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Disease dynamics of Honeybees with Varroa destructor as parasite and

virus vector

Yun Kang1, Krystal Blanco2, Talia Davis 3, Ying Wang 4 and Gloria DeGrandi-Hoffman 5

Abstract

The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread
of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa
mites. In this article, we propose a honeybee-mite-virus model that incorporates (1) parasitic interactions
between honeybees and the Varroa mites; (2) five virus transmission terms between honeybees and mites at
different stages of Varroa mites: from honeybees to honeybees, from adult honeybees to the phoretic mites,
from brood to the reproductive mites, from the reproductive mites to brood, and from adult honeybees to the
phoretic mites; and (3) Allee effects in the honeybee population generated by its internal organization such as
division of labor. We provide completed local and global analysis for the full system and its subsystems. Our
analytical and numerical results allow us have a better understanding of the synergistic effects of parasitism
and virus infections on honeybee population dynamics and its persistence. Interesting findings from our work
include: (a) Due to Allee effects experienced by the honeybee population, initial conditions are essential for
the survival of the colony. (b) Low adult honeybees to brood ratios have destabilizing effects on the system
which generate fluctuating dynamics that lead to a catastrophic event where both honeybees and mites
suddenly become extinct. This catastrophic event could be potentially linked to Colony Collapse Disorder
(CCD) of honeybee colonies. (c) Virus infections may have stabilizing effects on the system, and parasitic
mites could make disease more persistent. Our model illustrates how the synergy between the parasitic mites
and virus infections consequently generates rich dynamics including multiple attractors where all species can
coexist or go extinct depending on initial conditions. Our findings may provide important insights on
honeybee viruses and parasites and how to best control them.

Keywords: Allee Effects; Honeybees; Extinction; Virus; Parasite; Colony Collapse Disorder (CCD)

1. Introduction

Honeybees are the world’s most important pollinators of food crops. It is estimated that one third of food
that we consume each day mainly relies on pollination by bees. For example, in the United States, honeybees
are major pollinators of alfalfa, apples, broccoli, carrots and many other crops, and hence are of economic
importance. Honeybees have an estimated monetary value between $15 and $20 billion dollars annually as
commercial pollinators in the U.S [29]. There are growing concerns both locally and globally that despite
a 50% growth in honeybee stocks, the supply cannot keep up with the over 300% increase in agricultural
demands [75]. Therefore, the recent sharp declines in honeybee populations have been considered as a global
crisis. The most recent data from the 2012-2013 winter has shown an average loss of 44.8% of hives in the
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U.S., and a total of 30.6% loss of commercial hives [65]. Some beekeepers have reported a loss of 90% of
their hives [20, 46].

Between 1972 and 2006, the wild honeybee populations declined severely and are now considered vir-
tually nonexistent [44, 73]. Hence the use of commercial honeybees for pollination is extremely important.
Beginning in 2006, beekeepers began to report an unusual phenomenon in dying bee colonies. Worker bees
would leave the colony to forage and never return, leaving the queen and the young behind to die. No
dead worker bees were found at the nest sites; they simply disappear [13, 68]. This phenomenon is known
as Colony Collapse Disorder (CCD), which is a serious problem threatening the health of honeybees and
therefore the economic stability of commercial beekeeping and pollination operations.

The exact causes and triggering factors for CCD have not been completely understood yet. Researchers
have proposed several possible causes of CCD including stress on nutritional diet, harsh winter conditions,
lack of genetic diversity, exposure to certain pesticides, diseases, and parasitic mites Varroa destructor which
are also vectors of viral diseases of honeybees [29, 52]. Even before CCD was detected in honeybee colonies,
studies showed that most of the loses could be generally attributed to two main causes: the vampire mite,
Varroa destructor, which feeds on host haemolymph, weakens host immunity and exposes the bees to a
variety of viruses, and the tracheal mite, which infests the breathing tubes of the bee, punctures the tracheal
wall and sucks the bee’s blood and also exposes the bee to a variety of viruses [57, 63, 41]. Since then,
Varroa mites have been implicated as the main culprit in dying colonies. For example, in Canada, Varroa
mites have been found to be the main reason behind wintering losses of bee colonies [25], and more generally
studies have shown that if the mite population is not properly controlled, the honeybee colony will die [62].
Recent studies also suggest that the Varroa mite could be a contributing cause of CCD since they not only
ectoparasitically feed on bees, but also vertically transmit a number of deadly viruses to the bees [37, 35].
There have been at least 14 viruses found in honeybee colonies [4, 37], which can differ in intensity of impact,
virulence, etc. for their host. For example, the Acute Bee Paralysis Virus (ABPV) affects the larvae and
pupae which fail to metamorphose to adult stage, while in contrast the Deformed Wing Virus (DWV) affects
larvae and pupae, which can still survive to the adult stage [69].

Mathematical models are powerful tools that can provide insights on potential ecological processes that
link to CCD with other factors that contribute to colony mortality. There are several models of honey-
bee colony population dynamics that include the effects of Varroa mites (see refs. in Becher et al. [6]).
DeGrandi-Hoffman et al. [16] produced the first time-based honeybee colony growth model. Later, the pop-
ulation dynamics of Varroa mites were added [15]. In this model, the impact of mites on colony population
growth is based on reductions in adult worker longevity following parasitism during immature stages. Martin
[40] developed a simulation model consisting of ten components, that connected various aspects of honeybee
and mite biology and later included effects of viral pathogens to explain the link between the Varroa mite and
the collapse of colonies [41]. Wilkinson and Smith [74] developed a difference equation model of Varroa mites
reproducing in a honeybee colony. Their study focused on parameter estimations and sensitivity analysis.
Simulation models are useful but may be too complex to study mathematically and obtain general predictions.

More recently, mathematical models have been formulated to explore potential mechanisms causing CCD
in honeybees. Eberl et al. [18] developed a model connecting Varroa mites to CCD by including brood main-
tenance terms. They found an important threshold for the number of hive worker bees needed to maintain
and care of the brood. Khoury et al. [32, 31] developed differential equations models to study different death
rates of foragers and the impact it had on colony growth and development. They then linked their results
to CCD. Martin [41] constructed a Varroa population model that included mortality from virus and later
modeled the effects of a constant population of Varroa mites on the brood and on adult worker bees, and
found that sufficiently large mite infestations may make hives vulnerable to collapse from viral epidemics
[66]. Betti et al. [8] constructed a model that combines the dynamics of the spread of disease within a
bee colony with the underlying demographic dynamics of the colony to determine its ultimate fate under
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different scenarios. Their results suggest that the age of recruitment of hive bees to foraging duties is a good
early marker for the survival or collapse of a honeybee colony in the face of infection. Kribs-Zaleta et al. [34]
created a model to account for both healthy hive dynamics and hive extinction due to CCD by modeling
CCD via a transmissible infection brought into the hive by foragers. Perry et al. [50] examined the social
dynamics underlying dramatic colony failure. Their model includes bee foraging performance varying with
age, and displays dynamics of colony population collapse that are similar to field reports of CCD. These
models, no doubt, are insightful and provide us a better understanding on the potential mechanisms that
link to CCD. However, most of these models only account for the honeybee population dynamics with mites
or viruses but not both.

The host-parasite relationship between honeybees and Varroa mites is complicated by the mite’s close
association with a wide range of honeybee viral pathogens. In order to understand how Varroa mite infes-
tations and the related viruses transmitted to honeybees affect honeybee population dynamics, and which
may link to CCD, there is a need to develop realistic and mathematically tractable models that include both
virus and mite population dynamics. The goal of our work is to develop a useful honeybee-mite-virus system
to obtain a better understanding on the synergistic effects of honeybee-mite interactions and honeybee-virus
interactions on the honeybee population dynamics, thus develop good practices to control these parasites
to maintain or increase honeybee populations. The most relevant modeling papers for our study purposes
are by Sumpter and Martin [66], and Ratti et al. [52] whose work examined the transmission of viruses
via Varroa mites, using the susceptible-infectious (SI) disease modeling framework with mites as vectors for
transmission. However, Sumpter and Martin assumed that the mites’ population is constant while Ratti et
al. took no account of the fact that virus transmissions occur at different biological stages of Varroa mites
and honeybees.

In this article, we follow both approaches of Sumpter and Martin [66] and Ratti et al. [52], and propose a
honeybee-mite-virus model that incorporates (1) parasitic interactions between honeybees and Varroa mites;
(2) different virus transmission terms that account for the virus transmissions among honeybees, between
honeybees and mites at two different stages of Varroa mites; and (3) Allee effects in the honeybee population
generated by the internal organization of honeybees (e.g., division of labor). Our proposed model will allow
us explore the following questions:

1. What are the dynamics of a system only consisting of honeybees and the virus?

2. What are the dynamics of a system only consisting of honeybees and Varroa mites?

3. What are the synergistic effects of Varroa mites and the virus on the honeybee population, and how
may these synergistic effects contribute to CCD?

4. How can we maintain honeybee populations?

The structure of the remainder of the article is organized as follows: In Section 2, we first provide
the biological background of honeybees, Varroa mites, and the associated virus transmission routes in the
honeybee-mite system; then we derive our SI-type model for honeybees co-infected with the mite and virus.
In Section 3, we perform local and global analysis of the proposed model and the related subsystems. The
results from the analysis are then connected to biological contexts and implications. Additionally, we also
explore numerical simulations of the subsystems and the full system to obtain the effects of each parameter
in our system. In Section 4, we summarize our results and the related biological implications of our studies
in finding potential causes of Colony Collapse Disorder. We also provide potential projects for future work.
The detailed mathematical proofs of our theoretical results are provided in the last section.
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2. Biological background and model derivations

Honeybee colony: During the spring and summer, a honeybee colony typically consists of a single
reproductive queen, 20,000 – 60,000 adult worker bees, 10,000 – 30,000 individuals at the brood stage (egg,
larvae and pupae) and up to hundreds of male drones. During the winter, the colony typically reduces in size
and consists of a single queen and somewhere between 8,000 – 15,000 worker bees [41]. A large population
of workers carry out the tasks of the bee colony, which include foraging, pollination, honey production and,
in particular, caring for the brood and rearing the next generation of bees. The queen is the only fertile
individual of the colony and has an average life span of 2 – 3 years [66]. During the peak season (in the
summer), the queen lays up to 2000 eggs per day, where fertilized eggs produce female worker bees, or much
more rarely queens, while drones develop from non-fertilized eggs [8]. The bees go through the following
stages in development: egg (about 3 days), larvae (about 7 days), pupae (about 14 days), and adult. The
life span of an adult worker bee also depends on the season. Workers usually have a lifespan of 3 – 6 weeks
during the spring and summer, and are reported to live as long as 4 months during the winter [47]. The
adult drone life span is typically 20 – 40 days, with reports of drone living up to 59 days under optimal
colony conditions [47, 27].

LetNh(t) be the total number of honeybees in the colony, including the larvae, pupae and adult bees (both
hives and foragers) at time t. The subscript h means honeybee for all future notations. Define ξh ∈ [0, 1] as
the proportion of adult honeybee population in the colony, then (1−ξh)Nh is the brood population and ξh

1−ξh
is the ratio of adult honeybees to brood in colony. Empirical study shows that the successful honeybee colony
should have ξh

1−ξh
> 2 (see [59]). We should expect that the value of ξh varies with time. In our current

model, instead of employing the explicit age structure model, we let ξh be a parameter. Though brood
and adult numbers change throughout the year, the ratio ξh remains at the steady state of the explicit age
structure model which serves as a limiting factor in proportion of eggs that are reared into larvae and emerge
as adults. Under this simplification, we are able to obtain analytical results on how ξh affects dynamics of
the model with essential biological components. In the absence of mites and virus, the population dynamics
of honeybees Nh(t) is described by the following nonlinear equation:

N ′
h =

r(ξhNh)
2

K + (ξhNh)2
− dhNh (1)

where ′ is the sign of the derivative with respect to time; the parameter r is specified as the average number
of eggs laid by the queen per day; the parameter

√
K is the size of the bee colony at which the egg laying

rate is half of r; and dh is the average death rate of the workers. The term (ξhNh)
2

K+(ξhNh)2
describes that the

successful survival of an egg which will develop into a worker bee needs the care of adult workers (ξhNh)
inside the colony and also needs food brought in by foragers. This term also implicitly assumes that more
adult workers inside the colony can increase the survival of an egg and the development into an adult that
is supported by empirical evidence reported in [59]. Our modeling approach is similar to Eberl et al [18]
for honeybee diseases and Kang et al [30] for the population dynamics of leaf-cutter ants. This assumption
includes the internal organization of the colony, division of labor. Model (1) implies that the colony is able

to survive when ξh is above a threshold, i.e., ξh > 2dh

√
K

r . More detailed analysis and related results are
provided in the next section.

Varroa mites: Varroa mites were first reported in Kentucky in the Bluegrass region of the Common-
wealth in 1991 in U.S. They have since spread to become a major pest of honeybees in many states of U.S. [7].
Varroa mites are external honeybee parasites that attack both adult honeybees and brood, with a distinct
preference for drone brood [48]. They suck the blood from both adult workers and the developing brood,
weakening them and shortening the life span of the bees which they feed on. Emerging brood may be born
with deformed wings. Untreated infestations of Varroa mites can cause honeybee colonies to collapse [39].
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The mites go through a series of stages: larva, protonymph, deutonymph and then adult. Adult mites
(all female) undergo two phases in their life cycle, the phoretic and reproductive phases. During the phoretic
phase, Varroa feed on adult bees and are passed from bee to bee as they pass one another in the colony.
During the phoretic phase, the mites live on adult bees and can usually be found between the abdominal
segments of the bees. The mites puncture the soft tissue between the segments and feed on bee hemolymph,
harming the host [54, 9]. Mite reproduction can occur only if brood is available. A mature female mite
enters the brood cell about one day before capping and will be sealed in with the larva. After the capping
of the cell, it lays a single male egg and several female eggs at 30-hour intervals [70], and the mite feeds
and develops on the maturing bee larva. When the host bee leaves the cell, the mature female mites leave
the cell. The male mite dies after mating with his sisters, and if immature female mites are present they
die as they come out of the cell, as they cannot survive once outside the cell. The adult female mite begins
searching for other bees or larvae to parasitize.

The phoretic period of the mite appears to contribute to the mite’s reproductive ability, which may last
4.5 to 11 days when brood is present in the hive; or as long as five to six months during the winter when
little or no brood is present in the hive. Consequently, mites living when brood is present in the colony
have an average life expectancy of 27 days, yet in the absence of brood, they may live for many months.
In the average temperate climate, mite populations can increase 12-fold in colonies which have brood half
of the year and 800-fold in colonies which have brood year-round. This period usually begins in late winter
when brood rearing resumes from a winter period when little or no brood is present. The period of mite
population increase continues through the spring and summer and peaks in the fall when brood rearing is
nearly done. This makes the mites very difficult to control, especially in warmer climates where colonies
maintain brood year-round [21].

Let Nm(t) be the number of adult mites in the honeybee colony in the absence of a virus where the
subscript m means mite for all future notations. Varroa mites feed on the haemolymph of brood and adult
honeybees, and their reproduction depends on the availability of the brood and the population of the re-
productive mites. Similarly to the case of honeybees, we incorporate an implicit age structure model of
Varroa mites by defining a parameter ξm ∈ [0, 1] as the proportion of mites at the phoretic stage. This
implies that the reproductive mite population has size of (1 − ξm)Nm and the phoretic mite population is
of size ξmNm. This simplification still allows us to investigate the parasitic interactions between mites and
honeybees rigorously with essential biological components.

We model the parasitic interactions between mites and honeybees by using the Holling Type I functional
responses, i.e. α̂(1− ξh)Nh(1− ξm)Nm = αNhNm where α̂ is the parasitism rate; the term (1− ξh)Nh is the
brood population; the term (1− ξm)Nm is the reproductive mites population; and let α = α̂(1− ξh)(1− ξm).
Therefore, in the presence of mites Nm, the dynamics of the honeybee population Nh can be described as:

N ′
h = r(ξhNh)

2

K+(ξhNh)2
− dhNh − αNhNm = r(ξhNh)

2

K+(ξhNh)2
− (dh + αNm)Nh

which implies that the parasitism decreases the life span of the honeybee, i.e., the average life span has been
reduced to 1

dh+αNm

after parasitism. Here we do not assume that parasitism would lead to certain death
of the honeybees. The Varroa mite population depends on the nutrient obtained from honeybees, thus, the
dynamics of mites population can be described as:

N ′
m = cαNhNm − dmNm

where the parameter α measures the parasitic rate of Varroa mites; c is the conversion rate from nutrient
consumption obtained from honeybees to sustenance for Varroa mites reproduction; and dm is the natural
death rate of Varroa mites. Therefore, in the absence of virus, the population dynamics of mites and
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honeybees can be described by the following two nonlinear equations:

N ′
h = r(ξhNh)

2

K+(ξhNh)2
− dhNh − αNhNm

N ′
m = cαNhNm − dmNm

. (2)

The modeling approach of Model (2) has applied the traditional host-parasite modeling framework includ-
ing non-lethal parasites [1, 2]. Model (2) also implies that Varroa mites population Nm goes extinct if the
population of honeybees Nh goes extinct.

Varroa mites act as a virus-vector for virus transmissions: Varroa mites reproduce in cells with
developing worker or drone larvae. Just before a brood cell is sealed, a female mite (i.e., foundress) will
invade and parasitize the larvae thus beginning the reproductive phase (for details see Rosenkranz et al.

[54]). The offspring (i.e., daughter mites) will mate in the cells. When the adult bee emerges, the foundress
mother mite and her daughters will leave the cell. The mites will attach to adult bees (phoretic phase) until
they find a new cell where they can invade and reproduce. The mites can feed on the adult bee during the
phoretic phase. To model the virus transmissions between mites and honeybees during these two phases, we
let Sh(t), Sm(t) be the susceptible population of honeybees and mites, respectively; and Ih(t), Im(t) be the
virus infected population of honeybees and mites, respectively. Then the total population of honeybees is
Nh(t) = Sh(t) + Ih(t), and the total population of mites is Nm(t) = Sm(t) + Im(t).

The virus transmissions between female mites and honeybees can occur in the following two phases of
the mite life cycle:

1. The honeybee colony has ξhSh susceptible adult honeybees; ξhIh virus infected adult honeybees, ξmSm

susceptible phoretic mites; and ξmIm virus infected phoretic mites. In the phoretic phase, mites move
between adult bees both spontaneously and just prior to the death of bee [66]. Following the approach
of [41], we assume that virus transmissions are frequency dependent, i.e.,

• We model the rate at which the susceptible adult honeybees are virus infected by infected phoretic
mites (IPFM) based on the approach of [41, 66, 18, 52]. This rate can be described as follows:

βmh
︸︷︷︸

probability being infected after contacts

× ξmIm
︸ ︷︷ ︸

population of infected IPFM

× ξhSh

ξhSh + ξhIh
︸ ︷︷ ︸

probability contacts susceptible adult honeybees

= βmhξmShIm
Sh+Ih

.

which also implies that susceptible honey bees become virus infected at a rate proportional to the
ratio of the infected phoretic mite population to the total honeybee population.

• The rate at which susceptible phoretic mites (SPFM) are virus infected by virus infected adult
honeybees (IAH) is:

βhm
︸︷︷︸

probability being infected after contacts

× ξmSm
︸ ︷︷ ︸

population of SPFM

× ξhIh
ξhSh + ξhIh
︸ ︷︷ ︸

probability being contacted by IAH

= βhmξmSmIh
Sh+Ih

.

2. The honeybee colony has (1 − ξh)Sh susceptible brood; (1 − ξh)Ih virus infected brood, (1 − ξm)Sm

susceptible reproductive mites; and (1 − ξm)Im virus infected reproductive mites. We do not assume
that brood will die from parasitism, thus, parasitised brood or daughter mites will face virus infection
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if either brood or the mother mite is virus infected. Chen et al. found a direct relationship between
virus frequency and the number of mites to which brood were exposed, i.e., the more donor mites that
were introduced per cell, the greater the incidence of virus that was detected in brood [11, 12]. This
implies that the virus transmission rate between mites and brood during the reproductive phase of
mites is density dependent, i.e., similar to the term that describes the parasitic interaction between
mites and honeybee. Therefore, we have follows:

• A developing bee becomes virus-infected if it is parasitized by an infected foundress mite. Thus,
the rate at which the susceptible brood is infected by virus infected reproductive mites (IRFM),
i.e., infected foundress mites, is:

βmh2
︸ ︷︷ ︸

probability being infected after contacts

× (1− ξh)Sh
︸ ︷︷ ︸

population of healthy honeybee brood

× α̂(1− ξm)Im
︸ ︷︷ ︸

parasitism by IRFM

= βmh2αShIm.

• The reproduction of mites depends on brood. Daughter mites can become virus infected if either
brood or their mother is virus infected. Thus, based on the formulation of the host-parasite
interaction model (2), the rate at which daughter mites (INFM) become virus infected depends
on the parasitic interaction between mites and honeybees described as cα [Ih(Sm + Im) + ShIm]
where the term Ih(Sm + Im) is the daughter mites infected with virus infected brood; and the
term ShIm is the daughter mites infected with virus via their mothers.

The virus transmission among honeybees: The proportion of honeybees which can infect themselves
is also dependent on the total number of susceptible and virus infected bees present in the colony, and hence
frequency-dependent transmission is used [41], which is described as follows:

βh
︸︷︷︸

probability being infected after contacts

× Sh
︸︷︷︸

the healthy honeybee population

× Ih
Sh + Ih
︸ ︷︷ ︸

probability of contacting or being contacted by infected honeybees

= βhShIh
Sh+Ih

.

The reduced fitness of honeybees due to virus infections: The virus infections contribute to
morphological deformities of honeybees such as small body size, shortened abdomen and deformed wings,
which reduce vigor and longevity, and they can also influence flight duration and the homing ability of
foragers [35]. To include the effects of virus infections in our model, we assume that the virus infected adult
honeybee population ξhIh affects brood rearing rates and colony population growth with a reduced fitness
measured by ρ ∈ (0, 1). The healthy honeybee population Sh (i.e., un-infected honeybees) can be modeled
as follows,

S′

h =
rξ2h (Sh + ρIh)

2

K + ξ2h (Sh + ρIh)
2

︸ ︷︷ ︸

reproduction of honeybees

−
βhShIh

Sh + Ih
︸ ︷︷ ︸

honeybee infected by nestmates

− αSh(Sm + Im)
︸ ︷︷ ︸

parasitism by mites

−
βmh(ξmSh)Im

Sh + Ih
︸ ︷︷ ︸

adult honeybees infected by the phoretic mites

− βmh2αShIm
︸ ︷︷ ︸

brood infected by the reproductive mites

−dhSh

. (3)

And the virus infected honeybee population can be modeled by the following equation,

7
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I ′h = Sh

[
βhIh

Sh+Ih
+ βmhξmIm

Sh+Ih
+ βmh2αIm

]

− αIh(Sm + Im)
︸ ︷︷ ︸

Consumed by mites

−( dh
︸︷︷︸

natural honeybee mortality rate

+ µh
︸︷︷︸

additional death due to virus infections

)Ih

. (4)

Let µm be the additional death rate of mites due to virus infections. In the case that virus infections do
not cause additional mortality of mites, the value of µm is zero. The population of healthy mites Sm and
the virus infected mites Im can be described by the following set of nonlinear equations:

S′

m = Sm







cαSh −

βhmξmIh

Sh + Ih
︸ ︷︷ ︸

the phoretic mites infected by adult honeybees

− dm
︸︷︷︸

natural mortality rate of mites








I ′m = cα [Ih(Sm + Im) + ShIm]
︸ ︷︷ ︸

mites born with virus infections

+βhmIh(ξmSm)
Sh+Ih

− (dm + µm
︸︷︷︸

additional death due to virus infections

)Im

. (5)

Based on the above, the full model of honeybee-mites-virus population dynamics is modeled by the following
system of differential equations:

S′

h =
rξ2h(Sh+ρIh)2

K+ξ2
h
(Sh+ρIh)2

− dhSh −
βhShIh
Sh+Ih

−
βmh(ξmSh)Im

Sh+Ih

−βmh2αIm − αSh(Sm + Im)

I ′h = Sh

[
βhIh
Sh+Ih

+ βmhξmIm
Sh+Ih

+ βmh2αIm

]

− αIh(Sm + Im)− (dh + µh)Ih

S′

m = Sm

[

cαSh −
βhmξmIh
Sh+Ih

− dm

]

I ′m = cα [Ih(Sm + Im) + ShIm] + βhmIh(ξmSm)
Sh+Ih

− (dm + µm)Im

. (6)

For convenience, let K̂ = K
ξ2
h

, β̂mh = βmhξm, β̃mh = βmh2α, β̂hm = βhmξm. Then the full model (6) can

be rewritten as the following model

S′
h = r(Sh+ρIh)

2

K̂+(Sh+ρIh)
2 − dhSh − βhShIh

Sh+Ih
− β̂mhShIm

Sh+Ih
− β̃mhShIm − αSh(Sm + Im)

I ′h = Sh

[
βhIh
Sh+Ih

+ β̂mhIm
Sh+Ih

+ β̃mhIm

]

− αIh(Sm + Im)− (dh + µh)Ih

S′
m = Sm

[

cαSh − β̂hmIh
Sh+Ih

− dm

]

I ′m = cα [Ih(Sm + Im) + ShIm] + β̂hmIhSm

Sh+Ih
− (dm + µm)Im

(7)

where α > 0, c > 0, ρ ∈ [0, 1] and the virus transmission rates βh, β̂mh, β̂hm, β̃mh ∈ (0, 1). In summary, the
full honeybee-mite-virus model (7) incorporates (1) Allee effects of honeybees due to the cooperation of the
internal organization; (2) parasitism interactions between honeybee and mites; (3) the vertical virus trans-
mission mode modeled by the frequency-dependent virus transmission function during the mites’ phoretic
phase; (4) the horizontal virus transmission mode modeled by the density-dependent virus transmission func-
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tion during the mites’ reproductive phase; and (5) the reduced fitness of honeybees due to virus infections.
Model (7) allows us to investigate the following scenarios:

1. Population growth of colonies in the absence of mites and virus.

2. In the absence of the virus, how the Varroa mites may affect the population dynamics of colonies.

3. In the absence of the mites, how virus infections may affect the population dynamics of colonies. This
case can apply to situations where honeybees are infected by virus through ecological processes such
as foraging.

4. In the presence of both the mites and virus infections, which conditions can lead to the extinction of
mites, virus infections, and colony population; and which conditions can guarantee colony survival.

The remainder of this manuscript will focus on the dynamics of Model (7) and the related subsystems.

3. Mathematical analysis

Let ShIh
Sh+Ih

∣
∣
Sh=Ih=0

= 0 and Im
Sm+Im

∣
∣
Sm=Im=0

= 0. Define X = {(Sh, Ih, Sm, Im) ∈ R
4
+ : Sh + Ih >

0 and Sm + Im > 0}, then X can be considered as the state space of our model (7). To continue the
analysis, let us define Nh = Sh + Ih, Nm = Sm + Im and N = cNh + Nm as the population of honeybees,
the population of mites, and the sum of the population of honeybees and mites, respectively. In addition,
we let d = min{dh, dm}, and define N∗ as the upper bound of the sum of the population of honeybees and
mites and N c as the corresponding threshold, where

N c = c
r
d
−
√

( r
d)

2
−4K̂

2 , N∗ = c
r
d
+
√

( r
d )

2
−4K̂

2
.

We let N̄∗
h , N

∗
h be the upper bound, lower bound of the population of honeybees, respectively, and N̄ c

h, N
c
h

be the corresponding thresholds, where

N̄ c
h =

r
dh

−

√

(

r
dh

)2
−4K̂

2 , N̄∗
h =

r
dh

+

√

(

r
dh

)2
−4K̂

2

Nc
h =

r
dh+µh+αN∗−

√

(

r
dh+µh+αN∗

)2
−4K̂/ρ2

2 , N∗
h =

r
dh+µh+αN∗+

√

(

r
dh+µh+αN∗

)2
−4K̂/ρ2

2

.

And we let S∗
h be the lower bound of the population of susceptible honeybees, and Sc

h be the corresponding
threshold, where

Sc
h =

r

dh+βh+
β̂mhN∗

N∗

h

+(β̃mh+α)(N∗
−cN∗

h
)

−

√

√

√

√

√

√







r

dh+βh+
β̂mhN∗

N∗

h

+(β̃mh+α)(N∗
−cN∗

h
)







2

−4K̂

2 ,

S∗
h =

r

dh+βh+
β̂mhN∗

N∗

h

+(β̃mh+α)(N∗
−cN∗

h
)

+

√

√

√

√

√

√







r

dh+βh+
β̂mhN∗

N∗

h

+(β̃mh+α)(N∗
−cN∗

h
)







2

−4K̂

2

.

Define f b(x, y) =
r
x
+
√

( r
x)

2
−4K̂/y

2 and fb(x, y) =
r
x
−
√

( r
x )

2
−4K̂/y

2 , then we have

∂f b(x, y)

∂x
< 0,

∂f b(x, y)

∂y
< 0,

∂fb(x, y)

∂x
> 0,

∂fb(x, y)

∂y
> 0

9
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which imply the following inequalities

Sc
h < Sc

h < S∗
h < N̄∗

h , N c ≤ N̄ c
h < Nc

h < N∗
h < N̄∗

h ≤ N∗/c.

Theorem 3.1 (Basic dynamical properties). Assume that all parameters are strictly positive and ρ ∈
[0, 1]. The model (7) is positively invariant and bounded in the state space X, which is attracted to the

following compact set

C = {(Sh, Ih, Sm, Im) ∈ R
4
+ : 0 ≤ c(Sh + Ih) + (Sm + Im) = cNh +Nm ≤ N∗}

provided that r
d > 2

√

K̂ and time is large enough. Moreover, the following statements hold for Model (7):

• If r

2
√

K̂
> dh, then the total population of honeybees Nh is bounded by N̄∗

h , i.e.,

lim sup
t→∞

Nh(t) ≤ N̄∗
h .

If r

2
√

K̂
> dh+µh+αN∗

ρ and Nh(0) > N c
h hold, then the total population of honeybees Nh is persistent,

i.e.,

N∗
h ≤ lim inf

t→∞
Nh(t) ≤ lim sup

t→∞
Nh(t) ≤ N̄∗

h ≤ lim sup
t→∞

N(t)/c = N∗/c.

• If the inequalities r

2
√

K̂
> max

{

dh+βh+
β̂mhN

∗

N∗

h

+(β̃mh+α)(N∗− cN∗
h),

dh+µh+αN∗

ρ

}

with Nh(0) ≥
Sh(0) > Sc

h hold, then Sh is persistent with the following properties:

S∗
h ≤ lim inf

t→∞
Sh(t) ≤ lim inf

t→∞
Nh(t) ≤ lim inf

t→∞
N(t)/c ≤ lim sup

t→∞
N(t)/c ≤ N∗/c.

• The extinction equilibrium E0 = (0, 0, 0, 0) is always local stable. Moreover, the system (7) converges

to E0 globally if dh > r

2
√

K̂
holds; and it converges to E0 locally if the initial population satisfies either

N(0) < N c or Nh(0) < N̄ c
h.

Notes: The positive invariance and boundedness results from Theorem 3.1 imply that our model is well-
defined biologically. In addition, the results of Theorem 3.1 indicate follows:

1. Initial conditions are important determinants of colony survival.

2. The inequality r

2
√

K̂
> dh is a necessary condition for colony survival, i.e., the large intrinsic growth

rate r, the small half saturation K̂, and the small death rate of honeybees dh.

3. Low rates of virus transmission and parasitism βh, β̂mh, β̃mh, α are also important for the persistence
of the healthy honeybee population (i.e., uninfected) Sh.

Recall that d = min{dh, dm}, N c = c
r
d
−
√

( r
d )

2
−4K̂

2 , N∗ = c
r
d
+
√

( r
d )

2
−4K̂

2 and

N∗
h =

r
dh+µh+αN∗

+

√
(

r
dh+µh+αN∗

)2

− 4K̂/ρ2

2
.

10
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Theorem 3.1 implies that under proper initial conditions, colonies will survive if r

2
√

K̂
> dh+µh+αN∗

ρ and Nh(0) >

N c
h holds. Notice that ξh is the ratio of adult honeybees in the colony, and one of sufficient conditions that

guarantee colony survival is the following inequality:

r

2
√

K̂
=

rξh

2
√
K

>
dh + µh + αN∗

ρ
⇔ rξh

2
√
K

−
α
√(

r
d

)2 − 4K
ξ2
h

2ρ
>

dh + µh + α r
2d

ρ
.

Thus, Theorem 3.1 provides a critical function of the hives population ξh such that colony will survive. In

addition, notice that rξh
2
√
K

−
α

√

( r
d )

2
−4 K

ξ2
h

2ρ is an increasing function of ξh, this implies that the larger adult

workers to brood ratio ξh, the better colony growth and survival. This is supported by empirical evidence
reported in [59]. In the following theorem, we provide theoretical results on the sufficient conditions that
lead to the persistence and the extinction of virus population or the mites population.

Theorem 3.2 (Persistence and extinction of virus or mites). The following statements hold

• If N∗ < dm

α , then the total population of mite Nm goes extinct, i.e.,

lim sup
t→∞

Nm(t) = 0

where system (7) is attracted to the mite-free invariant set MF = {(Sh, Ih, Sm, Im) ∈ R
4
+ : Sm + Im =

0}, and its dynamics is equivalent to the following two-D model (8)

S′
h = r(Sh+ρIh)

2

K̂+(Sh+ρIh)2
− dhSh − Sh

βhIh
Sh+Ih

I ′h = Sh
βhIh
Sh+Ih

− (dh + µh)Ih

. (8)

• If r

2
√

K̂
> dh, N̄

∗
h < dm

αc , and Sh(0) > Sc
h, then the total population of honeybees persists while the

healthy mite population Sm goes extinct, i.e.,

lim sup
t→∞

Sm(t) = 0

where the system (7) is attracted to the healthy-mite-free invariant set HMF = {(Sh, Ih, Sm, Im) ∈
R

4
+ : Sm = 0} and its dynamics is equivalent to the following three-D system (9):

S′
h = r(Sh+ρIh)

2

K̂+(Sh+ρIh)
2 − dhSh − βhShIh

Sh+Ih
− β̂mhShIm

Sh+Ih
− β̃mhShIm − αShIm

I ′h = Sh

[
βhIh
Sh+Ih

+ β̂mhIm
Sh+Ih

+ β̃mhIm

]

− αIhIm − (dh + µh)Ih

I ′m = cαIm

[

Ih + Sh − dm+µm

cα

]

.

(9)

• Assume that r

2
√

K̂
> dh + βh + β̂mhN

∗

N∗

h

+ (β̃mh + α)(N∗ − N∗
h) and Sh(0) > Sc

h. Then the virus

I = cIh + Im persists if the inequality
min

{

βh,cβ̂mh+cβ̃mh+cαS∗

h

}

max

{

(dh+µh),(dm+µm)

} ≥ 1 holds.

• Assume that r

2
√

K̂
> dh+µh+αN∗

ρ and Nh(0) > Nc
h. Then the virus I = cIh + Im goes extinct if the

11
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following inequality holds
max

{

βh+
β̂hmN∗

N∗

h
,cβ̂mh+cβ̃mh+cαN̄∗

h

}

min

{

(dh+µh),(dm+µm)

} < 1. Under this condition, the system (7)

is attracted to the virus-free invariant set DF = {(Sh, Ih, Sm, Im) ∈ R
4
+ : Ih+Im = 0} and its dynamics

is equivalent to the following two-D model (10)

S′
h =

rS2
h

K̂+S2
h

− dhSh − αShSm

S′
m = cαShSm − dmSm

. (10)

Notes: The results of the reduced dynamics in Theorem 3.2 can be easily obtained by the theory of asymp-
totically autonomous systems [10]. The detailed proof of our results are provided in the last section.

According to Theorem 3.2, the condition N∗ = c
r
dh

+

√

(

r
dh

)2
−4K̂

2 < dm

α can lead to the extinction of the
entire mite population. Therefore, we can conclude that large values for the death rate of mites, dm, can
lead to the extinction of the colony; and large values of the death rate of mites dm, low rates of parasitism
α, and its energy conversion rate c, can lead to either the extinction of the entire mite population Nm or the
extinction of the healthy mite population Sm. Here we would like to point out that it is possible to have the
persistence of virus infected mites while the healthy mite goes extinct (see the resulting dynamics (9) when
the healthy mite goes extinct). In addition, the results of Theorem 3.2 also suggest that: 1. the persistence
of the virus requires a large value for the virus transmission rate between adult honeybees, βh, or the virus
transmission rate between brood and the reproductive mites, β̃mh; or the small values of the total death
rates of honeybees, dh + µh, and mites, dm + µm; 2. the extinction of the virus requires the small values of
all virus transmission rates, i.e., the small values of βh, β̂mh, β̃mh, β̂hm; or the large values of the total death
rates of honeybees and mites.

Theorem 3.2 provides sufficient conditions that the full system (7) reduces to the virus-free subsystem (10),
the mite-free subsystem (8), and the healthy-mite-free subsystem (9). In the following three subsections, we
explore the global dynamics of these subsystems.

3.1. Dynamics of the virus-free subsystem: only parasitism by mites

Theorem 3.2 in previous section suggests that either low virus transmission rates or large values of the
total death rates of honeybees and mites can lead to the extinction of the virus infected honeybees and mites,
which gives the following virus-free dynamics (10):

S′
h =

rS2
h

K̂+S2
h

− dhSh − αShSm

S′
m = cαShSm − dmSm

The dynamics of the virus-free system (10) (i.e., the dynamics of the parasitism interactions between hon-
eybees and mites) can be summarized by the following theorem:

Theorem 3.3 (Dynamics of the virus-free subsystem). Let H∗ = dm

αc , M∗ = 1
α

[
rH∗

K̂+(H∗)2
− dh

]

.

The virus-free subsystem (10) can have one, three, or four equilibria. The existence and stability condi-

tions for these equilibria are listed in Table 1. The global dynamics of the virus-free subsystem (10) can be

summarized as follows:

1. The system (10) converges to extinction (0, 0) for almost all initial conditions if r

2
√

K̂
< dh or dm

αc < N̄ c
h.

12
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Equilibria Existence Condition Stability Condition
(0, 0) Always exists Always locally stable

(N̄ c
h, 0)

r

2
√

K̂
> dh Saddle if N̄ c

h < dm

αc = H∗; Source if N̄ c
h > dm

αc = H∗

(N̄∗
h , 0)

r

2
√

K̂
> dh Sink if N̄∗

h < dm

αc = H∗; Saddle if N̄∗
h > dm

αc = H∗

(H∗,M∗) N̄ c
h < dm

αc = H∗ < N̄∗
h Sink if H∗ >

√

K̂; Source if H∗ <
√

K̂.

Table 1: The existence and stability of equilibrium for the virus-free subsystem (10), where N̄c
h

=

r
dh

−

√

(

r
dh

)2
−4K̂

2
, N̄∗

h
=

r
dh

+

√

(

r
dh

)2
−4K̂

2
and H∗ = dm

αc
, M∗ = 1

α

[

rH∗

K̂+(H∗)2
− dh

]

.

2. If N̄∗
h < dm

αc , depending on initial condition, the trajectory of (10) converges to either (0, 0) or (N̄∗
h , 0).

3. If N̄ c
h < dm

αc < N̄∗
h then Model (10) has a unique interior equilibrium (H∗,M∗) which is locally asymp-

totically stable when dm

αc >
√

K̂ and is a source when dm

αc <
√

K̂.

Notes: Theorem 3.3 provides us a global picture on the dynamics of the virus-free subsystem (10), i.e., the
colony virus infected with only mites but not the virus. By applying the results in [67, 71], we can conclude

that the virus-free subsystem (10) undergoes a subcritical Hopf-bifurcation at dm

αc =
√

K̂. The subsystem

(10) has a unique unstable limit cycle around (H∗,M∗) whenever dm

αc <
√

K̂. In this case, the periodic
orbits expand until it touches the stable manifold of the boundary equilibrium (N̄ c

h, 0) which leads to the
extinction of both honeybees and the parasitic mites. We refer to this phenomena as a catastrophic event

which is similar to CCD. Our theoretical results also suggest that a small death rate for mites and a large
parasitism rate can destabilize the system.

Linking to CCD: To illustrate the catastrophic event, we use reasonable parameters from [66, 52]. Let
queen’s daily egg laying rate in summer be r = 1500; and the population size of the colony at which queen’s

daily egg laying rate is half of r be
√

K̂ = 2000; the natural death rate of honeybees is dh = 0.01; the
parasitism rate is α = 0.005; the energy conversion rate is c = 0.01; and the natural death rate of mites is

dm = 0.1. This set of parameter values gives dm

αc <
√

K̂ which implies that a catastrophic event will occur
(see Figure 1; the population of honeybees is in red and collapses around time=200 day).

Stochastic effects and oscillations: Theorem 3.3 implies that if the inequality dm

αc <
√

K̂ holds,
then the virus-free subsystem (10) has a unique unstable limit cycle around (H∗,M∗) where for all initial
conditions either the system converges to (0, 0) quickly or the system experiences the expanding oscillations
leading to eventual extinction. The oscillating extinction in the later type is driven by the deterministic
dynamics. The extinction fate of the system cannot be prevented by introducing stochastic effects, however,
introduced stochastic effects may cause extinction more quickly without expanding oscillations.

Note that K̂ = K
ξ2
h

and α = α̂(1 − ξh)(1 − ξm) where ξh, ξm are ratio of adult bees and ratio of phoretic

mites in the colony, respectively. The catastrophic event occurs when

dm
αc

<
√

K̂ ⇔ dm

α̂(1− ξm)c
√
K

<
(1− ξh)

ξh
⇔ ξh

(1− ξh)
<

α̂(1− ξm)c
√
K

dm
.

This inequality provides a critical low hive to brood ratio that can destabilize the system and cause colony
sudden extinction.
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Figure 1: Time series (in days) of Model (10) when r = 1500, α = 0.005, c = 0.01, dh = 0.01, dm = 0.1: population of
honeybees is in red while Varroa mites is in blue.

3.2. Dynamics of the mite-free subsystem: only virus infections

According to Theorem 3.2, if the honeybee population is too small, e.g., N∗ < dm

αc , then the dynamics of
(7) is equivalent to the following mite-free dynamics (8)

S′
h = r(Sh+ρIh)

2

K̂+(Sh+ρIh)2
− dhSh − Sh

βhIh
Sh+Ih

I ′h = Sh
βhIh
Sh+Ih

− (dh + µh)Ih

.

To continue studying the dynamics of the mite-free system (8) , we define a = 1
βh

dh+µh
−1

as the ratio of

the susceptible honeybee population to the virus infected honeybee population; RV
0 = βh

dh+µh
as the basic

reproduction number, i.e., the number of secondary cases which one case would produce in a completely

susceptible population; d̃ = (a+1)dh+µh = dh

(
R

V
0

RV
0 −1

)

+µh as the updated average death of the honeybee

due to virus infections. In addition, we let Sk
h = aIkh , k = 1, 2 and

I1h =
r

d̃
−

√

( r

d̃
)2−4 K̂

(a+ρ)2

2 , I2h =
r

d̃
+

√

( r

d̃
)2−4 K̂

(a+ρ)2

2 .

The dynamics of the mite-free system (8) can be summarized by the following theorem:

Theorem 3.4 (Dynamics of the mite-free subsystem). The mite-free subsystem (8) can have one, three,

or five equilibria. The existence and stability conditions for these equilibria are listed in Table 2. In addition,

the global dynamics of the mite-free subsystem (8) can be summarized as follows:

1. The trajectory of (8) converges to extinction (0, 0) for all initial conditions in R
2
+ if one of the following

conditions hold:

• r

2
√

K̂
< dh, or

14
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Equilibria Existence Condition for Existence Stability Condition
(0, 0) Always exists Always locally stable
(N̄ c

h, 0)
r

2
√

K̂
> dh Saddle if RV

0 < 1; Source if RV
0 > 1

(N̄∗
h , 0)

r

2
√

K̂
> dh Sink if RV

0 < 1; Saddle if RV
0 > 1

(S1
h, I

1
h) R

V
0 > 1 and r

2
√

K̂
> d̃

a+ρ Always a saddle.

(S2
h, I

2
h) R

V
0 > 1 and r

2
√

K̂
> d̃

a+ρ Always locally asymptotically stable

Table 2: The existence and stability of equilibrium for the mite-free subsystem (8). We have RV
0 = βh

dh+µh
, a = 1

RV
0 −1

, d̃ =

(a + 1)dh + µh = dh

(

R
V
0

RV
0 −1

)

+ µh, N̄c
h
=

r
dh

−

√

(

r
dh

)2
−4K̂

2
, N̄∗

h
=

r
dh

+

√

(

r
dh

)2
−4K̂

2
, and I1

h
=

r

d̃
−

√

(

r

d̃

)2
−4 K̂

(a+ρ)2

2
, I2

h
=

r

d̃
+

√

(

r

d̃

)2
−4 K̂

(a+ρ)2

2
, Sk

h
= aIk

h
, k = 1, 2.

• R
V
0 > 1 and dh < r

2
√

K̂
< d̃

a+ρ .

2. The trajectory of (8) converges to either (0, 0) or (N̄∗
h , 0) for almost all initial conditions in R

2
+ if the

inequalities R
V
0 < 1 and r

2
√

K̂
> dh.

3. The trajectory of (8) converges to either (0, 0) or (S2
h, I

2
h) for almost all initial conditions in R

2
+ if the

inequalities R
V
0 > 1, r

2
√

K̂
> max

{

dh,
d̃

a+ρ

}

hold.

Notes: Theorem 3.4 implies that the mite-free subsystem (8) has relatively simple dynamics, i.e., no limit
cycle. The results show the following interesting findings:

1. Honeybees can persist with proper initial conditions if the virus transmission rate among honeybees
βh is not large, i.e., RV

0 < 1.

2. Both honeybees and the virus can coexist if βh is in the medium range, i.e. RV
0 > 1 and d̃

a+ρ < r

2
√

K̂

3. However, the large virus transmission rate among honeybees βh can cause colony extinction. This

occurs when the inequalities RV
0 > 1 and dh < r

2
√

K̂
< d̃

a+ρ hold.

3.3. Dynamics of the healthy-mite-free subsystem

According to Theorem 3.2, if r

2
√

K̂
> dh, N̄

∗
h < dm

αc , and Sh(0) > Sc
h, then the total population of

honeybees persists while the healthy mite population Sm goes extinct, i.e.,

lim sup
t→∞

Sm(t) = 0

where the system (7) is attracted to the healthy-mite-free invariant set HMF = {(Sh, Ih, Sm, Im) ∈ R
4
+ :

Sm = 0} and its dynamics is equivalent to the following three-D system (9):

S′
h = r(Sh+ρIh)

2

K̂+(Sh+ρIh)
2 − dhSh − βhShIh

Sh+Ih
− β̂mhShIm

Sh+Ih
− β̃mhShIm − αShIm

I ′h = Sh

[
βhIh
Sh+Ih

+ β̂mhIm
Sh+Ih

+ β̃mhIm

]

− αIhIm − (dh + µh)Ih

I ′m = cαIm

[

Ih + Sh − dm+µm

cα

]

.
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Let

f1(Ih) =

r( dm+µm
cα

−Ih+ρIh)
2

K̂+(dm+µm
cα

−Ih+ρIh)
2 −dh

dm+µm
cα

−µhIh

α( dm+µm
cα

)

f2(Ih) =
( dm+µm

cα
−Ih)

[

βh
dm+µm

−(dh+µh)
]

Ih
[

α+
cαβ̂mh
dm+µm

+β̃mh

]

Ih−
dm+µm

cα

(

cαβ̂mh
dm+µm

+β̃mh

) .

The dynamics of the healthy-mite-free subsystem (9) can be summarized by the following theorem:

Theorem 3.5 (Dynamics of the healthy-mite-free subsystem). If r

2
√

K̂
> dh and N̄∗

h < dm+µm

cα , then the

population of virus infected mites goes extinct in the subsystem (9), i.e.,

lim sup
t→∞

Im(t) = 0

which reduces to the following mite-free model (8). In addition, the following statements hold

1. If (Sh, Ih, Im) is an interior equilibrium of the healthy-mite-free subsystem (9), then Ih is a positive

intercept of f1(Ih) and f2(Ih) subject to 0 < Ih < dm+µm

cα , Sh = dm+µm

cα − Ih and Im = f1(Ih).

2. The healthy-mite-free subsystem (9) has no interior equilibrium if the inequality rcα < dh(dm + µm)
holds.

3. Assume that r

2
√

K̂
> dh+µh+αN∗

ρ and Nh(0) > Nc
h. Then both virus infected honeybee population Ih

and virus infected mites Im persist if the inequalities N̄∗
h > dm+µm

cα and R
V
0 = βh

dh+µh
< 1 hold.

Notes: Theorem 3.5 implies that, under the condition of N̄∗
h < dm+µm

cα , the virus infected mite population
Im goes extinct in the healthy-mite-free subsystem (9) which reduces to the mite-free subsystem (8) that we
studied in the previous subsection. In addition, Theorem 3.5 shows that the subsystem (9) has no interior
equilibrium if the inequality rcα < dh(dm + µm) holds. Therefore, we could expect the extinction of Im
for small values of r, c, α and large values of dh, dm, µm. This has been confirmed by numerical simulations.
The population of honeybees and virus infected mites (9) experiences sudden collapse when we (1) increase
the values of c, α, K̂, and the related virus transmission rates, or (2) decrease the values of dh, ρ, r, µm. The
biological implications are that increasing or decreasing the values of these parameters destabilizes the system
and generates fluctuating dynamics. The destabilizing effects generate unstable oscillations. The amplitudes
of oscillations increase until they touch the stable manifold of the extinction equilibrium, which cause the
collapse of the colony. The destabilizing effects of c, α, K̂, dm can be explained through the dynamics of
the virus free subsystem (10) that we have studied in Theorem 3.3. In addition, our simulations provide
important insights on the complicated dynamic of (9), which suggest the following:

• Decreasing the values of c, α, K̂ can stabilize the system; small values of c, α can cause the extinction
of the virus infected mite population Im, and lead to the coexistence of Sh and Ih.

• Increasing the value of µh can stabilize the system but large values of µh can cause extinction of the
colony due to the initial oscillations.

• Decreasing µm can destabilize the system; while increasing it can stabilize the system; large values of
µm can lead to the extinction of Im and the persistence of Sh, Ih.

• Decreasing the value of ρ could destabilize the system, thus causing the extinction of the colony.

16



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

• Increasing the virus transmission rates (i.e., βh, β̂hm, β̃mh, β̂hm) can stabilize the system, while decreas-
ing their values can destablize the system and cause the extinction of all species.

Synergistic effects of parasitic mites and virus infections: If there are no mites in the system, ac-
cording to Theorem 3.4, the mite-free subsystem (8) reduces to the healthy honeybee population, i.e., virus

goes extinct whenever the initial population of honeybees is above N̄ c
h,

r

2
√

K̂
> dh+µh+αN∗

ρ , and the basic

reproduction number R
V
0 = βh

dh+µh
< 1 (see two figures in the first row of Figure 2 where virus infected

honeybees go extinct (the black curve in right) and the healthy honeybees persist (the red curve in red)).
However, when there are virus infected mites in the colony, both virus and mites can persist under proper
conditions (see Figure 3 where virus infected honeybees (the black curve), the healthy honeybees (the red
curve), and the virus infected mites persist (the cyan curve) with the healthy mites going extinct (the blue
curve). For example, the synergistic effects of parasitic mites and virus infections have been illustrated in
Figure 2-3 when r = 1500;K = 1000000; ρ = 0.9; dh = .15;µh = 0.1;α = 0.005; dm = 0.1;µm = 0.01; c =
0.005;βh = .24; β̂mh = 0.03; β̃mh = .005; β̂hm = 0.03. These are reasonable parameter values derived from
[66, 52].
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Figure 2: Population dynamics of the subsystems of the the honeybee-mite-virus model (7) when r = 1500;K = 1000000; ρ =

0.9; dh = .15;µh = 0.1;α = 0.005; dm = 0.1;µm = 0.01; c = 0.005; βh = .24; β̂mh = 0.03; β̃mh = .005; β̂hm = 0.03. The left
figure in the first row is the healthy honeybee population (the red curve) and the right figure in the first row is the virus
infected honeybee population (the black curve) in the mite-free subsystem (10) when Sh(0) = 4001, Ih(0) = 10. The left figure
in the second row is the healthy honeybee population (the red curve) and the right figure in the second row is the healthy mite
population (the blue curve) in the virus-free subsystem (8) whenSh(0) = 4001, Sm(0) = 5.
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Figure 3: Population dynamics of the honeybee-mite-virus model (7) when r = 1500;K = 1000000; ρ = 0.9; dh = .15;µh =

0.1;α = 0.005; dm = 0.1;µm = 0.01; c = 0.005; βh = .24; β̂mh = 0.03; β̃mh = .005; β̂hm = 0.03 and Sh(0) = 4001, Ih(0) =
10, Sm(0) = 5, Im(0) = 10. The healthy honeybee population Sh is in red; the virus infected honeybee population Ih is in black;
the healthy mite population Sm is in blue; and the virus infected mite population Im is in cyan.

3.4. Dynamics of the full system

Recall that the full system (7) of honeybee-mite-virus interactions can be described by the following set
of equations:

S′
h = r(Sh+ρIh)

2

K̂+(Sh+ρIh)
2 − dhSh − βhShIh

Sh+Ih
− β̂mhShIm

Sh+Ih
− β̃mhShIm − αSh(Sm + Im)

I ′h = Sh

[
βhIh
Sh+Ih

+ β̂mhIm
Sh+Ih

+ β̃mhIm

]

− αIh(Sm + Im)− (dh + µh)Ih

S′
m = Sm

[

cαSh − β̂hmIh
Sh+Ih

− dm

]

I ′m = cα [Ih(Sm + Im) + ShIm] + β̂hmIhSm

Sh+Ih
− (dm + µm)Im

.

The results from the previous section provide us a complete picture of the dynamics of the subsystems of
the full system (7). In this subsection, we explore the dynamics of the full system as the following theorem.

Theorem 3.6 (Colony survival). Assume that r

2
√

K̂
> dh. If N∗ < dm

α and R
V
0 = βh

dh+µh
< 1, the full

system (7) converges to the virus-mite-free set DMF = {(Sh, Ih, Sm, Im) ∈ R
4
+ : Sm + Ih + Im = 0} where

the system (7) is reduced to the following one-D system (11):

S′
h =

rS2
h

K̂+S2
h

− dhSh (11)

whose dynamics can be summarized as follows:

1. If the inequality r

2
√

K̂
< dh holds, then (11) converges to 0.
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2. If the inequalities r

2
√

K̂
> dh and Sh(0) > N̄ c

h hold, then (11) converges to N̄∗
h . If the initial condition

falls below N̄ c
h, i.e., Sh(0) < N̄ c

h, then (11) also converges to 0.

Moreover, the following statements hold

1. If the inequalities r

2
√

K̂
> max

{

dh+βh+
β̂mhN

∗

N∗

h

+(β̃mh+α)(N∗− cN∗
h),

dh+µh+αN∗

ρ

}

with Nh(0) ≥
Sh(0) > Sc

h hold, then Sh is persistent, i.e., lim inft→∞ Sh(t) ≥ S∗
h.

2. Assume that r

2
√

K̂
> dh + βh + β̂mhN

∗

N∗

h

+ (β̃mh + α)(N∗ − N∗
h) with Sh(0) > Sc

h and N̄∗
h < dm

αc hold.

Then the virus I = cIh + Im persists if the inequality
min

{

βh,cβ̂mh+cβ̃mh+cαN̄∗

h

}

max

{

(dh+µh),(dm+µm)

} ≥ 1 holds.

3. The full system (7) has no interior equilibrium if one of the following inequalities hold:

βh

dh+µh
> β̂hm

dm+β̂hm

, β̂mh

αµmβ̂hm

(dm+β̂hm)
+cαβ̂mh−β̃mhβ̂hm

> dm+µm

cα(dm+β̂hm+µm)
. Or

αµmβ̂hm

β̂hm+dm

> β̃mhβ̂hm − cα, 0 <
βh

dh+µh
−

β̂hm

dm+β̂hm

βh(dm+β̂hm)(dh+µh)
< dm. Or

βh

dh+µh
< β̂hm

dm+β̂hm

, 0 < β̂mh(dm+β̂hm)
αµmβ̂hm

(dm+β̂hm)
+cαβ̂mh−β̃mhβ̂hm

< dm

cα . Or

αµmβ̂hm

β̂hm+dm

< β̃mhβ̂hm − cα,
βh

dh+µh
−

β̂hm

dm+β̂hm

βh(dm+β̂hm)(dh+µh)
> (dm+µm)(dm+β̂hm)

dm+β̂hm+µm

.

4. Assume that r

2
√

K̂
> dh+µh+αN∗

ρ and Nh(0) > N c
h. Then the total mite population Nm = Sm + Im

persists if the inequalities N̄∗
h > dm+µm

cα and R
V
0 = βh

dh+µh
< 1 hold.

Notes: Theorem 3.6 along with Theorem 3.1 - 3.3, we can conclude that the extinction of virus occurs when
all values of all virus transmission rates, βh, β̂mh, β̃mh, β̂hm are small; with the consequence that the full

system (7) converges to either (0, 0, 0, 0) or (N̄∗
h , 0, 0, 0) when R

M
0 =

N̄∗

h

H∗
< 1 while (7) converges to either

(0, 0, 0, 0) or (H∗, 0,M∗, 0) when 1 < R
M
0 <

N̄∗

h

Sc
h

. The persistence of virus or mites indicates the colony

survival even though the population may be low under the influence of virus or mites. Theorem 3.6 provides
a summary on sufficient conditions when honeybees can persist in the full (7) alone, with mites, or with
virus. The item 4 of Theorem 3.6 is consistent with the results from Theorem 3.5 regarding the synergistic
effects of parasitic mites and virus infections: If there are no mites in the system, according to Theorem 3.4,
the mite-free subsystem (8) reduces to the only healthy honeybee population, however, in the presence of
mites, both virus and mites in the honeybee-mite-virus system (7) can persist under proper conditions (see
Figure 2-3 for more details).

The dynamics of the full system (7) can be extremely complicated. We are unable to obtain an explicit
form of the interior equilibrium and the related stability. We perform a series of numerical simulations to
explore how different parameters affect the population dynamics. The effects of r, c, α, dh, dm, µm, µh, ρ and
virus transmission rates are similar to our observations for the subsystem (9). More specifically, we have the
following observations:

1. Effects of r: Increasing r can stabilize the system, but increasing it too much can drive healthy mites
Sm to extinction while the population of virus infected mites Im increases. Decreasing the values of
r can destablize the system, and cause the extinction of mites. And very small values can cause the
colony to perish.
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2. Effects of c: Increasing can destabilize the system and cause extinction of all species. Decreasing its
value can stabilize the system but extremely small values can drive the extinction of mites.

3. Effects of α: Increasing can destabilize the system and cause extinction of all species while decreasing
can stabilize the system and increase the healthy honeybee population. Small values of α can drive the
mite population to extinction, and extremely small values can drive both mites and virus to extinction,
and only healthy honeybees are left.

4. Effects of dm: Increasing dm can stabilize the system, and drive Sm to extinction first. Increasing it
further can lead to the extinction of mites, and the system approaches the limiting mite-free system
(8). Decreasing can destabilize the system and drive the extinction of the virus. Extremely small
values can cause the colony extinction.

5. Effects of dh: Increasing can stabilize the system. Large values can drive virus extinctions, however,
extremely large values can lead to the extinction of the colony. Decreasing can destabilize the system
which may cause the extinction of the colony under certain conditions.

6. Effects of µm: Increasing can drive virus extinction. Extremely large values can lead to the extinction
of the colony. Decreasing can destabilize the system. Small values can drive the healthy mites extinct,
and extremely small values may cause the extinction of the colony.

7. Effects of µh: Increasing can cause the extinction of virus. Decreasing can stabilize the system, and
small values can drive healthy mites to extinction.

8. Effects of virus transmission rates: Increasing can destablize the system and cause the extinction of
healthy mites Sm, while extremely large values may drive all populations extinct. Decreasing can cause
the extinction of virus.

3.5. Mechanisms of collapse dynamics and synergistic effects

Let r = 1500;K = 1000000; ρ = 0.9; dh = .15;µh = 0.1;α = 0.005; dm = 0.1;µm = 0.01; c = 0.005;βh =
.24; β̂mh = 0.03; β̃mh = .005; β̂hm = 0.03 (Figure 2-3) and r = 1500; ρ = 0.9; K̂ = 1600001; dh = 0.15;µh =

0.1;α = 0.05; c = 0.005; dm = 0.1;µm = 0.01;βh = 0.3; β̂mh = 0.08; β̃mh = 0.001; β̂hm = 0.03 (Figure 4-5).
These are reasonable parameter values derived from [66, 52]. We use these two sets of parameters as illustra-
tions to explore the synergistic effects of parasite mites and virus infections as well as potential mechanisms
linking to CCD (see Figure 1 and Figure 4-5). These comparisons suggest the following:

1. Synergistic effects of parasitic mites and virus infections: Based on the two sets of parameters, we have
the following two typical scenarios:

(a) Under the parameter values of r = 1500;K = 1000000; ρ = 0.9; dh = .15;µh = 0.1;α =

0.005; dm = 0.1;µm = 0.01; c = 0.005;βh = .24; β̂mh = 0.03; β̃mh = .005; β̂hm = 0.03:

If there are no mites, the mite-free system (8) (i.e., the dynamics of the healthy (uninfected)
honeybee and the virus infected honeybee) converges to only the healthy honeybee with virus
infected honeybees becoming extinct (see the first row of Figure 2).

If there is no virus, the virus-free system (10) (i.e., the parasitism dynamics of the healthy hon-
eybee and the healthy mites) converges to a stable equilibrium where both the healthy honeybee
and the healthy mites can persist (see the second row of Figure 2).

However, if honeybees, mites, and virus are all present in the system (i.e., the full system (7)),
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then both virus infected honeybees (black curve) and virus infected mites (cyan curve) can persist
(see Figure 3).

This implies that the presence of mites can promote the persistence of virus.

(b) Under the parameter values of r = 1500; ρ = 0.9; K̂ = 1600001; dh = 0.15;µh = 0.1;α = 0.05; c =

0.005; dm = 0.1;µm = 0.01;βh = 0.3; β̂mh = 0.08; β̃mh = 0.001; β̂hm = 0.03:

If there are no mites, the mite-free system (8) (i.e., the dynamics of the uninfected honeybee
and the virus infected honeybee) converges to a stable equilibrium where both infected and unin-
fected bees can persist (see the first row of Figure 4).

If there is no virus, the virus-free system (10) (i.e., the parasitism dynamics of uninfected bees
and mites) converges to the extinction of both species through catastrophic event (see the second
row of Figure 2).

However, if honeybees, mites, and virus are all presented in the system (i.e., the full system
(7)), then both honeybees and mites go extinct (see Figure 3).

This implies that the presence of the unstable mite population can lead to the extinction of
honeybees.
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Figure 4: Population dynamics of the subsystems of the the honeybee-mite-virus model (7) when r = 1500; ρ = 0.9; K̂ =

1600001; dh = 0.15;µh = 0.1;α = 0.05; c = 0.005; dm = 0.1;µm = 0.01; βh = 0.3; β̂mh = 0.08; β̃mh = 0.001; β̂hm = 0.03. The
left figure in the first row is the healthy honeybee population (the red curve) and the right figure in the first row is the virus
infected honeybee population (the black curve) in the mite-free subsystem (10) when Sh(0) = 7684, Ih(0) = 1700. The left
figure in the second row is the healthy honeybee population (the red curve) and the right figure in the second row is the healthy
mite population (the blue curve) in the virus-free subsystem (8) when Sh(0) = 410, Sm(0) = 35.

2. Linking to CCD: In the absence of virus infections, the subsystem (10) goes through the catastrophic
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Figure 5: Population dynamics of the honeybee-mite-virus model (7) when r = 1500;K = 160001; ρ = 0.9; dh = .15;µh =

0.1;α = 0.05; dm = 0.1;µm = 0.01; c = 0.005; βh = .3; β̂mh = 0.08; β̃mh = .001; β̂hm = 0.03 and Sh(0) = 410, Ih(0) =
10, Sm(0) = 35, Im(0) = 10. The healthy honeybee population Sh is in red; the virus infected honeybee population Ih is in
black; the healthy mite population Sm is in blue; and the virus infected mite population Im is in cyan.

event which causes the extinction of honeybees (see the honeybee population in the red curve of Figure
1). This property has been inherited by the full system (7) as honeybee population goes extinct sud-
denly for most initial conditions (see the honeybee population in the red curve of the fist left figure in 5).

Our analysis and simulations suggest that it is important to include both mites and virus in studying
the population dynamics of honeybees as we proposed the full system (7) due to the synergistic effects of
parasitism induced by mites and the virus infections as well as the catastrophic event from the parasitism
interactions between mites and honeybees. In other words, if we only consider the honeybee versus virus
dynamics as described by the subsystem (8), or only consider the parasitism interactions between mites and
honeybees as described by the subsystem (10), we are not able to capture the full mechanics that can lead
to colony death or the biological implications on the persistence of virus in colonies. In addition, the full
system (7) has rich dynamics which can possess multiple attractors. Thus, depending on initial conditions,
the full system (7) can either experience extinction or have coexistence of both honeybees and mites. More
sophisticated mathematical analysis is needed in order to understand the detailed dynamics.

4. Discussion

The association of virus infection with Varroa mites infestation in honeybee colonies causes great concern
for researchers and beekeepers [12]. Many studies have suggested that Varroa mite infestations could be
a key explanatory factor for the widespread increase in annual honeybee colony mortality and has been
implicated as a contributing factor leading to CCD [43]. In this paper, we derive and study a honeybee-
virus-mite model by using the susceptible-infectious (SI) disease framework. Our proposed model uses
frequency-dependent transmission functions to model horizontal virus transmissions between the phoretic
mites and honeybees, a Holling Type I functional response to model parasitic interactions between mites
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and honeybees, a density-dependent transmission function to model the vertical virus transmission between
mites and honeybees during the mite reproductive phase and a frequency-dependent transmission function
to model the horizontal virus transmission among honeybees. Our analytical and numerical results of the
full system suggest:

1. Initial honeybee populations play an important role in its persistence since its dynamics exhibits strong
Allee effects in the absence of both parasites and virus (see Theorem 3.1). In addition, patterns of
population dynamics are sensitive to initial conditions as suggested by our numerical results, i.e., de-
pending on initial conditions, the full system can experience the catastrophic event where honeybees
collapse dramatically, or both mites and honeybees can coexist but may exhibit different dynamical
patterns.

2. In the absence of Varroa mites, the honeybee and virus system has only equilibrium dynamics (see
Theorem 3.4 and the first row of Figure 2-3). In the presence of Varroa mites, the synergistic effects
of parasitism and virus make virus and mites more persistent (see Theorem 3.5-Theorem 3.6), and
thus, difficult to control (see Theorem 3.2 and the related arguments). In addition, the synergistic ef-
fects could stabilize the system, but could also drive both honeybees and mites go extinct (see Figure 5).

3. In the absence of virus infections, the mite and honeybee system can be destabilized by the low adult
workers to brood ratio in the colony where the system has oscillating dynamics leading to a sudden
extinction of all species (see Theorem 3.3 and Figure 1). This dynamical property is called the catas-

trophic event which has been inherited by the full system when the virus infection is present (see Figure
5). This phenomenon could be linked to CCD which has been observed in honeybee colonies where
the low hive to brood ratio could be a contributing factor.

4. Our numerical simulations suggest that large values of virus transmission rates can drive the extinction
of healthy mites while extremely large values can lead to the extinction of all species.

Identify the contribution to the broader field: Our current work provides many useful insights
regarding the complicated synergistic effects that Varroa and associated virus infections have on honeybee
population dynamics. The model generates scenarios frequently seen in colonies and provides insights into
the limitations of certain Varroa control strategies in preventing colony death especially over winter or in
early spring. Our theoretical results imply that maintaining the adult workers to brood ratio above a critical
threshold during brood rearing periods (e.g, spring and summer) is pivotal for colony survival. These results
are similar to previous reports (e.g., [58]). Our work suggests that increasing the values of the queen egg
laying rate and the mortality rates of mites can stabilize the system. However, a unique feature to our
model is that increase colony population growth also potentially increase Varroa and virus populations. The
behavior of the full model generates dynamics commonly seen in the field where large colonies die over-
winter even when mite populations are reduced with miticide treatments in the fall [54]. In our model,
virus transmission can occur during both contacts with nestmates and parasitism events so viruses do not
go extinct in the absence of Varroa as in Ratti et al. [52]. The addition of vertical transmission of virus
between nestmates generates dynamics that differ from those in previous models where it can take several
years for colonies to die. Those models assume that reductions in Varroa populations result in simultaneous
reductions in virus levels. However, this is not realistic since the bees can harbor viruses and transmit
them among nestmates. Our model generates dynamics seen in the field where colonies collapse overwinter
due to high virus transmission rates and the persistence of virus even in the absence of Varroa [26]. These
findings suggest that colony losses are due to the combination of virus transmission between nestmates in
addition to parasitism and that late season Varroa treatments might not insure overwintering colony survival.
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An important insight obtained from our model is that colonies can survive for relatively long periods
of time if they are infected with either viruses or Varroa mites. However, the combination of Varroa mites
and viruses inevitably leads to colony collapse as shown in the full model. Parasites and pathogens that
ultimately kill their hosts must adapt strategies that enable them to disperse before the host dies. Mites
cannot move between colonies on their own, but they can disperse by attaching to foragers leaving the hive.
If the forager drifts to another colony, the mite and virus have successfully dispersed. Viruses transmitted
by Varroa mites (e.g., Deformed wing virus and Israeli acute paralysis virus) affect learning and memory and
might affect the return rate of infected foragers to their colonies [36, 28, 33]. Mite migration into colonies on
drifting foragers and from the robbing of collapsing colonies has been documented [56, 24, 23, 22]. The syn-
ergistic effects revealed in our honeybee-mite-virus system that ultimately lead to colony extinction provide
a mathematical explanation for dispersal strategies that might include mite migration when both viruses
and Varroa mites are present.

Compare the findings with other works: As we mentioned in our introduction, the work of Sumpter
and Martin [66] and Ratti et al. [52] are most relevant modeling papers for our study proposes. They have
done great work with interesting results. However, there are limitations on assumptions of their models.
Sumpter and Martin [66] assumed that the mites population is constant and the virus transmission occurs
only through Varroa mites. This assumption prevents us to study how mites population affect the virus
transmission and the honeybee population dynamics. The model of Ratti et al. [52] assumes that the virus
transmission does not transmit through honeybees themselves. This is not realistic. Because this assumption
implies that the extinction of Varroa mites can lead to the extinction of virus, which cannot reflect the fact
that honeybee colonies have viruses in the absence of mites. Our honeybee-mite-virus model has relaxed
these unrealistic assumptions used in the work of Sumpter and Martin [66] and Ratti et al. [52]. More
specifically, our proposed model includes the bee to bee virus transmission and both population dynamics
of virus and mites with implicit age structures. By including the bee to bee virus transmission, our model
allows us to explore the effects of virus and mites on honeybee population dynamics separately. This is one
improvement by comparing to the model of Ratti et al. [52]. This allows us to investigate the dynamics of
the mites-honeybee interactions (i.e., the virus-free dynamics (10)). Our study of the virus-free dynamics
(10) implies that the large values of the parasitism rate of mites and the nutrient conversion rate from
honeybee to mite and the small value of the mite natural mortality can destabilize the system to generate a
catastrophic event that is similar to CCD. Our model permits us to study the dynamics of the virus-honeybee
interactions (i.e., the mite-free dynamics (8)) which has only equilibrium dynamics. The comparison of the
virus-free dynamics (10) and the mite-free dynamics (8) suggests that the parasitism from mites should be
a key factor contributing CCD, not virus infections.

The second improvement of our model is that our model includes both population dynamics of virus and
mites with implicit age structure. This improvement allows us to explore the synergistic effects of Varroa
mites and the associated virus infections on the honeybee population dynamics. Our study suggests that
(a) the presence of mites is able to promote the persistence of virus; (b) the presence of the unstable mite
population can lead to the extinction of honeybees while in the absence of mites, honeybee and virus are
able to coexist; (c) the presence of both mites and virus can lead to complicated dynamics which can possess
multiple attractors, i.e., depending on initial conditions, the full system can either experience extinction or
have coexistence of both honeybees and mites; and (d) the low hive to brood ratio could be a contributing
factor of CCD. In addition, our model is able to provide sufficient conditions that can guarantee the persis-
tence of honeybee population and conditions that lead to the extinction of honeybees.

There are models where pathogens are introduced via the foragers and spread through the colony by
worker-worker interactions only [34, 8]. These models do not include sensitivity to Varroa mites. The behav-
iors of these models are similar to the case in our analysis examining population dynamics of the mite-free
system with virus only. The model by Betti et al. [8] simulates the interplay between the dynamics of the
spread of the pathogen and the changing demographics of the colony during the season. The model reveals a
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critical period just prior to the onset of winter where if a contagious pathogen is introduced, the colony will
collapse because the number of bees surviving the winter is not sufficient to support colony growth in the
spring. In our model, the mite free subsystem with only virus infections causes colony collapse when trans-
mission rates are high as they are during winter colony confinement. These models provide mathematical
explanations for the loss of colonies from pathogens alone over the winter due to adult bee to brood ratios
in the spring that are insufficient to generate colony growth.

Models simulating the effects on colony survival of Varroa alone generate predictions of a slow decline in
colony populations followed by a rapid collapse [15]. These predictions are similar to the catastrophic event
demonstrated in our model analysis with the virus-free system. The behaviors of the models are similar
to documented colony losses from Varroa where strong colonies die rapidly in the spring [54]. The initial
conditions of colony size, egg laying rates, and Varroa infestation levels strongly influence the length of time
required for colonies to collapse. If initial mite levels are low, it can take more than a year for colonies to
collapse. Models have been constructed to combine Varroa and viruses that can be spread throughout a
colony by Varroa feeding and reproductive behaviors [66, 52, 6]. In the model by Sumpter and Martin [66],
the Varroa population is constant. Other models simulate the growth of the Varroa population over time
either as a function of colony growth [15, 6] or with a simple logistic equation [52]. Mortality can occur from
the effects of parasitism or viral infection. These models reveal the interplay between life stages when death
can occur due to infection and colony survival, and capture a counterintuitive aspect of viral spread. Viruses
that are highly virulent require greater proportions of Varroa infected with the virus (because transmission
rates are reduced), or a longer time to reach epidemic levels that cause colony death [66, 52, 8]. An increase
in the transmission rate, simulated by bees being infected at an earlier age, also has a highly deleterious
effect on colony survival. Our model predicts colony death when virus transmission rates are high or colony
growth is limited by egg laying. In all models cited above, there is persistence in virus infection due to the
presence of Varroa.

The results of our model analyses indicate that Varroa control strategies need to keep mite levels and
virus transmission rates low, while maintaining adult to brood ratios that insure colony growth. This can
be achieved by reducing mite populations in the early spring when brood rearing resumes. Initial conditions
strongly influence late season mite population size and virus levels, so mite treatments in early spring can
reduce mite population numbers and growth rates. Keeping mite and virus levels low will prevent high levels
of parasitism and viral infections later in the year particularly before colonies overwinter. The bees that
emerge prior to the end of the yearly brood rearing period should be free of parasitism and pathogen stress.
The longevity of bee comprising the overwintering population ultimately determines brood rearing rates and
colony growth in the spring. The model suggests that the effectiveness of miticide treatments applied late in
the fall when Varroa populations peak might be limited because virus levels and transmission rates will be
high in the winter cluster. In the analysis of the full model, high virus transmission rates reduce the adult
to brood ratio in the spring when brood rearing resumes leading to colony extinction.

Limitation of the current model: In our current model, we assume that the ratios of brood and adult
are constants as a replacement for having the explicit dynamical age structure profile. This simplification
allows us to obtain rigorous results on how this ratio affect colony dynamics. This model is a good description
of the dynamics of the system at or near the steady-state of the age-structured system, but not far from
steady-state. This limitation implies that our current model may not be a good description of how colony
dynamics will progress if there is a sudden change in the colony demography, such as might occur during a
colony collapse event. In particular, the importance of a dynamics age profile of a colony to whether or not
it will collapse has been highlighted by the recent work by Perry et al. [50], in which the age of onset of
foraging is an important factor in determining colony survival. The work of Perry et al. [50] examined the
social dynamics underlying the dramatic colony failure with an aid of a honeybee population model. Their
model does not include population dynamics of Varroa mites or virus infections, but it does includes bee
foraging performance varying with age, and displays dynamics of colony population collapse that are similar
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to field reports of CCD. It is important to expand our current modeling framework to include the detailed
stage-structure model of honeybees with social dynamics, age of onset of foraging as the work by Perry et

al. [50].

Suggest options for further research: A common feature to all the models described above is that
equilibrium states between colony populations and pathogens are likely to be unstable in many situations.
Without beekeeper intervention, colonies infested with Varroa and infected with viruses die. If colonies
with Varroa and viruses are ultimately coursing toward extinction, the pathogens and parasites must adapt
dispersal strategies prior to complete colony collapse. The migration of mites among colonies is well docu-
mented and appears to be a significant factor in the growth of the Varroa populations particularly in the fall
[56, 24, 23, 22]. The inclusion of migration of mites with disease into and out of colonies is needed to provide
an added dimension of reality to models that simulate the growth of Varroa populations and the spread of
disease in colonies. Models that simulate mite population growth from reproduction alone might ultimately
overestimate the time required for colonies to collapse and be poor representation of present conditions par-
ticularly in commercial apiaries.

A fixed ratio of adult workers to brood proposed in our current model is a simplification since this ratio
varies with the availability of nutrients, the quality and availability of pollen. The mortality of honey bees
depends on different risk factors such as parasites, pathogen, viruses, pesticides, nutrition and environmental
changes [64]. Among these factors, honey bee nutrition is one of the main factors which impacts honey bee
health and influences the capabilities of honey bees to combat different stressors. Nutrients such as pro-
tein from pollen is essential in fighting parasites and viruses, and in maintaining the high adult worker to
brood ratio in honeybees. This is because honeybees solely depend on protein (containing essential amino
acids, vitamins and mineral) and energy, respectively [3]. Cage studies showed that honey bees could sur-
vive for a long time without pollen provision [5], but pollen feeding significantly prolonged their lifespan
[38, 42, 61, 60]. Intensive research has investigated the connection between nutrition and honey bee virus
and stress resistance. Both cage studies and field studies indicated that bees with poor nutrition were under
more stress (Wang et al. unpublished data) [72], more susceptible to Nosema and Varroa destructor, and
had shorter lifespan [19, 53]. DeGrandi-Hoffman found a similar result that bees with good pollen or protein
nutrition were more resistant to many different viruses [14]. Furthermore, studies on molecular mechanisms
suggested that pollen nutrition may positively affect antimicrobial peptides and improve immune defensive
response to parasites [17]. The additions of nutrient/brood dynamics and explicit division of labor would
generate scenarios where nutritional stress could reduces immune function resulting in colony death from
the proliferation of viruses and other pathogens and thus more closely align with the general consensus that
colony losses have multifactorial origins [45]. Therefore, a more realistic model that includes nutrient/brood
dynamics with explicit division of labor are needed in addition to migration.

Moreover, seasonal effects are also important. Models that simulate colony growth either assume a
constant egg laying rate or have sensitivity to seasonal patterns of brood production [15, 52, 55, 6, 8, 51]. If
seasonal effects on egg laying are included, the worker to brood ratio varies throughout the yearly cycle as
does the vulnerability of the colony. If parasites such as Varroa or pathogens such as viruses are components
in a model, then including seasonal effects on egg laying prevents an overestimation of the mite load and
population size of uninfected (i.e., healthy bees) that can be maintained without affecting colony survival.
In future work, a realistic model should also include seasonal effects.
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5. Proof

Proof of Theorem 3.1

Proof. According to Theorem A.4 (p.423) of Thieme (2003), we can conclude that Model (7) is positive
invariant in X . Let d = min{dh, dm}, Nh = Sh + Ih, Nm = Sm + Im, and N = cNh +Nm. Then we have

N ′ = cN ′
h +N ′

m = rc(Sh+ρIh)
2

K̂+(Sh+ρIh)
2 − cdhNh − cµhIh − dmNm − µmIm

≤ rc(N/c)2

K̂+(N/c)2
−min{dh, dm}(cNh +Nm) = rcN2

c2K̂+N2
−min{dh, dm}N = rcN2

c2K̂+N2
− dN

which implies that lim supt→∞ N(t) ≤ c
r
d
+
√

( r
d )

2
−4K̂

2 = N∗ with implication that lim supt→∞ N(t) = 0 if

either r
d < 2

√

K̂ or N(0) < N c = c
r
d
+
√

( r
d )

2
−4K̂

2 holds. The arguments above also imply that if r
d > 2

√

K̂,
then we have

lim sup
t→∞

Nh(t) ≤ N∗/c and lim sup
t→∞

Nm(t) ≤ N∗.

Similarly, we have follows for Nh:

N ′
h = S′

h + I ′h = r(Sh+ρIh)
2

K̂+(Sh+ρIh)
2 − dhNh − µhIh − αNhNm

≤ rN2
h

K̂+N2
h

− dhNh

which implies that

lim sup
t→∞

Nh(t) ≤
r
dh

+

√
(

r
dh

)2

− 4K̂

2
= N̄∗

h if
r

dh
> 2
√

K̂

and

lim sup
t→∞

Nh(t) = 0 if
r

dh
< 2
√

K̂ or Nh(0) < Sc
h =

r
dh

−
√
(

r
dh

)2

− 4K̂

2
.

On the other hand, we have

N ′
h = S′

h + I ′h ≥ rρ2(Sh/ρ+Ih)
2

K̂+ρ2(Sh/ρ+Ih)
2 − (dh + µh + αNm)Nh

≥ rρ2N2
h

K̂+ρ2N2
h

− (dh + µh + αN∗)Nh

≥ rN2
h

K̂/ρ2+N2
h

− (dh + µh + αN∗)Nh

.

Therefore, apply the comparison theorem, we can conclude that

lim inf
t→∞

Nh(t) ≥
r

dh+µh+αN∗
+

√
(

r
dh+µh+αN∗

)2

− 4K̂/ρ2

2
= N∗

h
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if the following inequalities hold

r

dh + µh + αN∗
> 2

√

K̂

ρ2
and Nh(0) > N c

h =

r
dh+µh+αN∗

−
√
(

r
dh+µh+αN∗

)2

− 4K̂/ρ2

2
.

The discussions above provide sufficient conditions that allow Nh being persistent, i.e., when the inequalities
r

dh+µh+αN∗
> 2
√

K̂
ρ2 and Nh(0) > N c

h hold. This implies that Sh is also persistent under this condition since

all species go extinct if Sh goes extinct. However, this persistence condition does not provide an estimate of
Sh. To explore an estimation of Sh, we look at the population of Sh.

Recall that if r
dh+µh+αN∗

> 2
√

K̂
ρ2 and Nh(0) > N c

h, then we have the following inequalities

N∗
h ≤ lim inf

t→∞
Nh(t) ≤ lim inf

t→∞
N(t)/c ≤ lim sup

t→∞
N(t)/c ≤ N∗/c.

If the inequalities r

dh+βh+
β̂mhN∗

N∗

h
+(β̃mh+α)(N∗−cN∗

h
)
> 2
√

K̂ and

Sh(0) >

r

dh+βh+
β̂mhN∗

N∗

h
+(β̃mh+α)(N∗−cN∗

h
)
−

√
√
√
√

(

r

dh+βh+
β̂mhN∗

N∗

h
+(β̃mh+α)(N∗−cN∗

h
)

)2

− 4K̂

2

hold, then we have following inequalities

S′
h = r(Sh+ρIh)

2

K̂+(Sh+ρIh)
2 − dhSh − βhShIh

Sh+Ih
− β̂mhShIm

Sh+Ih
− β̃mhShIm − αSh(Sm + Im)

> r(Sh)
2

K̂+(Sh)
2 − dhSh − βhSh − β̂mhIm

Nh
Sh − β̃mhShNm − αShNm

> r(Sh)
2

K̂+(Sh)
2 −

[

dh + β + β̂mhN
∗

N∗

h

+ (β̃mh + α)Nm

]

Sh

= r(Sh)
2

K̂+(Sh)
2 −

[

dh + β + β̂mhN
∗

N∗

h

+ (β̃mh + α)(N − cNh)
]

Sh

> r(Sh)
2

K̂+(Sh)
2 −

[

dh + β + β̂mhN
∗

N∗

h

+ (β̃mh + α)(N∗ − cN∗
h)
]

Sh

which implies that

lim inf
t→∞

Sh(t) ≥ S∗
h =

r

dh+βh+
β̂mhN∗

N∗

h
+(β̃mh+α)(N∗−cN∗

h
)
+

√
√
√
√

(

r

dh+βh+
β̂mhN∗

N∗

h
+(β̃mh+α)(N∗−cN∗

h
)

)2

− 4K̂

2
.

Therefore, we can conclude that Sh is persistent with the following properties:

S∗
h ≤ lim inf

t→∞
Sh(t) ≤ lim inf

t→∞
Nh(t) ≤ lim inf

t→∞

N(t)

c
≤ lim sup

t→∞
N(t)/c ≤ N∗/c

if the following inequalities hold

1. r

2
√

K̂
> max

{

dh + βh + β̂mhN
∗

N∗

h

+ (β̃mh + α)(N∗ −N∗
h),

dh+µh+αN∗

ρ

}

with Nh(0) ≥ Sh(0) > Sc
h.
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It is easy to check that the extinction equilibrium E0 = (0, 0, 0, 0) is always local stable. We omit the details.
Based on the discussion of the upper bound of the total population N and the total population of honeybees

Nh, we can conclude that the system (7) converges to E0 globally if 2
√

K̂ > r
dh

holds; while if the initial

population satisfies either N(0) < N c or Nh(0) < N̄ c
h, then the system (7) converges to E0 locally.

Proof of Theorem 3.2

Proof. Now we consider the population of Nm. From Model (7), we obtain the following inequalities:

cαNhNm − (dm + µm)Nm ≤ N ′
m = S′

m + I ′m = cαNhNm − dmNm − µmIm ≤ Nm (cαNh − dm)

which implies that if N∗ < dm

α , then we have

N ′
m ≤ Nm [cαNh − dm] = Nm [cα(N −Nm)/c− dm]

≤ Nm [αN∗ − dm − αNm] < Nm [αN∗ − dm]
.

This indicates that lim supt→∞ Nm(t) = 0.

Assume that the following inequalities hold r
dh

> 2
√

K̂, and Sh(0) > Sc
h. Then according to Theorem

3.1, we have
lim sup
t→∞

Sh(t) ≤ lim sup
t→∞

Nh(t) ≤ N̄∗
h .

Now let us focus on the population of Sm. Notice that we have the following inequalities when time is large
enough,

S′
m = Sm

[

cαSh − β̂hmIh
Sh+Ih

− dm

]

≤ Sm [cαNh − dm] ≤ Sm

[
cαN̄∗

h − dm
]
.

This implies that if N̄∗
h < dm

cα and r
dh

> 2
√

K̂, and Sh(0) > Sc
h, the healthy mite population Sm goes extinct

while the total population of honeybees persists, i.e.,

lim sup
t→∞

Sm(t) = 0.

Now we look at the population dynamics of Im and Ih. Let I = cIh + Im. From Model (7), then we have
the following equations:

I ′ = (cIh + Im)′ = Sh

[
cβhIh
Sh+Ih

+ cβ̂mhIm
Sh+Ih

+ cβ̃mhIm

]

− cαIh(Sm + Im)− c(dh + µh)Ih

+cα [Ih(Sm + Im) + ShIm] + β̂hmIhSm

Sh+Ih
− (dm + µm)Im

= Ih

[
cβhSh

Nh
+ cβ̂hmSm

Nh

]

+ Im

[
cβ̂mhSh

Nh
+ cβ̃mh + cαSh

]

− c(dh + µh)Ih − (dm + µm)Im

.

This implies that

I ′ ≥ I

[

min
{βhSh

Nh
+

β̂hmSm

Nh
,
cβ̂mhSh

Nh
+ cβ̃mh + cαSh

}

−max
{

(dh + µh), (dm + µm)
}
]

.

Assume that r

2
√

K̂
> dh + βh + β̂mhN

∗

N∗

h

+ (β̃mh + α)(N∗ −N∗
h) and Sh(0) > Sc

h, then according to Theorem

3.1, we have
lim inf
t→∞

Sh(t) ≥ S∗
h.

29



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

Therefore, if
min

{

βh,cβ̂mh+cβ̃mh+cαS∗

h

}

max

{

(dh+µh),(dm+µm)

} ≥ 1, then we have

I′

I

∣
∣
∣
Ih=Im=0

≥

[

min
{

βhSh

Nh
, cβ̂mh + cβ̃mh + cαSh

}

−max
{

dh + µh, (dm + µm)
}] ∣

∣
∣
Ih=Im=0

>
[

min
{

βh, cβ̂mh + cβ̃mh + cαS∗

h

}

−max
{

(dh + µh), (dm + µm)
}]

≥ 0

which implies that the virus I persists by applying the average Lynapunov theorem (Hutson 1984).

On the other hand, we have the following inequalities:

I ′ ≤ I
[

max
{

βhSh

Nh
+ β̂hmSm

Nh
,
cβ̂mhSh

Nh
+ cβ̃mh + cαSh

}

−min
{

(dh + µh), (dm + µm)
}]

I′

I

∣
∣
∣
Ih=Im=0

<
[

max
{

βh + β̂hmSm

Nh
,
cβ̂mhSh

Nh
+ cβ̃mh + cαSh

}

−min
{

(dh + µh), (dm + µm)
}] .

Assume that r

2
√

K̂
> dh+µh+αN∗

ρ , Nh(0) > N c
h. Then according to Theorem 3.1, we have the following

inequalities:
N∗

h ≤ lim inf
t→∞

Nh(t) ≤ lim sup
t→∞

Nh(t) ≤ N̄∗
h ≤ lim sup

t→∞
N(t)/c = N∗/c.

This implies the following inequality when
max

{

βh+
β̂hmN∗

N∗

h
,cβ̂mh+cβ̃mh+cαN̄∗

h

}

min

{

(dh+µh),(dm+µm)

} < 1, then we have

I′

I

∣
∣
∣
Ih=Im=0

<
[

max
{

βh + β̂hmN∗

N∗

h
, cβ̂mh + cβ̃mh + cαN̄∗

h

}

−min
{

(dh + µh), (dm + µm)
}]

< 0

which implies that the virus goes extinct, i.e.,

lim
t→∞

I(t) = 0.

Proof of Theorem 3.3

Proof. If M = 0, the virus-free subsystem (10) reduces to the only healthy honeybee population:

S′
h =

rS2
h

K̂ + S2
h

− dhSh

which leads to the following three boundary equilibria if r
2K̂

> dh:

(0, 0), (N̄ c
h, 0), and (N̄∗

h , 0).

The local stability can be easily determined by the eigenvalues evaluated at its Jacobian matrix. Simple
algebraic calculations show that (N̄ c

h, 0) is a saddle if N̄ c
h < dm

αc while it is a source if N̄ c
h > dm

αc ; and (N̄∗
h , 0)

is a sink if N̄∗
h < dm

αc while it is a saddle if N̄∗
h > dm

αc .

Now let (H,M) be an interior equilibrium of the virus-free subsystem (10), then we have the following
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equations hold:
0 = cαHM − dmM ⇔ H = dm

cα

0 = rH2

K̂+H2
− dhH − αHM ⇔ M = 1

α

(
rH

K̂+H2
− dh

) .

which gives the unique interior equilibrium (H∗,M∗) =
(

dm

cα , 1
α

(
rH∗

K̂+(H∗)2
− dh

))

provided that N̄ c
h < dm

αc <

N̄∗
h .

The local stability of (H∗,M∗) is determined by the eigenvalues λi, i = 1, 2 of the following Jacobian
matrix of (10):

JHM =






rH∗(K̂−(H∗)2)
(K̂+(H∗)2)

2 −αH∗

αcM∗ 0




 (12)

which gives the following two equations:

λ1 + λ2 =
rH∗(K̂−(H∗)2)
(K̂+(H∗)2)

2

λ1λ2 = cα2H∗M∗

. (13)

Therefore, we can conclude that (H∗,M∗) is a sink if H∗ >
√

K̂ while (H∗,M∗) is a source if H∗ <
√

K̂.
The discussion above implies follows:

1. If r

2
√

K̂
< dh, then the extinction equilibrium (0, 0) is the only locally stable equilibrium for the

virus-free subsystem (10). Thus it is globally stable.

2. If r

2
√

K̂
> dh and either N̄ c

h > dm

αc or dm

αc > N̄∗
h , then the virus-free subsystem (10) has three boundary

equilibria: (0, 0), (Sc
h, 0), (N̄

∗
h , 0) where (0, 0) is always locally stable.

• If N̄ c
h > dm

αc , then (Sc
h, 0) is a source and (N̄∗

h , 0) is a saddle. Since (10) is a two-D ode system,
it has global stability at the extinction equilibrium (0, 0) according to the Poincare-Bendison
theorem [49].

• If N̄∗
h < dm

αc , then (Sc
h, 0) is a saddle and (N̄∗

h , 0) is a sink. This implies that (10) has two locally
asymptotically stable boundary equilibria (0, 0) and (N̄∗

h , 0) which are reserved as the only two
attractors for the model.

3. If r

2
√

K̂
> dh and N̄ c

h < dm

αc < N̄∗
h , then (10) has three boundary equilibria (0, 0), (Sc

h, 0), (N̄
∗
h , 0) and

the unique interior equilibrium (H∗,M∗) where (0, 0) is locally stable, both (Sc
h, 0) and (N̄∗

h , 0) are

saddle nodes. The local stability of (H∗,M∗) is determined by the sign of H∗−
√

K̂: if H∗−
√

K̂ > 0,

then (H∗,M∗) is locally asymptotically stable while if H∗ −
√

K̂ < 0, then (H∗,M∗) is a source.

Define R
M
0 =

N̄∗

h

H∗
. Then we can conclude that (10) has no interior equilibrium if RM

0 < 1 or RM
0 >

N̄∗

h

Sc
h

> 1;

and (10) has a unique interior equilibrium (H∗,M∗) if 1 < R
M
0 <

N̄∗

h

Sc
h

. More specifically, (H∗,M∗) is locally

stable if 1 < R
M
0 <

N̄∗

h

K̂
while it is a source if RM

0 > max
{

1,
N̄∗

h

K̂

}

.
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Proof of Theorem 3.4

Proof. If I = 0, the mite-free subsystem (8) reduces to the only healthy honeybee population:

S′
h =

rS2
h

K̂ + S2
h

− dhSh

which leads to the following three boundary equilibria if r
2K̂

> dh:

(0, 0), (N̄ c
h, 0), and (N̄∗

h , 0).

The local stability can be easily determined by the eigenvalues evaluated at its Jacobian matrix. Define
R

V
0 = βh

dh+µh
. The simple algebraic calculations show that if RV

0 < 1, (N̄ c
h, 0) is a saddle and (N̄∗

h , 0) is

a sink; while if RV
0 > 1, then (N̄ c

h, 0) is a source and (N̄∗
h , 0) is a saddle. According to Theorem 3.1, the

extinction equilibrium (0, 0) is always a sink.

Let (S, I) be an interior equilibrium of the mite-free subsystem (8), then it satisfies the following equations:

βhS
S+I − (dh + µh) = 0 ⇒ S = dh+µh

βh−(dh+µh)
I = I

βh
dh+µh

−1
= aI

r(S+ρI)2

K̂+(S+ρI)2
− dhS − S βhI

S+I = 0 ⇒ rI
K̂

(a+ρ)2
+I2

− a
(

dh + βh

1+a

)

= 0

r(S+ρI)2

K̂+(S+ρI)2
− dhS − S βhI

S+I = 0 ⇒ r(S+ρI)2

K̂+(S+ρI)2
− dhS − (dh + µh)I = 0

⇒ rI
K̂

(a+ρ)2
+I2

− ((a+ 1)dh + µh) =
rI

K̂

(a+ρ)2
+I2

− d̃ = 0

⇒ aβh

1+a = dh + µh.

(14)

Therefore, if RV
0 = βh

dh+µh
> 1 and r

d̃
> 2

√
K̂

a+ρ , then we can conclude that the mite-free subsystem (8) can

have two interior equilibria (Sk
h , I

k
h), k = 1, 2 where

a =
1

βh

dh+µh
− 1

, d = (a+ 1)dh + µh = dh

(
βh

dh+µh

βh

dh+µh
− 1

)

+ µh,

and

I1h =

r
d̃
−
√
(

r
d̃

)2

− 4 K̂
(a+ρ)2

2
, I2h =

r
d̃
+

√
(

r
d̃

)2

− 4 K̂
(a+ρ)2

2
, Sk

h = aIkh , k = 1, 2.

Now we examine the local stability of these two interior equilibria provided that they exist. The Jacobian
matrix of (8) evaluated at the interior equilibrium (S, I) = (aI, I) can be expressed as follows:

JHV =






2rK̂(a+ρ)I

((a+ρ)2I2+K̂)2
− dh − βh

(1+a)2
2rρK̂(a+ρ)I

((a+ρ)2I2+K̂)2
− a2βh

(1+a)2

βh

(1+a)2 − aβh

(1+a)2




 (15)
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whose two eigenvalues λi, i = 1, 2 satisfy the following equations:

λ1 + λ2 = 2rK̂(a+ρ)I

((a+ρ)2I2+K̂)2
− dh − βh

1+a = 2K̂
((a+ρ)2I2+K̂)(a+ρ)

r(a+ρ)2I

(a+ρ)2I2+K̂
− dh − βh

1+a

= 2K̂
((a+ρ)2I2+K̂)(a+ρ)

a
(

dh + βh

1+a

)

− dh − βh

1+a =
(

dh + βh

1+a

) [
2aK̂

((a+ρ)2I2+K̂)(a+ρ)
− 1
]

<
(

dh + βh

1+a

) [
2K̂

(a+ρ)2I2+K̂
− 1
]

(16)

and

λ1λ2 = βh

(1+a)2

[

− 2raK̂(a+ρ)I

((a+ρ)2I2+K̂)2
+ adh + aβh

(1+a)2 − 2rρK̂(a+ρ)I

((a+ρ)2I2+K̂)2
+ a2βh

(1+a)2

]

= βh

(1+a)2

[

− 2rK̂(a+ρ)2I

((a+ρ)2I2+K̂)2
+ adh + aβh

1+a

]

= βh

(1+a)2

[

− 2rK̂(a+ρ)2I

((a+ρ)2I2+K̂)2
+ d̃
]

.

(17)

If RV
0 = βh

dh+µh
> 1 and r

d̃
> 2

√
K̂

a+ρ , then we have two interior equilibria (Sk
h , I

k
h), k = 1, 2 where

I1h =

r
d̃
−
√
(

r
d̃

)2

− 4 K̂
(a+ρ)2

2
, I2h =

r
d̃
+

√
(

r
d̃

)2

− 4 K̂
(a+ρ)2

2
, Sk

h = aIkh , k = 1, 2.

This implies that λ1(I
2
h)λ2(I

1
h) < 0, λ1(I

2
h)λ2(I

2
h) > 0 and

λ1(I
2
h) + λ2(I

2
h) <

(

dh + βh

1+a

) [
2K̂

(a+ρ)2I2+K̂
− 1
]

<
(

dh + βh

1+a

)[

2K̂

(a+ρ)2 K̂

(a+ρ)2
+K̂

− 1

]

= 0

since

I2h =

r
d̃
+

√
(

r
d̃

)2

− 4 K̂
(a+ρ)2

2
>

r

2d̃
>

√

K̂

(a+ ρ)
⇒ (I2h)

2 >
K̂

(a+ ρ)2
.

Therefore, we can conclude that if RV
0 = βh

dh+µh
> 1 and r

d̃
> 2

√
K̂

a+ρ , then the system has two interior equi-

libria (Sk
h , I

k
h), k = 1, 2 where (S1

h, I
1
h) is always a saddle while (S2

h, I
2
h) is always locally asymptotically stable.

Notice that r
d̃
> 2

√
K̂

a+ρ ⇔ r

2
√

K̂
> d̃

a+ρ = dh(a+1)
a+ρ + µh

a+ρ > dh. The discussions above show that the

mite-free subsystem (8) has no interior equilibrium if either RV
0 < 1 or r

2
√

K̂
< d̃

a+ρ holds. This leads to the

following two cases:

1. If either r

2
√

K̂
< dh, then the mite-free subsystem (8) has only the extinction equilibrium (0, 0) which

is locally stable, thus it is globally stable.

2. If RV
0 > 1 and dh < r

2
√

K̂
< d̃

a+ρ , then the mite-free subsystem (8) has the following three boundary

equilibria
(0, 0), (N̄ c

h, 0), and (N̄∗
h , 0)

where (0, 0) is locally asymptotically stable; (N̄ c
h, 0) is a source; and (N̄∗

h , 0) is a saddle. Then according
to the Poincare-Bendison theorem, we can conclude that all interior points of R2

+ converges to the
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extinction equilibrium (0, 0).

3. If RV
0 < 1 and dh < r

2
√

K̂
, then the mite-free subsystem (8) has the following three boundary equilibria

(0, 0), (N̄ c
h, 0), and (N̄∗

h , 0)

where (0, 0) is locally asymptotically stable; (N̄ c
h, 0) is a saddle; and (N̄∗

h , 0) is a sink. This implies
that both (0, 0), and (N̄∗

h , 0) are locally asymptotically stable.

Proof of Theorem 3.5

Proof. Let Nh = Sh + Ih, then from Model (9), we obtain

N ′
h = r(Sh+ρIh)

2

K̂+(Sh+ρIh)
2 − dhNh − µhIh

≤ rN2
h

K̂+N2
h

− dhNh

which implies that when r

2
√

K̂
> dh, we have

lim sup
t→∞

(Sh(t) + Ih(t)) = lim sup
t→∞

Nh(t) ≤
r
dh

+

√
(

r
dh

)2

− 4K̂

2
= N̄∗

h .

Therefore, we can conclude that if the inequalities r
dh

> 2
√

K̂ and N̄∗
h < dm + µm hold, then we have

lim supt→∞ Sm(t) = 0 since

I ′m = cαIm

[

Ih + Sh − (dm + µm)

cα

]

= cαIm

[

Nh − (dm + µm)

cα

]

≤ cαIm

[

N̄∗
h − (dm + µm)

cα

]

< 0.

This implies that the limiting dynamics of Model (9) is reduced to the mite-free model (8).

An interior equilibrium (Sh, Ih, Im) of the healthy-mite-free subsystem (9), satisfies the following equa-
tions:

cαIm

[

Ih + Sh − dm+µm

cα

]

= 0 ⇒ Nh = Ih + Sh = dm+µm

cα

r(Sh+ρIh)
2

K̂+(Sh+ρIh)
2 − dhNh − αNhIm − µhIh = 0 ⇒ r(Sh+ρIh)

2

K̂+(Sh+ρIh)
2 − dhNh − αNhIm − µhIh = 0

⇒ r(Nh−Ih+ρIh)
2

K̂+(Nh−Ih+ρIh)
2 − dhNh − αNhIm − µhIh = 0

⇒ Im =

r( dm+µm
cα

−Ih+ρIh)
2

K̂+( dm+µm
cα

−Ih+ρIh)
2 −dh

dm+µm
cα

−µhIh

α( dm+µm
cα

)
= f1(Ih)

(18)
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Sh

[
βhIh
Sh+Ih

+ β̂mhIm
Sh+Ih

+ β̃mhIm

]

= αIhIm + (dh + µh)Ih

(
dm+µm

cα − Ih

) [
βhIh

dm+µm
+ cαβ̂mhIm

dm+µm
+ β̃mhIm

]

= αIhIm + (dh + µh)Ih

⇒ Im =
( dm+µm

cα
−Ih)

[

βh
dm+µm

−(dh+µh)
]

Ih

αIh−( dm+µm
cα

−Ih)
(

cαβ̂mh
dm+µm

+β̃mh

)

⇒ Im =
( dm+µm

cα
−Ih)

[

βh
dm+µm

−(dh+µh)
]

Ih
[

α+
cαβ̂mh
dm+µm

+β̃mh

]

Ih−
dm+µm

cα

(

cαβ̂mh
dm+µm

+β̃mh

) = f2(Ih)

. (19)

The equations above imply that the interior equilibrium of (9) is the positive intercept of f1(Ih) and f2(Ih)
subject to 0 < Ih < dm+µm

cα . The expression for the function f1(Ih) implies that the subsystem (9) has no
interior equilibrium if

r <
dh(dm + µm)

cα
⇔ rcα < dh(dm + µm)

since Im = f1(Ih) < 0 when this inequality holds.

Assume that r

2
√

K̂
> dh+µh+αN∗

ρ and Nh(0) > Nc
h, then according to Theorem 3.1 and 3.2, then we have

Nc
h < N∗

h ≤ lim inf
t→∞

Nh(t) ≤ lim sup
t→∞

Nh(t) ≤ N̄∗
h

which implies that the set {Sh + Ih ≥ N c
h} is invariant. If Im = 0, then the subsystem (9) reduces to the

mite-free system (8). According to Theorem 3.4, the omega limit set of the mite-free system (8) is (N̄∗
h , 0)

when R
V
0 = βh

dh+µh
< 1 holds. If N̄∗

h > dm+µm

cα , then we have

I′

m

Im

∣
∣
Im=0

= cα
(

N̄∗
h − dm+µm

cα

)

> 0.

This implies that the virus Im persists by applying the average Lynapunov theorem (Hutson 1984). Notice
that

Ih
∣
∣
Ih=0

= β̂mhShIm
Nh

> 0.

Therefore, the virus infected honeybees Ih also persists.

Proof of Theorem 3.6

Proof. The first part of Theorem 3.6 can be deduced directly from Theorem 3.1, 3.2, 3.3, 3.4, and 3.5. We
focus on the sufficient conditions that lead to no interior equilibrium (Item 3) and the persistence of mites
(Item 4).

If (Sh, Ih, Sm, Im) is an interior equilibrium of the system (7), then it satisfies the following equations:

0 = Sm

[

cαSh − β̂hmIh
Sh+Ih

− dm

]

⇒ Ih = Sh
cαSh−dm

dm+β̂hm−cαSh

, dm

cα < Sh < dm+β̂hm

cα

⇒ Nh = Sh + Ih = β̂hmSh

dm+β̂hm−cαSh

= g1(Sh)

(20)
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0 = r(Sh+ρIh)
2

K̂+(Sh+ρIh)
2 − dh(Sh + Ih)− α(Sh + Ih)(Sm + Im)− µhIh

⇒ Nm = Sm + Im =

r(Sh+ρIh)
2

K̂+(Sh+ρIh)
2 −dh(Sh+Ih)−µhIh

α(Sh+Ih)

⇒ Nm =
rSh(β̂hm+(dm−cαSh))(β̂hm+(dm−cαSh)(1−ρ))2

αβ̂hm

[

K̂(β̂hm+(dm−cαSh))
2
+S2

h(β̂hm+(dm−cαSh)(1−ρ))2
] − dh

α − µh(cαSh−dm)

β̂hm

= g2(Sh)

(21)

0 = cα(Sh + Ih)(Sm + Im)− dm(Sm + Im)− µmIm

⇒ Im = Nm(cα(Sh+Ih)−dm)
µm

=
Nm[cαβ̂hmSh−dm(β̂hm+(dm−cαSh))]

µm(β̂hm+(dm−cαSh))
= Nm(cαSh−dm)(β̂hm+dm)

µm(β̂hm+(dm−cαSh))

= Nmg3(Sh) = g2(Sh)g3(Sh)

(22)

0 = Sh

[
βhIh

Sh+Ih
+ β̂mhIm

Sh+Ih
+ β̃mhIm

]

− αIh(Sm + Im)− (dh + µh)Ih

⇒
dm+β̂hm−cαSh

cαSh−dm

[

βh(cαSh−dm)

β̂hm
+ β̂mh

Nm(cαSh−dm)(β̂hm+dm)

µmβ̂hmSh
+ β̃mh

Nm(cαSh−dm)(β̂hm+dm)

µm(β̂hm+(dm−cαSh))

]

− αNm − (dh + µh) = 0

⇒
βh(dm+β̂hm−cαSh)

β̂hm
+ β̂mhNm(β̂hm+dm)(dm+β̂hm−cαSh)

µmβ̂hmSh
+ β̃mhNm(β̂hm+dm)

µm
− (dh + µh) = αNm

⇒ Nm =

βh(dm+β̂hm−cαSh)

β̂hm
−(dh+µh)

α−
β̂mh(β̂hm+dm)(dm+β̂hm−cαSh)

µmβ̂hmSh
−

β̃mh(β̂hm+dm)

µm

= g4(Sh)

. (23)

Therefore, the interior equilibrium (Sh, Ih, Sm, Im) are positive solutions of the following four equations:

Nh = Sh + Ih = g1(Sh) =
β̂hmSh

dm+β̂hm−cαSh
subject to Sh <

dm+β̂hm

cα

Im
Nm

= g3(Sh) =
(cαSh−dm)(β̂hm+dm)

µm(β̂hm+dm−cαSh)
< 1 subject to dm

cα
< Sh <

dm+β̂hm

cα

dm+µm

dm+β̂hm+µm

Nm = g2(Sh) =
rSh(β̂hm+(dm−cαSh))(β̂hm+(dm−cαSh)(1−ρ))2

αβ̂hm

[

K̂(β̂hm+(dm−cαSh))2+S2
h(β̂hm+(dm−cαSh)(1−ρ))2

] −
dh
α

−
µh(cαSh−dm)

β̂hm

Nm = g4(Sh) =

βh(dm+β̂hm−cαSh)

β̂hm
−(dh+µh)

α−
β̂mh(β̂hm+dm)(dm+β̂hm−cαSh)

µmβ̂hmSh
−

β̃mh(β̂hm+dm)

µm

=
µmSh[βh(dm+β̂hm)−β̂hm(dh+µh)−cαβhSh]

[αµmβ̂hm+cαβ̂mh(β̂hm+dm)−β̃mhβ̂hm(β̂hm+dm)]Sh−β̂mh(β̂hm+dm)(dm+β̂hm)

. (24)

Thus, we can conclude the following statements regarding the sign of g4(Sh):

1. If βh(dm + β̂hm) < β̂hm(dh + µh) and αµmβ̂hm + cαβ̂mh(β̂hm + dm) < β̃mhβ̂hm(β̂hm + dm), then
g4(Sh) > 0 for all Sh > 0.

2. If βh(dm + β̂hm) > β̂hm(dh + µh) and αµmβ̂hm + cαβ̂mh(β̂hm + dm) > β̃mhβ̂hm(β̂hm + dm), then
g4(Sh) > 0 when

β̂mh(β̂hm + dm)(dm + β̂hm)

αµmβ̂hm + cαβ̂mh(β̂hm + dm)− β̃mhβ̂hm(β̂hm + dm)
< Sh <

βh(dm + β̂hm)− β̂hm(dh + µh)

cαβh
.
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3. If βh(dm + β̂hm) < β̂hm(dh + µh) and αµmβ̂hm + cαβ̂mh(β̂hm + dm) > β̃mhβ̂hm(β̂hm + dm), then
g4(Sh) > 0 when

Sh <
β̂mh(β̂hm + dm)(dm + β̂hm)

αµmβ̂hm + cαβ̂mh(β̂hm + dm)− β̃mhβ̂hm(β̂hm + dm)
.

4. If βh(dm + β̂hm) > β̂hm(dh + µh) and αµmβ̂hm + cαβ̂mh(β̂hm + dm) < β̃mhβ̂hm(β̂hm + dm), then
g4(Sh) > 0 when

Sh >
βh(dm + β̂hm)− β̂hm(dh + µh)

cαβh
.

Notice that the interior equilibrium (Sh, Ih, Sm, Im) requires g3(Sh) > 0, i.e., dm

cα < Sh < dm+β̂hm

cα
dm+µm

dm+β̂hm+µm

.

Therefore, the interior equilibrium (Sh, Ih, Sm, Im) does not exist if one of the following inequalities hold

1. βh

dh+µh
> β̂hm

dm+β̂hm

, αµmβ̂hm

β̂hm+dm

> β̃mhβ̂hm − cα and

β̂mh

αµmβ̂hm

(dm+β̂hm)
+ cαβ̂mh − β̃mhβ̂hm

>
dm + µm

cα(dm + β̂hm + µm)
or

βh

dh+µh
− β̂hm

dm+β̂hm

βh(dm + β̂hm)(dh + µh)
< dm.

2. βh

dh+µh
< β̂hm

dm+β̂hm

, αµmβ̂hm

β̂hm+dm

> β̃mhβ̂hm − cα and β̂mh(dm+β̂hm)
αµmβ̂hm

(dm+β̂hm)
+cαβ̂mh−β̃mhβ̂hm

< dm

cα .

3. βh

dh+µh
> β̂hm

dm+β̂hm

, αµmβ̂hm

β̂hm+dm

< β̃mhβ̂hm − cα and
βh

dh+µh
−

β̂hm

dm+β̂hm

βh(dm+β̂hm)(dh+µh)
> (dm+µm)(dm+β̂hm)

dm+β̂hm+µm

.

Assume that r

2
√

K̂
> dh+µh+αN∗

ρ and Nh(0) > Nc
h, then according to Theorem 3.1 and 3.2, then we have

Nc
h < N∗

h ≤ lim inf
t→∞

Nh(t) ≤ lim sup
t→∞

Nh(t) ≤ N̄∗
h

which implies that the set {Sh + Ih ≥ N c
h} is invariant. If Sm = Im = 0, then the full system (7) reduces

to the mite-free system (8). According to Theorem 3.4, the omega limit set of the mite-free system (8) is
(N̄∗

h , 0) when R
V
0 = βh

dh+µh
< 1 holds. If N̄∗

h > dm+µm

cα , then we have

N ′

m

Nm

∣
∣
Nm=0

≥ cα
(

N̄∗
h − dm+µm

cα

)

> 0.

This implies that the mite population Nm persists by applying the average Lynapunov theorem (Hutson
1984).
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