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Circular RNAs (circRNAs) are endogenous RNAs with a covalently closed continuous loop, generated through various backsplicing
events of pre-mRNA. An accumulating number of studies have shown that circRNAs are potential biomarkers for major human
diseases such as cancer and Alzheimer’s disease. Thus, identification and prediction of human disease-associated circRNAs are
of significant importance. To this end, a computational analysis-assisted strategy is indispensable to detect, verify, and quantify
circRNAs for downstream applications. In this review, we briefly introduce the biology of circRNAs, including the biogenesis,
characteristics, and biological functions. In addition, we outline about 30 recent bioinformatic analysis tools that are publicly
available for circRNA study. Principles for applying these computational strategies and considerations will be briefly discussed.
Lastly, we give a complete survey on more than 20 key computational databases that are frequently used. To our knowledge, this
is the most complete and updated summary on publicly available circRNA resources. In conclusion, this review summarizes key
aspects of circRNA biology and outlines key computational strategies that will facilitate the genome-wide identification and
prediction of circRNAs.

1. Introduction

Circular RNAs (circRNAs) are traditionally viewed as non-
coding RNAs that form a covalently closed continuous loop
and thought to be generated from imperfect splicing. How-
ever, emerging evidence has shown a complexity of cir-
cRNAs in gene expression regulation, and thus the notion
that circRNAs are of low abundance has been gradually
challenged. Thus, the generation of circRNAs from such
noncanonical RNA splicing appears to be a feature of
human gene expression [1].

Recent evidence has shown that circRNAs can act as
microRNAs (miRNAs) and protein sponges as well as regu-
lators for translation and posttranslation (Figure 1) [2–5],
although other functions are also reported [6, 7]. Contempo-
raneous studies have revealed that dysfunction of circRNAs
is closely linked to a broad range of diseases, including

cancer [8–10], cardiovascular diseases and metabolic disor-
ders [11–15], and neurodegenerative diseases [16–18]. Also,
due to notable features such as stability, high abundance in
body fluids, and high cell- and tissue-specificity, circRNAs
exhibit great potential to serve as biomarkers for diseases
[19–22].

In the present review, we will briefly introduce the biol-
ogy of circRNAs, including the biogenesis process, classifica-
tion, and characteristics. Given that the biological function
and mechanisms of gene regulation of circRNAs are not
fully understood, we will summarize what has been widely
acknowledged. In addition, since several features of cir-
cRNAs, including circular conformation, relatively low
abundance, and overlap in sequence with other RNA coun-
terparts, often hinder the investigation of circRNAs, we will
then describe recent progress in computational strategies for
identification and prediction of circRNAs. In contrast to
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benchmarking the strategies, we aim to give the readers a
board introduction of circRNA biology and computational
method, which will help them in designing their future stud-
ies and analyzing results. Readers interested in specific topics
should refer to the reviews on circRNAs that have been sum-
marized elsewhere [23–27].

2. Discovery of circRNAs

circRNAs were initially discovered via electron microscopy
as a viroid in the mid-70s, because of the circular conforma-
tion [28, 29]. The biological analysis found that these cir-

cRNAs show several features, including (1) single-stranded,
(2) high thermal stability, (3) self-complementarity in a
rod-like structure, and (4) covalently closed as a loop [28].
Later, in the 90s, owing to advancement in computational
biology and RNA sequencing, researchers finally determined
the structure of the previously identified transcripts that
show an inverted order of exons that is distinct from genomic
DNA, which was mistakenly recognized as RNA splicing
errors [30]. This study found that, although these transcripts
are nonpolyadenylated and not as abundant as in a normal
transcript, they are stable molecules and expressed in the
cytoplasmic part of the cells [30].
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Figure 1: Translation of circRNAs. (a) circRNAs can serve as a miRNA sponge, containing multiple binding sites for miRNAs (blue) or RBPs
(in red), thus affecting gene regulation. (b and c) Illustrations show the role of circRNAs as miRNAs in healthy and tumor tissues. Tumor-
suppressor circRNA sponges contain binding sites for tumor-suppressor miRNAs (light purple), while oncogenic circRNA sponges
contain binding sites for oncogenic miRNAs (red). Tumor-suppressor circRNAs upregulate tumor-suppressor genes (yellow) in healthy
tissues but downregulate these genes in tumor tissues, whereas oncogenic circRNAs suppress oncogene (green) expression in healthy
tissues but upregulate these genes in tumor tissues. AGO: Argonaute; RBP: RNA-binding protein. Illustration is inspired by and modified
from [164]. (d) New studies suggest that circRNAs generated by backsplicing are able to be translated into proteins. Illustration is
modified from [38, 39]. Illustrations were generated using BioRender.
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The breakthrough in high-throughput sequencing (HTS)
technology in the 21st century made it possible to deepen our
understanding of circRNA sequences and functionality. In
2012, using deep RNA sequencing (RNA-seq) of normal
and cancer stem cells from human samples, circRNAs were
identified from a substantial fraction of spliced precursor
message RNAs (pre-mRNAs) that showed a noncanonical
order [1], suggesting a new feature of the gene expression
program in human cells. Later, a close examination of cir-
cRNAs using Circle-Seq found that these molecules usually
consist of up to five exons; however, each of them can be
three times longer than the average expressed exon [31, 32].
A computational strategy was developed to specifically detect
circRNAs, enabling identification of thousands of stable cir-
cRNAs [32]. As a proof-of-concept, using biochemical, func-
tional, and computational analyses, this study showed that
CDR1as, a known human circRNA, can bind miR-7 in neu-
ronal tissues to function as a negative regulator [32].

Interestingly, treating RNAs with RNA exonuclease to
deplete linear RNAs, researchers were able to perform bioin-
formatic analysis to identify complementary ALU repeats in
introns; the results showed that circRNAs are abundant and
stable RNA splicing products and are not randomly pro-
duced, suggesting that circRNAs are truly involved in gene
expression regulation [31]. It is worth noting that all these
discoveries would not have been made possible without the
advancement of HTS technology.

3. Characterization of circRNAs

Thanks to the efforts from a number of research groups, to
date, more than 20,000 different circRNAs have been identi-
fied, showing an unprecedented diversity of circRNAs
among different species [33]. In addition, tissue and subcel-
lular expression are also characterized. Surprisingly, in
mammalians, most circRNAs are found in the brain, mainly
in neuronal and synaptic functions [34, 35]. In situ sequenc-
ing was used to reveal the subcellular localization of cir-
cRNAs in the brain and found that as predicted, circRNA
transcripts are enriched in the cytoplasm. However, nuclear
localization was also found, though to a less extent [36].
Other studies also showed the role of circRNAs to regulate
gene expression in the nucleus [4]. In other tissue types, such
as the liver, heart, placenta, and blood, circRNAs are also
found [36]. Another study not only investigated tissue-
specific expression pattern but also explored the role of cir-
cRNAs in a development stage-specific manner and found
that similar to adult human tissues, fetal tissues show an
abundance of circRNAs [37].

Before we discuss the classifications of circRNAs, we will
briefly introduce the noncoding RNA (ncRNA) family. As its
name suggests, ncRNA is an RNA that is not translated into a
protein. ncRNAs mainly consist of transfer RNA, ribosomal
RNA (rRNA), and many other small RNAs such as long non-
coding RNA (lncRNA: ≥200nt), small noncoding RNA
(sncRNA: 100-200nt), miRNA (20-24 nt), and endogenous
small interfering RNA (endo-siRNA). circRNAs have been
categorized as ncRNAs; however, recent new studies chal-
lenged this view by demonstrating that circRNAs can code

for proteins (Figure 1(d)) [38–40]. These studies showed that
a group of circRNAs termed ribo-circRNAs, because they are
associated with translating ribosomes, are bound by
membrane-associated ribosomes, suggesting the existence
of unexplored modes of regulation of genes and proteins
[38, 39]. Another study showed that translation of circRNAs
could be driven by m6A, the most abundant RNA modifica-
tion [41]. Nevertheless, the characterizations of circRNAs
have just started.

Stability is one of the distinct characteristics of cir-
cRNAs separating them from linear RNAs. In general, com-
pared to linear RNAs, circRNAs are quite stable, because
the lack of a poly(A) tail in circRNAs can protect them
from exonuclease-mediated degradation [31]. This feature
has been utilized to a recent engineering study to generate
exogenous circRNAs, thus obtaining more potent and dura-
ble proteins in eukaryotic cells [42].

4. Biogenesis of circRNAs

Linear RNAs usually terminate with 5′ caps and 3′ tails and
undergo canonical splicing; however, due to the closed loop

structure, neither 5′-to-3′ polarity nor poly(A) tail can be
found in circRNAs. Thus, circRNAs show stability over lin-
ear RNAs [31, 32]. Canonical splicing in pre-mRNAs is cata-
lyzed by a spliceosome assembly, resulting in a linear RNA

transcript with a 5′-to-3′ polarity. This splicing strategy is
considered as highly efficient. Different from canonical splic-
ing, circRNAs are generated via backsplicing, which, on the
contrary, is considered as a noncanonical way (Figure 2).

When the upstream 3′ splice acceptor site joins with a down-

stream 5′ splice donor site, the junction site is ligated by a 3′

-5′ phosphodiester bond, resulting in covalently closed cir-
cRNAs. The sizes of mature circRNAs have a wide range
from ~100nt to 4 kb [43]. In human cells, the most common
size is several hundred nucleotides spanning two or three
exons [31, 44, 45]. Besides, long flanking introns comprising
inverted repeat sequences have been proved to promote exon
circularization [46, 47]. Unlike canonical splicing, backspli-
cing is usually considered as poorly efficient by approxi-
mately 1-3% of the former [48, 49].

5. Categories of circRNAs

The RNA research community has annotated four different
types of alternative splicing, including (1) intron retention,

(2) exon skipping, (3) alternative 5′ splicing, and (4) alter-

native 3′ splicing [50], suggesting the complexity of the bio-
genesis of circRNAs. Based on these four types of alternative
splicing, circRNAs can be categorized into four types:
intron-derived circRNAs, exon-derived circRNAs (ecircR-
NAs), intergenic circRNAs, and exon-intron circRNAs
(elciRNAs) [51]. Among these types, ecircRNAs are pre-
dominantly generated from backspliced exons as the largest
type of circRNAs, accounting for the majority of the
circRNAs that have been discovered.
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6. Major Biological Function and
Disease Relevance

In contrast to mRNAs and miRNAs, the biological functions
of circRNAs are largely unclear. However, in the last decades,
a number of seminar investigations have been conducted to
demonstrate a wide variety of roles that circRNAs might play.
Here, we briefly summarize some critical functions that cir-
cRNAs are implied to play.

CircRNAs can act as miRNA sponges, that is to say, by
its name, circRNAs are reservoirs of miRNAs (Figure 1(a)).
It is well known that miRNAs belong to a family of ncRNAs
that regulate gene expression in a wide range of biological
processes. The current view of circRNAs as a miRNA or pro-
tein sponge is that circRNAs regulate miRNA activity, thus
modulating the expression of miRNA target genes [52]. As
illustrated in Figures 1(b) and 1(c), in healthy and tumor tis-
sues, specific circRNAs harbor miRNAs that target different
types of genes such as tumor-suppressor genes or oncogenes,
thus exhibiting various biological effects. Owing to the
importance of miRNAs that bind to circRNA sponges,
miRNA-based computational pipelines have been estab-
lished to predict circRNA targets. We will revisit this topic
in a later section of this review. In addition to regulating

miRNA, circRNAs also serve as the sponge of RNA-
binding proteins (RBPs) to regulate intracellular transport
(Figure 1(a)), thereby modulating gene expression of rele-
vant RBPs of interest [53]. Readers with interests in this
topic could find more details in several recent reviews [54–
56]. As shown in Figure 1(a), circRNAs, such as ciRS-7, also
bind to Argonaute (AGO) proteins in a miR-7-dependent
manner [57], which could regulate mRNA transcription
and translation.

A number of circRNAs have been identified as miRNA
sponges. A prominent example is ciRS-7, which serves as a
miR-7 sponge [32, 57]. ciRS-7 is highly expressed in the
cytoplasm and has more than 70 miR-7 target sites [57]. It
has been reported that ciRS-7 functions as both tumor-
suppressor and oncogenic sponges, serving as a promising
biomarker for various cancers such as colorectal cancer
[58], hepatocellular carcinoma [59], esophageal squamous
cell carcinoma [60, 61], cervical cancer [62], and pancreatic
cancer [63]. Interestingly, some studies also show that ciRS-
7 promotes β-amyloid precursor protein (APP) and β-site
APP-cleaving enzyme (BACE1) degradation [16]; thus, it
might also play a role in Alzheimer’s disease.

CircRNAs have been implicated in several diseases such
as cancer, cardiovascular diseases, and neurodegenerative
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diseases. First, circRNAs are abundantly and dynamically
expressed in the brain [35] and have been shown to partici-
pate in a variety of brain-related processes such as synaptic
transmission [64], aging [65–67], sensorimotor gating [64],
cell-type-specific interaction and brain network [68, 69],
development and adult neurogenesis [70–73]. Therefore,
many investigators have demonstrated that circRNAs play
important roles in the pathogenesis of a number of brain-
related disorders such as multiple system atrophy [74], tran-
sient focal ischemia and stroke [75–82], neuropsychiatric dis-
orders [64, 68], Alzheimer’s disease [83, 84], Parkinson’s
disease [85], brain bacterial infection [86], brain tumors
[87], and metabolic diseases [88]. Second, circRNAs are also
highly expressed in the heart [89] and are reported to play a
role in cardiac remodeling [90], stress response [91],
endothelial-to-mesenchymal transition [92], metabolism
[93, 94], immune tolerance [95], atrial fibrillation [96], and
apoptosis [97]. Thus, these circRNAs are suggested to partic-
ipate in heart diseases such as heart failure [91, 97, 98],
ventricular septal defect [99], chronic heart disease [92,
100–102], alcoholic cardiomyopathy [93], and rheumatic

heart disease [96]. In the lung, circRNAs have been found
to be important in lung fibrosis [103], cell growth [104], cell
migration and invasion [105–108], cancer tumorigenesis
[109], and so on; thus, these circRNAs play a role in various
lung-related diseases such as lung cancer [105, 107, 110–
112], lung injury [113], and pulmonary hypertension [114].
The role of circRNAs in various human diseases are anno-
tated in Figure 3.

7. Bioinformatic Analysis of circRNAs

Given the importance of circRNAs in gene expression regula-
tion, a growing interest emerges in identifying novel cir-
cRNAs and understanding their biological functions.
Therefore, genome-wide identification and prediction of cir-
cRNAs are crucial for the study of circRNA biological func-
tions [115, 116].

Effective investigation of circRNAs highlights a particular
need of HST technology. In the past years, the high-
throughput microarray was a dominating means to study
the junction sequences of circRNAs [117, 118]. By designing
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probes to target specific circular junction sites, a circRNA
microarray allows accurate and reliable detection of individ-
ual circRNAs. Following a detailed annotation of potential
miRNA target sites, a circRNA microarray helps to reveal
their potential roles as a miRNA sponge. The isolated RNA
samples go through a pretreatment process, in which RNase
R is used to remove linear RNAs and improve the purity of
circRNAs. However, the limited number of known circRNAs
during annotation and the use of a junction sequence to iden-
tify circRNAs bring limitations to the application of a micro-
array. Therefore, in recent years, high-throughput RNA-seq
technology has become the dominant approach to identify
circRNAs. As a result, a number of computational pipelines
for circRNA identification have been developed to identify
circRNAs from massive RNA-seq databases.

In this section, we introduce several commonly used
computational pipelines for the identification of circRNAs.
Figure 4 outlines several key steps in studying circRNAs
using publicly available pipelines; thus, readers could have
a brief idea of where to choose individual pipelines. We
apologize for omitting any key pipelines or key steps. Thus,
we highly recommend readers to refer to other reviews
specifically on this topic [119–122]. Table 1 provides a
comprehensive summary of online tools for the study of
circRNAs, while Table 2 is a list of computational pipelines
for optional analysis of circRNAs. To our knowledge, this is
the most comprehensive and updated summary of cir-
cRNAs tools. In addition, a video-based introduction to
the identification of circRNAs from RNA-seq is also avail-
able from JOVE [123].

To effectively identify circRNAs, no matter which com-
putational pipeline is used, one needs to discriminate cir-
cRNAs from linear RNAs. Several biochemical assays have
been developed to distinguish circRNAs from other back-
splicing products, including (1) divergent primer PCR, (2)
relative migration of circRNAs from a canonical linear
RNA in an agarose gel, (3) 2D gel electrophoresis, (4) gel
trapping, and (5) exonuclease enrichment [119]. Other than
biochemical enrichment strategies, deep sequencing with
novel bioinformatics analysis has been developed to per-
form a comprehensive characterization of circRNAs. To
date, candidate- or pseudo-reference-based strategies have
been designed in computational pipelines [119, 124]. The
candidate-based strategy uses a list of candidate junctions
that were generated from previous models [1, 119]. Thus,
this approach is able to analyze rRNA-depleted libraries in
a fast manner; however, it has an obvious limitation in
unannotated transcripts. Constructing putative circRNA
sequences with gene annotation, a pseudo-reference-based
approach, such as KNIFE [45], NCLScan [125], and PTES-
Finder [126], has become widely used. These approaches
use several systematic filtering steps to remove false positive
[120, 124]. For example, by using PTESFinder to analyze
previously mined RNA-seq reads, significantly more distinct
structures were found than previously reported (between
13% and 42%), whereas a significant number of reads were
excluded by PTESFinder due to low map quality or multiple
map locations [126]. Thus, owing to these novel pipelines,
the highest specificity and sensitivity could be achieved. In

addition to these strategies, a fragmented-based strategy is
also frequently used, in which a backsplicing junction is
aligned to the genome [120].

Although these detection pipelines could significantly
accelerate the identification of novel circRNAs, inconsistency
in results might occur when switching from one pipeline to
another. Thus, evaluations for different circRNA pipelines
had been performed. A recent comparison study has pro-
vided a comprehensive and unbiased comparison among
several circRNA detection pipelines [120]. This study used
a number of measurements to evaluate their performance,
including precision, sensitivity, F1 score and area under
curve, random access memory consumption, running time,
and physical disk space utilization, and concluded that CIRI,
CIRCexplorer, and KNIFE have better performance [120].
An earlier review had summarized the criteria in different
pipelines or algorithms to perform filtering and accuracy
evaluation; thus, we highly recommend readers to refer to
this review [127]. In addition, it is worth noting that, as many
studies have already pointed out, this study also suggested
that no individual pipeline could achieve the best perfor-
mance among all the metrics used, indicating an urgent need
to refine and integrate all these available methods for cir-
cRNA detection [128, 129]. For the time being, pairing differ-
ent pipelines possibly produces a much more reliable output,
for example, circRNA and find_circ.

To increase the accuracy in circRNA identification, two
concerns should be kept in mind when designing experi-
ments: (1) At the experimental stage, many variations can
affect circRNA abundances, such as RNA purification, size
selection, and RNA fragmentation followed by adaptor liga-
tion. RNase R is commonly used to digest linear RNAs to
enrich circRNAs for sequencing, but not all circRNAs are
resistant to RNase R; conversely, a few linear RNAs can avoid
RNase R digestion. (2) A small fraction of circRNAs inher-
ently exits in common cell lines, which account for approxi-
mately 2-4% of the total mRNAs. This level is higher in
platelets. Therefore, significant biases will arise when bioin-
formatic analysis relies on junctional reads. As a result, a high
rate of false positives occurs. To this end, most pipelines
apply multiple high thresholds on absolute read counts.
Other pipelines employ statistical approaches to reduce the
reliance on the thresholds.

The current limitations of circRNA research include lim-
ited methods available to detect and quantify circRNAs.
Although RT-qPCR-based methods are low cost and highly
sensitive methods that can be easily applied in many labora-
tories, they are not high-throughput methods that can detect
and quantify circRNAs. While RNA-seq has served as the
main method that has high sensitivity and high throughput,
the cost can be high, and it usually requires sufficient compu-
tational power. A detailed comparison of different methods
for circRNA detection and quantification can be found else-
where [7]. The genome-wide prediction tools, as discussed
here, can largely assist in the identification and characteriza-
tion of circRNAs; however, it is still challenging to assess the
circRNA-miRNA and circRNA-protein interactions. In most
cases, the sequences of the circRNAs are not clear, which
might be problematic for downstream analysis such as
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Figure 4: Key steps in studying circRNAs using publicly available pipelines. For read data, the library preparation is similar to traditional
mRNA extraction. For stimulated data, several tools such as KNIFE and CIRI-simulator can be used. Alignment methods for linear RNAs,
such as STAR and TopHat, are also commonly used for circRNAs, Therefore, a number of professional pipelines shown in Table 1 can be
applied for circRNA detection, such as DCC and CIRI. For downstream analysis, other optional pipelines can be employed for different
purposes. Finally, several pipelines can be used to check the association of circRNAs and diseases. The authors apologize for omitting any
key pipelines or key steps. Illustration was generated using BioRender.
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miRNA target prediction. In addition, bioinformatic analysis
relying on reads spanning the backsplice junction could be
problematic because of the biases in read density [127,
130]. We envision that future studies could help solve these
critical issues.

In sum, although a number of pipelines are available for
circRNA research, how to obtain genome-wide detection of
circRNAs with high sensitivity and specificity remains a chal-
lenge. It is foreseeable that in the future, a comprehensive
comparison of these pipelines, as well as a comparison in
computational power using publicly available datasets, will
become available.

8. Comprehensive Databases of circRNAs

Other than the computational tools that are used for the detec-
tion and identification of circRNAs, it is undoubtedly impor-
tant that a comprehensive understanding of the association
of these identified circRNAs and human diseases is eagerly
expected. Therefore, several circRNA databases have been
established containing thousands of mammalian circRNAs
carefully selected from various sources. Thus, detailed infor-
mation, such as genome sequence, subcellular location, and
disease annotation, are all provided to researchers working
on circRNAs.

Table 3 summarizes the most updated circRNA data-
bases that are publicly available. Among these databases,
several of them are widely used, such as Circ2Traits [131],
circBase [132], and circFunBase; they are among the earliest
circRNA databases that are commonly used. Here, we briefly
discuss how to make full use of CircBase. We suggest that
readers find more useful information from other papers
[120, 132, 133].

circBase, as one of the earliest developed databases for
circRNAs, was brought in 2014 and has been widely used in
the circRNA community [132]. As of today, the original
report of circBase has been cited for nearly 600 times, indicat-
ing that it has been regarded as a powerful tool for the com-
munity [132]. The main aim of developing circBase was to
provide summary information of individual circRNAs that
have been identified, together with their genomic context.
Three ways of searching circBase were provided, including
simple search, list search, and table browser search. These
searching methods can be easily found on the main page of
the website (http://www.circbase.org/). Simple search, with
identifiers, genomic coordinates, sequences, gene ontology
identifiers, transcript ID, and gene symbols, is the easiest
way of searching the database. List search gives users an
option to paste or upload a list of several circRNAs or refseq
identifiers, as well as gene symbols. Organism is required to
be selected. Table browser search is a quick search option
based on the browser interface. Note that organism and data-
set information is required to be selected. As illustrated in
Figure 5(a) as an example, in the circBase table browser page,
users could select human as Organism and use a dataset from
a previous study [31]. Both sample conditions and annota-
tion allow for multiple selection. After submitting using the
search button, a detailed result page will be returned, with
basic information on individual circRNAs that matches the

query (Figure 5(b)). The listed information includes organ-
ism data source; genomic position information which directs
to a link from the UCSC genome browser, with full informa-
tion on strand; circRNA ID; genomic length; spliced length;
list of samples that contain the circRNAs; and number of
reads. By clicking a single circRNA, the link will direct the
users to a single record page, which contains detailed infor-
mation on a particular circRNA. Detailed information on
how to use circBase can be found on the documentation page
(http://www.circbase.org/doc/help_mod.html). In addition,
in circBase, data can be exported in standardized formats
such as xlsx, txt, csv, or fasta, providing users a variety
options to integrate with other analysis tools. In general, cir-
cBase is an excellent database that focuses on elementary
information of backsplicing junction coordinates.

CircBase has been used in several key studies to identify
targeted circRNAs, and this identification can be validated
by quantitative real-time PCR or downstream analysis. Thus,
circBase plays an important role in the identification of
potential biomarkers for various cancers [134–143].

Here, we are giving the readers another example, cir-
cad (circRNAs associated with diseases), a database mainly
for disease-associated circRNAs [144]. After submitting a
circRNA’s name in the browser (http://clingen.igib.res.in/
circad/), the database returns with a selection of different
organisms. Selecting one organism will bring users to the
next page, which has information including genome locus,
gene name, disease association, fold change, and a publica-
tion’s PubMed ID (PMID). It is worth noting that as an
exception to many databases, circad includes detailed
information of the primers used in that publication. A
detailed documentation on how to use circad can be found
(http://clingen.igib.res.in/circad/img/circad.pdf).

In addition, several other databases have also been devel-
oped. Here, we provide a brief introduction to each of them
(for the web links and last updated data, as well as references
for individual databases, please refer to Table 3):

(1) circ2Traits is the first comprehensive database of
potential disease association of circRNAs in humans
[131]; in this database, users can find SNPs associ-
ated with diseases and AGO interaction sites

(2) SomaniR is a database mainly for cancer somatic
mutation in miRNAs and their target sites that
might potentially interact with circRNAs [145]

(3) CircNet is a database with resources of novel cir-
cRNAs, integrated miRNA-target network, expres-
sion, annotations, and sequences of circRNA
isoforms [146]

(4) circRNADb is a human circRNA database that con-
tains more than 32k annotated exonic circRNAs
[147]

(5) TSCD is an integrated tissue-specific circRNA
database, which deposits features of tissue-specific
circRNAs [148], and users could find tissue-
specific expression in both mouse and human adult
and fetus
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(a)

(b)

Figure 5: Searching circRNAs with circBase table browser. This illustration gives a brief introduction on how to search circBase using the
table browser option. (a) circBase table browser interface. (b) An output from the result page after submitting queries.
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(6) CIRCpedia, a 2nd version of this database, is based on
CIRCpedia, for comprehensive circRNA annotation
from>180 RNA-seq datasets [149]; this database con-
tains circRNA annotations across 6 species, including
human, mouse, rat, zebrafish, fly, and worm

(7) CircR2Disease is a manually curated database that
gives users a comprehensive resource for circRNA
deregulation in diseases [150]; it contains >700
associations between 661 circRNAs and 100 dis-
eases so that users can study the mechanism of
disease-related circRNAs

(8) exoRBase is a database that has >58k circRNAs in
human blood exosomes, which helps users to iden-
tify exosomal biomarkers [151]

(9) TRCirc can be used to study transcriptional regu-
lation of circRNAs based on ChIP-seq and RNA-
seq results [152]; it also enables analysis of meth-
ylation level

(10) CircRNAdisease is another newly developed data-
base to understand circRNA and disease associa-
tions [153]; it contains 354 associations between
330 circRNAs and 48 diseases

(11) CircBank is a comprehensive database for human
circRNAs, and it contains 5 features such as a
miRNA binding site, conservation of circRNAs,
m6A modification, mutation, and protein-coding
potential of circRNAs [154]; note that this database
has a novel naming system for circRNAs

(12) circFunbase is a database featured by a high-
quality functional circRNA resource [155]; most
of the resource has been validated by experiments;
it contains circRNAs from a wide variety of spe-
cies, such as plants and animals (human, monkey,
rat, mouse, etc.)

(13) LncACTdb is a database mainly for endogenous
RNAs such as circRNAs in different species and
diseases [156]; it contains about 60 experimentally
supported circRNA interactions

(14) CropCircDB is a database specifically for crop cir-
cRNAs such as maize and rice [157]; it also has val-
idated crop circRNAs in response to abiotic stress

(15) AtCircDB is another plant-specific database mainly
for Arabidopsis circRNAs [158]

(16) MiOncoCirc is a database that contains circRNAs
from cancer cell lines and tumor samples [23]

(17) Circad is another disease-associated database for
circRNAs [144]; it has >1300 circRNAs implicated
with 150 diseases; besides, it has circRNAs from 5
species, including human, rat, and mouse

(18) ncrpheno is a database mainly for ncRNAs; how-
ever, it contains 848 circRNAs as well as circRNA-
related diseases [159]

(19) NPInter (v4) is the 4th version of the NPInter data-
base that integrates 6M newly identified ncRNA
interactions including circRNA interactions [160];
it also contains circRNAs from dozens of species,
including human, mouse and rat

(20) CircAtlas (v2) is a database that integrated 1M cir-
cRNAs across 6 species, including human, macaca,
mouse, rat, pit, and chicken as well as 19 normal dif-
ferent tissues [161]; it also describes a conservation
score, coexpression, and regulatory networks

(21) VirusCircBase is a comprehensive database of viral
circRNAs [162]; it contains 12K circRNAs, most in
viruses and infectious diseases

To our knowledge, this summary list is the most updated
summary of circRNA databases. Here, we recommend the
following principles for readers to choose each database
based on the purposes of their experiment and analysis:

(1) Disease association: for projects that are aimed at
comparing several disease conditions, these databases
could be chosen—circ2Traits, circR2Disease, cir-
cRNAdisease, Circad, ncrpheno, and CircAtlas

(2) Cross-species comparison: for projects involving a
cross-species comparison, these databases contain
circRNA information on several different species,
including CIRCpedia, circFunbase, Circad, NPInter
(v4), and CircAtlas (v2)

(3) Transcriptomic regulation: for projects that are aimed
at studying epigenetic regulation of gene expression,
these databases could be chosen—TRCirc, CircBank,
LncACTdb, and NPInter (v4)

(4) Tissue-specific purpose: for projects that are aimed at
comparing circRNAs in a wide range of normal tis-
sues. The databases that could fulfill this purpose
are TSCD, NPInter (v4), and CircAtlas (v2). Never-
theless, it is advised to perform an initial search via
exoRBase for a blood-related project, whereas Virus-
CircBase should be the first choice for a virus-related
project. However, it is always preferable to go
through each relevant database if necessary.

9. Concluding Remarks

In the past few years, growing evidence has been seen in
circRNAs as potential diagnostic and prognostic biomarkers
for human diseases. Because most circRNAs are abundantly
expressed in a wide variety of tissue types and cell types,
and that circRNAs show great stability and a robust regula-
tion role in gene expression, circRNAs will become favor-
able biomarker candidates that are worthy of investigation
in both basic and clinical medical sciences.

One of the bottlenecks in studying circRNAs is detection
and identification from genome-wide datasets. The emerg-
ing field of big data enables us an unprecedented opportu-
nity to store, manage, process, and analyze biological data
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that contains information with tremendous complexity.
Therefore, a computational strategy that mainly uses publicly
available pipelines and databases developed and shared by
circRNA communities could enormously reduce the chal-
lenges and increase the efficiency of applying bioinformatics
knowledge to identify key circRNAs that could bring diag-
nostic and prognostic values.

In this review, we have briefly introduced the biology of
circRNAs, including characteristics, biogenesis, biological
functions, and disease relevance, as well as several computa-
tional approaches that enable researchers to detect and iden-
tify potential novel circRNAs. Finally, we have highlighted
several publicly available computational resources for the
analysis of circRNAs that, to our knowledge, are the most
completed and updated. Thus, we hope this review will help
researchers at various levels in their current and future stud-
ies on circRNAs.

The study of circRNAs has just begun, and the field is rel-
atively young. A number of outstanding questions are still
waiting to be addressed, such as the association of circRNAs
in disease progression and development, the value of circu-
lating circRNAs to predict their abundance and relevance
in deep tissues, novel functions of circRNAs beyond sponges
for small molecules, and the efficiency of combining single-
molecule HTS technology with circRNAs [34, 51, 119, 163].
Nevertheless, the continuous efforts in detection, identifica-
tion, and characterization of circRNAs will lead to our under-
standing of circRNAs’ function and clinical value into a
completely new lever.
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