmann and Yu’s
discussion. The special case used by Friedman, Hastie, Rosset and Tibshirani
and Zhu to illustrate the equivalence of L1 regularization and greedy boosting
is certainly very interesting, but it requires assumptions that can be restrictive
for practical problems. In fact, under appropriate conditions, the equivalence will
also follow from the general convergence analysis presented in [11]. In more
realistic situations, there is still a strong connection between greedy boosting and
L1 regularization [11], but they are not identical.

Another interesting issue is to achieve sparse representation using either greedy
boosting or L1 regularization. I would like to argue that these two methods
behave differently for this purpose. It is known that L1 regularization can lead to
sparse solutions, although it is not equivalent to sparse (L0) regularization. The
L0 regularization of a weight vector w = [wi ] is defined as limρ→0

∑
i |wi |ρ ,

which is the number of nonzero components in w. If achieving sparsity is
our goal, both greedy approximation and L1 regularization can be regarded as
approximations to the true L0 regularization. One method can work better than the
other for achieving sparsity depending on properties of the underlying problem.
Greedy boosting is a more direct method of achieving sparsity since it gives a
linear combination of k-vectors after k greedy-updating steps.
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Although for some special problems, L1 regularization can actually be equiva-
lent to L0 regularization (e.g., see [3]), for real applications L1 regularization often
does not lead to a solution with near optimal sparsity. A main practical issue with
L1 regularization is that it does not produce a unique (or numerically stable) so-
lution for basis functions that are identical (or similar) since one can get the same
(or similar) system value by varying the corresponding weight components and
keeping their sum identical. Therefore L1 regularization usually does not produce
a sparse solution in the case of similar basis functions, and the inherent instabil-
ity is often undesirable as far as numerical computation is concerned. In practice
one often stabilizes the system by introducing a small amount of quadratic regu-
larization. The resulting system is strictly convex, and thus always has a unique
solution. However, the stability of the solution also implies that basis functions
that are identical (or similar) will have identical (or similar) weight components.
This is because if the system is invariant under an interchange of two parameter
components, then at the solution the two parameter components have to be equal
(otherwise, there will be at least two solutions). The problem is also a consequence
of Jensen’s inequality, which tends to favor equal weight values when we use con-
vex regularization. Therefore this problem can only be addressed with nonconvex
regularization conditions, although they are computationally less desirable. As a
comparison, greedy algorithms do not have this particular problem since such pro-
cedures are inherently nonconvex.

Another way to understand that L1 regularization generally fails to produce
solutions with sufficient sparsity is that the complexity of an L1 regularized space
is usually quite different from that of an L0 regularized space. For example, if
a function space C has a uniform L2-covering number that is polynomial in the
approximation scale (such as single-layer neural networks or fixed level decision
trees), then the function class that is sparsely representable with a fixed number
of components (L0 regularized space) also has a polynomial dependency on the
approximation scale. However, the uniform L2-covering number of the convex
hull (L1 regularized space) is typically exponential in the approximation scale and
can approach the upper bound presented in Section 2.6.3 of [8].

Since the minimax-rate of function estimation is usually determined by the
dependency of a model family’s L2-covering number on the approximation scale,
we know that the L1 regularized space can be much more complex than the
L0 regularized space. Therefore if the function to be approximated is sparsely
representable by the basis functions, then we know that a direct L1 regularization
alone will not always lead to a good estimation method. However in this case,
greedy boosting may still succeed, assuming such a procedure can find a good
sparse representation in a small number of iterations.
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