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Abstract

One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases.
Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding
the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long
time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the
relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions
(PPIs), disease-gene associations, aging-gene associations, and physiological system–based genetic disease classification
information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes
than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging.
Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine
the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the
genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an
asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make
a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-
based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but
also biological implications for prying into the nature of human diseases.
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Introduction

One of the challenging problems in biology and medicine is to

explore the underlying mechanisms of genetic diseases. During the

last decades, great efforts have been devoted to identifying disease-

related genes and disease-related pathways [1,2]. Progresses have

been achieved both in understanding the mechanisms of specific

diseases and in identifying key proteins as potential drug targets.

However, these single gene-based methods are far from enough in

elucidating complex diseases. For example, Alzheimer disease, a

kind of neurological disease, is related with at least 12 genes

(Online Mendelian Inheritance in Man, OMIM). The mechanism

of this kind of heterogeneity diseases cannot be totally uncovered

by the conventional gene-by-gene or pathway-by-pathway meth-

ods because most cellular components exert their functions

through complicated networks [3] of signal transductions [4],

gene regulations [5], metabolic reactions [6], and protein

interactions [7].

Network-based methods to study human genetic diseases appear

along with the concept of ‘‘omics’’ and the growth of high-

throughput data [4,8–15]. For example, Jonsson and Bates studied

the global topological features of cancer proteins in a predicted

human protein-protein interaction (PPI) network [9]. In their

work, features of diseases were uncovered from a global analysis,

but they did not consider the effect of essential genes. Combining

with essential genes, Goh. et al. found some different conclusions

in a human disease network [11].

In this paper we focus on aging which is one of the important

factors to induce diseases [16,17]. Research on aging is helpful to

understand the nature of diseases by integrating disease and aging

information at a network level. We note that aging is another

complex process in addition to genetic diseases controlled by both

environmental and genetic factors. In the past few years,

researchers began to investigate aging process on a systems level

[18–24]. For instance, Budovsky et al. compiled a complete list of

longevity genes from different species, mapped them to 211

orthologs in human, and constructed a human longevity network

using protein-protein interactions [25]. Here, we highlight the

intricate relationships between aging and diseases since the

process of aging is a gradual decay of homeostatic mechanisms

affecting our susceptibility to disease and our ability to recover

from illness and other stressors. We note that their relationships

have been pointed out for a long time, but seldom been

investigated from the systems perspective. Recently, some

progresses are reported. Budovsky et al. verified the existence of

evolutionary and molecular links between longevity and cancer
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[26]. Wolfson et al. highlighted the importance of some pathways

by combining the network of human age-related disease proteins

and longevity-associated proteins, especially through those hubs

involved in the crossroad of longevity and age-related disease

network [27].

At the same time, there is a pressing need to associate genetic

diseases and aging at a network level. Firstly, only a small number

of well known age-associated diseases have been considered, and

thousands of different kinds of genetic diseases remain

untouched. Secondly, longevity genes are actually not equal

to aging genes. Longevity genes are alleles that have been

observed to have higher frequency in centenarian than others.

Different from longevity genes, aging genes are those genes that

have been identified in human or animal models to have the

ability to change the aging process as a whole, or at least to a

large degree [28]. Combining genes that are related to aging

process with diseases may reveal the nature of complex diseases.

Thirdly the problem how close the genetic diseases and aging

process are and why they are close to each other have not been

solved until now [29].

In this paper, we analyze the relationships between aging and

disease genes by integrating human PPI, known disease-gene

associations and known aging-gene associations into a disease-

aging network (DAN), then classify diseases genes based on the

derived network, and further quantify the contribution of aging

genes to association between each pair of diseases. Specifically,

we firstly construct a DAN and analyze its topological properties.

Then we identify the relationship between aging genes and

disease genes, and categorize diseases into two types: type I

disease genes are significantly close to aging genes, but type II

disease genes are not. Furthermore, we examine the features of

topology and structure for the disease-aging network from a

systems perspective. Theoretical results show that type I diseases

are in a central position of a PPI network while type II are not.

Moreover, we define an asymmetric closeness based on PPI

network trying to describe close associations between diseases,

and find that aging genes make a significant contribution to most

of disease associations comparing with genes having same

number of links.

Results

The disease-aging network
We construct a network of aging and genetic diseases named

disease-aging network (DAN), which is a connected PPI network

whose nodes are known aging and disease genes (Figure 1A).

According to OMIM and GenAge, there are 1,438 genes related

to aging or diseases (Supplementary Table S1 and Supplementary

Table S2) in addition. We map all these genes to nodes in the PPI

network of Human Protein Reference Database (HPRD) [30], and

then extracted the maximum connected component as DAN. As

shown in Figure 1A, aging genes are marked by nodes with black

border while disease genes are colored according to their

categories of diseases, which is a curated classification of all

OMIM diseases [11]. If one gene is reported to be related with

more than one category, it will be colored in pink (labeled as

‘‘MD’’ in Figure 1A). The size of nodes and the color of edges

correspond to the degree and betweenness centrality [31]

respectively.

As shown in Figure 2A, DAN has 1108 nodes, and it is much

larger than expected by chance (Instead of the human PPI

network, 1000 random degree-conserved networks are chosen as

control, and the number of nodes in the maximum connected

component is 1037.8614.8 with p-value ,1.0e-6). This demon-

strates that disease/aging related genes tend to be connected in the

network. Furthermore, DAN has 3221 edges, and it is much

denser than expected by chance with a p-value ,1.0e-10 (As

shown in Figure 2B, 1000 random degree-conserved networks are

chosen as control, and the number of edges within the maximum

connected component is 2565.3638.0).

The average length of shortest paths among aging genes, disease

genes, aging or disease genes, aging and disease genes in the

human protein interaction network are also compared. As shown

in Figure 2C, on average, any two nodes in the human protein

interaction network are connected via 4.360.1 links, while the

average distance between aging or disease genes (i.e. genes in

DAN) is 4.0. This means that most disease and aging genes are

very closely connected.

Also, the degree distribution follows P(k)!k{1:55 (Figure 1B),

so it is a scale free [32] network, which shows an unusual degree of

robustness, the ability of its nodes to communicate being

unaffected by even unrealistically high failure rates [33]. Albert

et al. also proved that networks in general are very vulnerable to

attacks aimed at highly connected nodes (hubs). In the disease-

aging network (Figure 1A), average degree of nodes with black

borders is 14.3, which is significantly larger than that of disease

genes 4.9 with a p-value 8.4e-36 (Wilcoxon rank sum test). This

fact implies the importance of aging genes in this network’s

connectivity.

Furthermore, we calculated the clustering coefficient of each

node in the network. Clustering coefficient is a measure of the

tendency of proteins in a network to form clusters or groups [32].

Figure 1C shows that clustering coefficient in DAN decreases with

the increase of nodes’ degree, indicating that DAN has a

hierarchical structure. In a hierarchical network, a high degree

hub connects some local communities, suggesting that the network

has two levels of organization, i.e. local clustering, potentially

representing some locally affecting diseases; and more global

connectivity mediated via aging genes, conceivable as higher-order

communication points between different diseases like date hub

described in PPI networks [34,35]. The topological coefficient is a

relative measure for the extent to which a gene in the network

shares interaction partners with other proteins [6]. As shown in

Figure 1D, also the topological coefficient decreases with the

Author Summary

Explaining the molecular mechanisms of complex genetic
diseases is a crucial step for curing them. Extensive studies
have suggested close relationships between the aging
process and genetic diseases. As a result, incorporation of
the aging process in studying diseases may provide
important insights both in biology and medicine. Here
we construct a disease-aging network in humans to
systematically explore and visualize the intricate relation-
ships between diseases and the aging process. Instead of
focusing on a specific disease or a single gene, we put all
complex diseases and the aging process together and
probe the interactions among the disease genes and aging
genes under the network concept. By checking the
network topological properties, we reveal that human
disease genes are much closer to aging genes than
expected by chance. Further analysis categorizes diseases
into two types according to their relationships with aging.
Our study provides important evidence to associate
diseases and the aging process at the system level and
helps to further our understanding in the molecular
mechanisms of complex diseases.

The Disease-Aging Network
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Figure 1. The disease-aging network (DAN) and its topological properties. (A) A protein-protein interaction network connecting aging and
disease. Non-disease aging genes are colored in grey and disease genes are colored by their types. MD in the figure means that the genes are
involved in multiple gene sets. Refer to Materials and Methods for detailed information about aging genes and classification of disease genes. (B–D)
Basic network features of disease aging network. Refer to Materials and Methods for detailed information about definition of network features. (E)
Box plot for closeness centrality of disease and aging genes in DAN. Refer to Materials and Methods for detailed information about definition of
different network centrality measures.
doi:10.1371/journal.pcbi.1000521.g001
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number of links, which clearly shows that, disease and aging hub

genes do not have more common neighbors than genes with fewer

links. This fact indicates that the hubs may not locate together in a

few densely connect modules like cliques in DAN [7].

Aging genes (nodes with black borders) tend to locate in the

central part of DAN. To measure ‘central’ quantitatively, we use

closeness centrality [36], which is defined as the reciprocal of the

average shortest path length. As shown in Figure 1E, average

closeness centrality value of aging genes is much greater than that

of disease genes (p-value ,5e-40). In addition to closeness

centrality, we have also calculated other existing centrality

measures (refer to Materials and Methods). We found that all

these centrality measures support our observation that aging genes

show much stronger centrality than disease genes. Actually, all the

p-values are less than 1e-20 by Wilcoxon rank sum test (see

Supplementary Figure S1 for details).

The above discussion reveals that there are close implications

among disease/aging genes, and then we will ask how significant

the relationship is.

Close relationships between aging and diseases
The number of overlapping genes (colored black border genes)

of aging and disease were calculated. In all 226 aging genes in

human PPI network, 105 are reported to be related with some

kind of diseases (Figure 3B). This is three times as many as the

expected number. We observe significant overlap between aging

genes and disease genes (p-value ,1e-20).

We believe the above observation is due to the close

relationships between aging and diseases. To claim that, we need

to exclude two alternative factors, which may implicitly contribute

to the above observation. One is that the observed overlap is

caused by negative set, i.e. the genes treated as non-aging genes or

Figure 2. The further analysis of disease aging network (DAN). (A) The number of vertexes of DAN is significantly larger than that of degree-
conserved random networks (p-value ,1.0e-6). (B) The number of edges of DAN is significantly larger than that of degree-conserved random
networks (p-value ,1.0e-10). The procedure to generate the random networks is described in Materials and Methods. (C) Comparison of average
lengths of shortest paths among aging genes, disease genes, aging or disease genes, aging and disease genes, and random genes in the human
protein interaction network from HPRD database. The normal distribution is used to fit the distance between genes. (D) Classification of aging genes
by their supporting evidences in GenAge database. All aging genes are classified into eight types (x-axis). Types 1–6 are supported by direct and
high-confident evidences while Types 7 and 8 are supported by indirect evidences. Given a particular type of aging gene, the difference of its
percentages (y-axis) in the aging-disease overlap gene set and whole aging gene set indicates whether or not the aging gene set possesses potential
bias to diseases.
doi:10.1371/journal.pcbi.1000521.g002
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Figure 3. The core network. (A) The core network of DAN. Each node in the network is both related to aging and some kind of diseases. (B) The
number of overlapping genes between aging and diseases in the human PPI network. (C) Pie graph to show number of genes in different diseases.
(D) Grouping diseases into two groups: significant age-related diseases and others. Fold enrichment ratio (FER) is also marked when some disease is
observed to be significant. Refer to Materials and Methods for detail. (E) Age-related diseases (ARD) show higher closeness centrality than non-age-
related disease (NARD) genes. ‘‘Disease’’ means all disease genes, and ‘‘all genes’’ means all genes in the human PPI network. ‘‘mean hprd cc’’ stands
for mean closeness centrality in the human PPI network.
doi:10.1371/journal.pcbi.1000521.g003
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non-disease genes. This is important because a larger number of

negative set will contribute much to the significance. To reduce

this kind of bias, we also choose all human genes and non-essential

genes in the human PPI network as a universal set (also called the

sample space, is the one that contains all conceivable genes). In

these two sets, fold enrichment ratios (defined as the ratio of

observed overlap to expected overlap) are 6.7 and 3.6 respectively

(Supplementary Figure S2), with corresponding p-values 3e-55

and 7e-11 respectively. This demonstrates that the number of

overlapping genes in aging and disease is significantly enriched.

Another legitimate concern is the possible bias in defining

‘‘aging genes’’, i.e. aging genes defined in GenAge includes genes

already implicated in human age-associated diseases, and this may

artificially inflate the linkage between aging genes and disease

genes. To test whether aging genes and disease genes are still

significantly overlapped when there are no biases in aging gene set,

we carried out three experiments with alternative selection criteria.

We classified all aging genes into eight types (Supplementary

Table S1) according to their evidences to be selected to GenAge

database to check which type tends to have bias. In the eight types

of aging genes, types 7 and 8 have relatively low confidence

comparing with types 1–6. In the first experiment, we excluded

genes with low confidence, i.e. type 7 and type 8. Then there are

139 aging genes. We repeated the same procedure to check the

link between aging process and diseases. We found again that they

are significantly closely related (p-value ,1e-10).

On the other hand, considering the possible bias to disease, we

counted the percentages of types 1–8 aging genes in the whole

aging gene set and aging-disease overlapping gene set and we

plotted the results in Figure 2D. By comparing the differences of

their percentages for each type, we found that types 1, 2, and 7

have relatively higher probability to have bias to disease genes. As

the second experiment, we excluded those gene subsets in GenAge

with possible bias to human diseases, i.e. types 1, 2, and 7. Then

we have a new aging gene subset with 160 aging genes. We

repeated the same procedure to check the link between aging

process and diseases. We found again that they are significantly

closely related (p-value ,1e-10).

Furthermore, we did extra control study as the third experiment

by following the same procedure on the longevity gene set defined

in GenAge database. And the experimental results support our

main conclusion too. In particularly, we chose 94 longevity genes

from GenAge database. Among the set, there are 63 genes that are

closely related to some kind of diseases. The significant enrichment

(fold enrichment 4.6, p-value ,1.5e-12) also confirms our above

conclusion.

In addition to the gene overlap, we checked the relationship

between aging and diseases from the view of interactions. As

shown in Supplementary Figure S2D, there are total 34853

interactions in the human PPI network, among which 965 are

among aging genes and 1894 are among disease genes. On

average, the number of interactions between both aging and

disease genes is 52.4. But the observed value is 233, nearly 4.5

times as many as expected by chance. (p-value ,7e-70).

Aging and diseases are closely related not only in overlapping of

genes or interactions but also in network topology. We calculated

the interacting partners of each aging gene on the human PPI

network and in 1,000 randomly generated network without

changing node degree. We found the percentage of disease genes

in all aging partners is significant higher than random no matter

the aging genes are hubs or not (Table 1). This fact indicates that

aging genes tend to interact with disease genes. Furthermore, as

more strict control, we randomly selected a set of 226 disease genes

from the whole 1,317 disease genes (matching degrees with aging

gene set). We then calculated the number of disease partners of

this disease gene set and we repeated this procedure for 1,000

times. The average value for the number of disease partners is

7.660.2 for the 226 disease genes, which is significantly smaller

than that of 226 aging genes 9.4 (p-value ,1e-10). As another

control, cancer genes are used instead of aging genes to see if the

above observation still holds. Our conclusion is that generally

cancer genes are not significant close to other disease genes.

Cancer genes with degree 20–50 are significantly closer to other

disease genes than expected by chance, while cancer genes with

degree less than 20 or larger than 50 are close to other disease

genes but these relations are not statistically significant (Supple-

mentary Table S3).

In summary, we have observed significantly close relationship

between aging and disease genes in the network level. Versus

random expectation, genes regulating aging process are more

likely to relate to some kinds of diseases, and also the protein

product of aging genes and disease genes more likely have physical

interactions.

Two types of diseases
It has been proved that diseases are close to aging, but is this

observation true for all kinds of diseases? To answer this question,

we extracted and analyzed disease-aging overlapping part. There

are totally 101 nodes (Here, we only used the 101 genes with

edges, and the 4 genes without any edges were discarded.) with

233 edges in this core network (Figure 3A). Its maximum

connected component consists of 86 nodes and 232 edges with

diameter 7 and average shortest path 3.0. The clustering

coefficient [37] is 0.25, which is significantly higher than 0.15 in

DAN (p-value ,10e-6). Figure 3C shows the percentage of all

kinds of diseases in overlapping genes. Cancer with 36 genes,

neurological diseases with 19 genes, and endocrine diseases with

14 genes take main part of overlapping genes, showing their

special relationship with aging process. To show the statistical

significance, the p-values for diseases overlapping with aging and

their fold enrichment ratios (FER) were calculated. In addition to

cancer, neurological disease and endocrine diseases discussed

above, nutritional disease, developmental disease and other three

kinds of disease have p-values (refer to the p-value calculation in

Materials and Methods) less than 0.01 (Figure 3D). We call these

diseases as age-related diseases (ARD), and their related genes as

ARDG. At the same time, some disease genes are observed to have

less or even no overlapping with aging. We call the complemen-

tary set of ARD as non-age-related diseases (NARD), and their

genes as NARDG.

Table 1. Interacting Partners.

Degree of aging
genes

Average
degree Disease genes

Observed Random p-value

,20 9.38 2.51 1.99 7.3e-8

20–50 33.33 8.53 7.05 7.8e-7

50–100 69.27 17.49 14.52 1.9e-8

.100 139.81 33.86 28.82 1.4e-7

Observed number of disease genes in aging genes’ interacting partners is
always larger than that of random control, no matter if they are hubs or not.
Here, one thousand degree-conserved random networks are chosen as control.
P values are obtained under the assumption of normal distribution.
doi:10.1371/journal.pcbi.1000521.t001
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The two groups of disease genes that we defined above show

different features in several ways. Firstly, ARDG are central in

human PPI network, while NARDG are not. To validate this, we

compared closeness centrality of ARDG, NARDG, all disease

genes, and all genes in the human PPI network (Figure 3E).

Disease genes have a significantly higher mean closeness centrality

than NARD genes (p-value ,8e-6), and a significantly lower one

than ARD genes (p-value ,6e-4). Hence, age-related diseases tend

to attack center of the human protein network, while non-age-

related diseases have not such feature. Without considering the

network topological features, another way to measure importance

of gene is to check whether it is essential for survival. A gene is

called an essential gene if knocking down it causes death. The

percentage of essential genes in ARDG is 50.3%, which is

significantly higher than that in NARDG 32.8% (p-value ,1e-15).

Secondly, ARDG and NARDG have different functions in cells.

We checked the GO enrichment of two groups of genes. P-value

for both overrepresentation and underrepresented were calculat-

ed. Gene Ontology Annotation (GOA) items with different

performances in ARD and NARD are listed in Table 2. As

shown in this table, ARDGs are significantly overrepresented in

nucleic acid binding, nucleus, oxidoreductase activity, transcrip-

tion regulator activity and macromolecule metabolic process,

while NARDs are involved into several different functions such as

catalytic activity, transporter activity, and so on.

Finally, ARDG and NARDG show different feature in evolution

process. To compare evolutionary rate of these two groups of genes,

we used the value of dN=dS. Interestingly, the dN=dS mean value

of ARDG is 0.1731, which is significantly lower than that of

NARDG (0.1926), and the corresponding p-value is 0.008 (rank

sum test). This result shows that age-related disease genes are more

conserved than non-age-related disease genes.

Aging genes: the bridge of age-related diseases
Further, we asked what kind of close relationship aging genes

and disease genes have. With this question in mind, we firstly

investigate the association among different diseases. The relation-

ships among different diseases have been emphasized and utilized

in some recent researches. Goh et al. connect two diseases with an

edge if they have common disease genes to construct the human

disease network [11], and Wu et al. defined the closeness of

different phenotypes according to their corresponding genes

distance on the PPI network [38].

We developed a novel quality index to denote network

association between diseases. Suppose that disease i is related to

n genes, while disease j is related to m genes, then the association

from disease j to disease i is defined as the mean closeness between

each disease i related gene and disease j. Closeness between a gene

and disease j is further defined as the maximal closeness between

that gene and each disease j related gene on PPI network (see

Materials and Methods for detail). We noted that the association

from disease j to disease i is not equal to that from disease j to

disease i. Furthermore, in order to obtain significance of observed

association value, we calculated Z-score of each pair of diseases by

choosing their association values on 1,000 random degree-

conserved network as control. The resulting Z-scores reflect

strength of association between each pair of the 20 kinds of

diseases (Supplementary Figure S3).

Based on this definition, we can investigate the contribution of

aging genes to association between different diseases. Interestingly,

when we remove all aging genes from the human PPI network, the

strength of association between most diseases, especially ARD,

becomes significantly smaller than that when we randomly remove

genes with matching degree (refer to Materials and Methods for

method to generate genes with matching degree). To illustrate the

Table 2. Different GOA enrichments of ARD and NARD.

GO-ID ARD NARD Description

p-value #Genes p-value #Genes

3676 1.4e-4 156 1.1e-10(under) 68 nucleic acid binding

5634 3.2e-13 193 2.2e-7(under) 79 nucleus

6139 5.0e-19 194 3.7e-03(under) 113 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

5622 1.1e-9 411 .0.01 391 intracellular

16301 2.4e-8 63 .0.01 44 oxidoreductase activity

30528 5.3e-15 112 .0.01 49 transcription regulator activity

43170 3.4e-11 313 .0.01 295 macromolecule metabolic process

3824 .0.01 206 1.6e-8 282 catalytic activity

5478 .0.01 58 3.9e-10 101 transporter activity

9055 .0.01 12 8.3e-7 56 catabolic process

9056 .0.01 29 2.5e-5 85 biosynthetic process

9405 .0.01 2 7.6e-7 20 cell surface

9929 .0.01 11 2.9e-7 60 ion transmembrane transporter activity

15075 .0.01 36 8.5e-6 37 channel activity

5941 .0.01 1 4.6e-4 6 unlocalized protein complex

16740 .0.01 76 1.2e-5 129 hydrolase activity

16787 .0.01 88 1.9e-5 20 lyase activity

16874 .0.01 13 1.4e-7 113 cell differentiation

ARDG and NARDG show different in GOA enrichment. ARDG shows special overrepresentation in nucleus related functions. P values labeled with ‘‘under’’ mean
underrepresentation, while others stand for overrepresentation.
doi:10.1371/journal.pcbi.1000521.t002
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significance quantitatively, we also defined bridgeness of aging

genes as minus ten-based logarithm p-value of each pair of diseases

by choosing randomly removing pseudo aging genes for 1,000

times as control (see Materials and Methods for detail). The

resulting bridgenesses of aging genes between different diseases are

shown in Figure 4A. In this figure, 20 kinds of diseases are ordered

in according to their fold enrichment ratio of overlapping genes

with aging. This result shows that aging genes take a special role in

bridging disorders, especially ARD.

Will this observation still holds if we consider cancer genes

instead of aging genes? Our conclusion is that cancer genes do not

make a significant contribution to associations among most of

diseases by the closeness analysis in PPI network (Supplementary

Figure S4). This is fundamentally different from aging gene set.

To show the bridgeness in detail, we focus on some specific

diseases. A maximum connected component of given disease’s

genes is extracted from DAN and defined as gene module of this

kind of disease. We take endocrine disease and neurological

disease as examples. Both endocrine disease gene module and

neurological disease gene module are shown in Figure 4B.

Obviously, aging genes (nodes with black borders) make big

contribution to the connection between the two kinds of diseases.

MD means the genes involved in multiple diseases. Aging gene

ESR1 is a transcription factor that mediates the actions of

estrogen. ESR1 has been found to be upregulated in Alzheimer’s

disease [39] and also involved in breast cancer [40] and other

complex diseases. Here we assert that ESR1 is a key gene linking

endocrine disease and neurological disease. Further research on

this gene is needed to understand these two kinds of complex

diseases. Similarly, we consider immunological disease and

neurological disease in Figure 4C. From this figure, we can easily

conclude that aging genes FAS and APP are important to the

linkage of immunological and neurological diseases.

Discussion

We constructed a network connecting biological aging and

genetic diseases for the first time. This network provides a new

viewpoint for the aging disease association. According to the

analysis of the close relationship of aging and disease genes, we

explained and partially answered the basic question that why

diseases are always coupled with aging. Our analysis shows that

there are close relationships between aging genes and disease

genes, and provides biological insight into the basic process of

human body from network perspective.

The global feature of disease genes in human genome is a key

problem concerned by biologists and physicians. There are different

solutions or assumptions due to the limited data for this problem.

Before the work by Goh et al., the conventional understanding on

disease genes especially cancer genes is that they are in a central

position in the network. However, their work according to

combining disease genes and essential genes strikes this standpoint.

This kind of periphery viewpoint about diseases seems reasonable

from the evolutionary viewpoint. Lethal diseases are thought to be

eliminated by long time evolution pressure. However, people may

ask why a long time evolution history has not removed all diseases

from human beings. By contraries, it seems that the disease becomes

much more complicated and much more severe in advanced

organisms. To answer this question, we must combine another

important factor-aging. The force of natural selection declines with

age [41], so the close relationship between aging and diseases may

be one of the reasons to explain why diseases can avoid the choice

by evolution (refer to Supplementary Figure S5 for the properties

of human diseases, aging, housekeeping and essential genes.).

The closeness between different diseases defined based on

network is asymmetric. It in some sense reflects the real

relationship between them. We show that aging genes serves as

a bridge which has the function of linking different diseases, and

prove such a functional role of aging genes which is verified by

comparing with closeness in the network. From the viewpoint of

pathway, aging genes can be thought as a media of cross talking

between different diseases, where aging genes make a major

contribution in the linkage of different diseases.

We should note that potential sources of bias may exist, especially

in literature-curated networks, i.e. disease-causing proteins (genes)

may have higher degrees simply because they are better studied. It is

very difficult for us to totally understand the process of aging and the

nature of diseases. Recently high-throughput technologies shed light

on the global behavior of biological systems, which provides

information and opportunity to conduct system-wide analysis, and

also gives some insight into the underlying biological mechanisms.

This work is motivated by such a trend and recent progress on this

area. Although this paper mainly focuses on genetic factors,

environment conditions also play an important role in all process

of aging and disorders, which we will study as a future topic.

Materials and Methods

The human aging genes
The aging genes were downloaded from GenAge [28,42] on

2008-5-1, which collected human aging genes after an extensive

review of the literature. Genes regulating aging in model organisms

or genes directly related to mammal (including humans) aging were

all identified. Considering that genes regulating aging in model

systems may not be related to human aging, they reviewed the

literature concerning human and mouse homologues of genes

identified in lower organisms. Genes influencing risk of age-

associated diseases do not necessarily influence aging, so aging genes

are different from genes related to age-associated diseases. Each

gene was selected or excluded based on its association with aging in

the different model systems (there is some kind of conservation in

aging process between human and other species [43]), with priority

being given to organisms biologically and evolutionary more closely

related to humans. Among all the 243 aging genes obtained from

GenAge, 226 are included in the human PPI network.

Disease genes and classification of diseases
The disease genes and their classification were extracted from

Goh et al., 2007. All diseases reported in OMIM were manually

classified into 20 primary disorder classes based on the

physiological system affected by the disease. Diseases with distinct

multiple clinical features were assigned to the ‘‘multiple’’ class, and

31 diseases that can not be assigned to a clear class were annotated

into an ‘‘unclassified’’ class. Totally, there are 1,777 disease genes

(1317 in the PPI network), and 22 disease classes. We used all 22

classes to construct the DAN, but did not consider ‘‘multiple’’ class

and ‘‘unclassified’’ class in the following analysis.

Essential genes and housekeeping genes
Homologous data were retrieved from the Mouse Genome

Database (MGD), Mouse Genome Informatics (http://www.

informatics.jax.org) (2008-5-13). Two kinds of phenotypic data

are considered as lethality: lethality-postnatal (MP:0005373) and

lethality-prenatal/perinatal (MP:0005374). Totally we get 2,600

lethality genes, and 2,164 are in HPRD. Housekeeping genes are

defined as those genes that are almost expressed in all tissues. We

extract the gene list from supplementary information of [8], and

mapped Unigene ID to Entrez gene ID according to gene
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Figure 4. Bridgeness of aging genes. (A) The bridgeness of aging genes in every pair of diseases. Here, diseases are ordered by their FER (fold
enrichment ratio), and minus 10-based logarithm p-value is showed in the figure where values larger than four set to be four. (B–C) Examples show
the important functions of aging genes in connecting diseases. MD means that the genes are involved in multiple gene sets.
doi:10.1371/journal.pcbi.1000521.g004
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information in NCBI. Totally we get 1496 housekeeping genes,

among them 960 are in HPRD.

PPI network
Human PPI network is from HPRD Release 7 [30]. We

extracted the maximum connected component. At last, the derived

network contains 9,045 proteins with 34,853 interactions.

Rate of gene evolution
The ratio dN=dS, the rate of DNA substitutions which affects

the amino-acid composition of the gene product (dN) to the rate of

DNA substitutions that are silent at the amino-acid level (dS), is

usually used to measure the rate of protein evolution [44]. The

value used in this paper is based on human-mouse orthologues.

Topological features of network
For each vertex in a network, degree di is the number of edges

incident to it. The clustering coefficient is usually used to quantify

how close its neighbors are to being a clique (complete graph). It is

defined by the proportion of links between the vertices within its

neighborhoods divided by the number of links that could possibly

exist between them, i.e., clci~
2ni

di(di{1)
, where ni is the number

of triangles incident to it. The topological coefficient is defined as

tci~

average(mij)
j

di

, where mij is the number of common vertexes

between i and j.

Centrality measures of nodes in network
There are several ways to measure the centrality of nodes in a

given network, i.e. degree centrality (DC), betweenness centrality

(BC), closeness centrality (CC), eigenvector centrality (EC),

PageRank (PC), subgraph centrality (SC) and information

centrality (IC). DC, which is a fundamental quantity describing

the topology of scale-free network, is defined by dci~
di

N{1
,

where di is the degree of ith vertex, N is the total number of nodes

in the network. BC which represents how influential a node is in

communicating between node pairs, is defined by bci~
2spi

N(N{1)
,

where spi is the number of shortest path across vertex i. CC is

defined as the mean geodesic distance (i.e the shortest path)

between a vertex and all other vertices reachable from it. EC is the

principal eigenvector of the adjacency matrix related to the

combined degree of the element and its neighbors. PC is the

damped random-walk based prestige-measure of Google related to

the principal eigenvector of the transition matrix describing the

damped random walk. SC is related to the closed walks starting

and ending at the given element. IC is the drop of graph

performance removing the given element or link.

p-value by overlapping
The following model has been used several times in this paper.

Consider that a set containing N elements has two subsets S1

and S2 with m and n elements respectively. We calculate the

probability that there are k overlapping elements with hypergeo-

metric distribution as follows:

P(X~k)~

m

k

� �
N{m

n{k

� �

N

n

� � :

p-value by interacting partners
To test whether aging genes tend to interact with diseases, we

first calculate how many disease genes interact with one aging gene

on average. Then we test whether the average number is

statistically significant larger than the random cases. Here random

cases mean the average number of disease genes in 1,000 degree-

preserving random networks [45].

p-value by bridging feature of aging genes
When we delete the aging genes in our PPI network, closenesses

between diseases become smaller because the connectivity of the

network becomes weaker. But this cannot tell the particularity of

aging genes. To get a non-biased control set, we choose random

genes sets with matching degree as pseudo-aging genes. This is

implemented as follows:

Step1: For every aging gene we choose a candidate gene set, in

which each gene has almost the same degree with the aging gene.

We ensure that each candidate gene set has at least 10 genes.

Step2: Given the set of 226 aging genes, we randomly select a

gene from its corresponding candidate gene set as pseudo-aging

gene for every aging gene. As a result we get a set of 226 pseudo-

aging genes.

Step3: We repeat Step2 for 1000 times and generate a control

set of aging gene set.

The 1,000 groups of pseudo-aging genes are deleted from the

network respectively as random control to calculate the p-value.

Fold enrichment ratio (FER)

R~
O

E
, where O is the observed value and E is the expected

value.

Closeness between two diseases
For any two diseases di and dj , with disease genes gi1, � � � ,gini

and gj1, � � � ,gjnj
respectively, we want to define association to

describe the possible relationship between them. Suppose disease

dj as a source, i.e. genes related to dj are abnormal (upregulated or

downregulated), then how much is di influenced? Considering the

disease information passed via disease genes through PPI network,

we let C(di/dj) denote di’s intensity of being influenced by dj .

The intensity is defined by

C(di/dj)~
1

ni

Xni

m~1

max
k~1,2,���,nj

fc(gim,gjk)g

where ni is the total number of di ’s disease genes, and c(gim,gjk) is

the closeness between two genes.

We can have several different ways to define c(gim,gjk). Here we

develop two network-based methods:

(1) The shortest path method:

The length of shortest path is an intuitive but efficient way to

describe the relationship between two nodes on a network. The

closeness of two genes can be got from the following transformation:

c(gim,gjk)~
1

1zd(gim,gjk)
,

where d(gim,gjk) is the length of shortest path between gim and gjk.

(2) The diffusion kernel method

The diffusion kernel is a random walk based method [46] and

recently its power in mining network topological information in

PPI networks [47] has been demonstrated. Our experiments show

that these two methods obtained almost the same result.
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Platform
Most of the experiments are executed on Matlab 2007-b, and

also some are on Cytoscape 2.6.1 [48]. GO analysis is based on

BINGO 2.0 [49].

Supporting Information

Table S1 Aging genes and their reasons to be selected in

GenAge

Found at: doi:10.1371/journal.pcbi.1000521.s001 (0.03 MB XLS)

Table S2 Disease genes and their classification

Found at: doi:10.1371/journal.pcbi.1000521.s002 (0.06 MB XLS)

Table S3 Cancer genes with degree 20–50 are significantly

closer to other disease genes than expected by chance, while

cancer genes with degree less than 20 or larger than 50 are close to

other disease genes but these relations are not statistically

significant

Found at: doi:10.1371/journal.pcbi.1000521.s003 (0.02 MB XLS)

Figure S1 Comparison of the centrality between aging genes and

disease genes with different measures:degree centrality (DC), which

is a fundamental quantity describing the topology of scale-free

network, can be interpreted as a measure of immediate influence.

Betweenness centrality (BC) represents how influential a node is in

communicating between node pairs. Closeness centrality (CC) is

defined as the mean geodesic distance (i.e the shortest path) between

a node and all other reachable nodes. Eigenvector centrality (EC) is

the principal eigenvector of the adjacency matrix related to the

combined degree of the element and its neighbors. PageRank (PC) is

related to the principal eigenvector of the transition matrix

describing the damped random walk. Subgraph centrality (SC) is

related to the closed walks starting and ending at the given element.

Information centrality (IC) is the drop of graph performance

removing the given element or link. Different kinds of centrality

measures all support our conclusion that aging genes show much

stronger centrality than disease genes. The corresponding p-values

of EC, PC, SC, IC, DC, BC and CC are respectively 6e-39, 1e-25,

5e-43, 8e-24, 8e-36, 2e-22, and 5e-42 (Wilcoxon rank sum test).

Found at: doi:10.1371/journal.pcbi.1000521.s004 (0.07 MB PDF)

Figure S2 (A)–(D) Venn graph of overlapping between aging

genes and diseases genes. Universal sets are all human genes, genes

with interactions in HPRD, non-essential genes in HPRD and all

gene interactions in HPRD respectively. (E) Fold enrichment ratio

and p-value of the overlapping. Both genes and gene interactions

show significant overlapping than random.

Found at: doi:10.1371/journal.pcbi.1000521.s005 (0.33 MB PDF)

Figure S3 Z-score of closeness between different diseases. Here,

we set values larger than four to be four to achieve better

visualization.

Found at: doi:10.1371/journal.pcbi.1000521.s006 (0.33 MB PDF)

Figure S4 The bridgeness of cancer genes in every pair of

diseases. Here, minus 10-based logarithm p-value is showed in the

figure where values larger than four set to be four to achieve better

visualization.

Found at: doi:10.1371/journal.pcbi.1000521.s007 (0.08 MB PDF)

Figure S5 The box plots of different features of five kinds of

gene sets in the human protein-protein interaction network. Aging

genes have much higher average values than other genes respect to

degree, betweenness centrality, clustering coefficients and close-

ness centrality.

Found at: doi:10.1371/journal.pcbi.1000521.s008 (0.08 MB PDF)
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