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Owing to their rapid reproductive rate and the severe penalties for reduced fitness, diseases are under

immense evolutionary pressure. Understanding the evolutionary response of diseases in new situations

has clear public-health consequences, given the changes in social and movement patterns over recent

decades and the increased use of antibiotics. This paper investigates how a disease may adapt in response

to the routes of transmission available between infected and susceptible individuals. The potential trans-

mission routes are defined by a computer-generated contact network, which we describe as either local

(highly clustered networks where connected individuals are likely to share common contacts) or global

(unclustered networks with a high proportion of long-range connections). Evolution towards stable stra-

tegies operates through the gradual random mutation of disease traits (transmission rate and infectious

period) whenever new infections occur. In contrast to mean-field models, the use of contact networks

greatly constrains the evolutionary dynamics. In the local networks, high transmission rates are selected

for, as there is intense competition for susceptible hosts between disease progeny. By contrast, global

networks select for moderate transmission rates because direct competition between progeny is minimal

and a premium is placed upon persistence. All networks show a very slow but steady rise in the infec-

tious period.
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1. INTRODUCTION

Evolution is one of the few universal concepts in biology,

and implementation of evolutionary theory allows us to

understand the observed characteristics of organisms. Gen-

erally this has been applied to the social behaviour of large

creatures (Axelrod & Hamilton 1981; Ridley 1996;

Clutton-Brock et al. 1998) although it also holds for the

demographic attributes of all organisms. Owing to their

relatively simple natural history and rapid life cycle, diseases

provide the ideal opportunity to understand their dynamics

in terms of an evolutionary adaptation to their environ-

ment. Here, we take preliminary steps towards this goal.

On a more immediate time-scale the evolution of infec-

tious diseases poses a significant dilemma for practitioners

of disease control. For example, the development of anti-

biotic resistance (Baquero & Blázquez 1997) within the

pathogen population, and the emergence of novel strains

for which no herd immunity exists (e.g. the emergence of

novel influenza strains) are both serious threats to human

health. Selective pressure is likely to be very high for such

resistant diseases of humans, given the resources expended

on control and eradication (e.g. antibiotic and vaccine

use). This, coupled with the relative shortness of pathogen

life cycles, means the evolutionary development of disease

is also likely to be rapid. The ability to predict the prob-

able consequences of control measures for the evolution

and emergence of disease behaviour is therefore of great

importance.

The vast majority of models of disease evolution make

two basic assumptions. First, they assume that the popu-

lations of host and pathogen are well mixed. In well-mixed
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(mean-field) populations all individuals have an equal like-

lihood of encountering infection, and hence the resulting

force of infection is equal for all (Anderson & May 1992).

Second, the models assume that there are a priori con-

straints upon the range of evolutionary outcomes, often

involving disease virulence (Anderson & May 1992; Frank

1992; Mosquera & Adler 1998; Boots & Sasaki 1999).

Although the within-host dynamics of diseases and their

interaction with the immune system will place some con-

straints upon the possible population-level dynamics

(Read & Schrag 1991; Messenger et al. 1999), there are

currently very few data to suggest either the range and

form of these constraints or whether they are likely to have

a major impact.

Spatial heterogeneity and the local nature of interac-

tions have been demonstrated to have profound effects on

the transmission and persistence of diseases (Comins et al.

1992; Grenfell & Harwood 1997; Wallinga et al. 1999;

Keeling 2000a), and to produce qualitative changes in

ecological and evolutionary dynamics in general

(DeAngelis & Gross 1992; Nowak & May 1992; Tilman &

Kareiva 1996). The standard mean-field models ignore

three important properties of human disease-transmission

networks: first, the finite number and variability of poten-

tial contacts—these lead to the build-up of spatial corre-

lations (Keeling 1999) and heterogeneities of risk between

individuals; second, the ‘small-world’ property, where, on

average, any two individuals are connected by a small

number of social or transmission steps (Milgram 1967;

Watts & Strogatz 1998); and finally, the clustering of

social contacts such that adjacent individuals in contact

space are likely to have many shared social or sexual con-

tacts—a simple example being ‘my friends are likely to

know each other’ (this characteristic is referred to as ‘tran-
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sitivity’ in social-network literature (de Sola Pool &

Kochen 1978; Wallinga et al. 1999)). These properties are

evidenced by studies of social-contact networks (de Sola

Pool & Kochen 1978; Klovdahl et al. 1994), networks of

injecting drug users (Friedman et al. 2000) and sexual net-

works (Klovdahl 1985; Potterat et al. 2002). Thus, while

mean-field models have proved a useful tool in under-

standing and developing epidemiological theory, the com-

plex nature of potential infection transmission routes

(whether in real space, or in the more abstract contact

space) could have severe implications for the reliability of

predictions made by such methods.

In this paper, we consider how the social structure of a

population, in the form of a contact network, affects the

evolutionary selection of the parameters determining

infectious-disease transmission dynamics. Specifically, we

consider how the routes available for the infection to

spread through such networks determine the adaptation

of the transmission rate and the infectious period. This is

a complex process with multiple feedbacks at a variety of

spatial and temporal scales. In particular, while the net-

work has a strong influence on the evolution of the dis-

ease, the disease dynamics in turn modify the available

susceptible network. The next section sets up the model

framework and describes the basic disease dynamics

within the contact network. Section 3 describes the vari-

ous simulations that have been performed in order to tease

apart the evolutionary forces. Finally, § 4 considers the

long-term evolutionary behaviour of the diseases, con-

trasting the influences of local and global networks.

2. MODEL DESCRIPTION

The epidemic and endemic dynamics of infection within

a network of susceptible individuals have been studied

using lattice models (Mollison 1977; Rand et al. 1995;

Levin & Durrett 1996; Rhodes & Anderson 1996), small-

world models (Watts & Strogatz 1998; Moore & Newman

2000; Kuperman & Abramson 2001; Pastor-Satorras &

Vespignani 2001; Zekri & Clerc 2001) and pairwise corre-

lation models (Keeling 1999; Ferguson & Garnett 2000).

However, these methods of approximating spatial or net-

work structure generally suffer from a lack of heterogen-

eity at the individual level, and most have severe difficulty

incorporating birth and death processes in a biologically

realistic manner. For example, if individuals that recover

from infection are simply replaced by susceptible individ-

uals, then such births (new susceptibles) become spatially

correlated with incidence of disease. Moreover, where new

susceptibles are recruited in adjacent locations to suscep-

tibles (Keeling 2000b), severe local density dependence is

invoked and the location of births becomes negatively cor-

related with infection. The spatial structure that develops

is unrealistic for general human or animal populations and

may have a large qualitative impact on the results.

The model presented here attempts to overcome these

limitations by direct simulation of the spread of infection

through a computer-generated network. Individuals are

distributed randomly in space with an average density of

one individual per unit area (figure 1a,b). The distance

between individuals determines the probability that a link

(representing a potential pathogen transmission route) is

formed between them. This connection probability kernel
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is formulated such that the expected number of links per

individual (n) and the average distance between linked

individuals (D) may be predetermined (see Appendix A).

Thus, a range of possible network configurations may be

considered, forming different ‘landscapes of selection’

within which a disease can spread, adapt and persist. In

particular we consider two distinct forms of network,

classified according to the shape of the kernel. Local net-

works are highly aggregated, with many social cliques

(high transitivity), and hence share many properties with

the social networks associated with the transmission of air-

borne pathogens. Global networks are dominated by ran-

dom long-distance connections, and possess few cliques

(low transitivity); they are therefore a more extreme ver-

sion of the transmission routes involved in the spread of

sexually transmitted diseases (based on analysis of the

social and sexual network data presented by Klovdahl

(1985)). This analogy between our static networks and the

dynamic behaviour of human social and sexual networks

should be used cautiously; our networks represent two

structural extremes and hence are merely qualitative cari-

catures. A quantitative model of realistic human trans-

mission networks would require vast amounts of detailed

sociological data, and would be more difficult to analyse

and understand.

Communication through a global network is much fas-

ter than through a local network, even though both have

the same average number of contacts per individual (figure

1). This crucial difference has profound consequences for

the spread of infection and the selection of infectious-dis-

ease behaviour. An important feature of the contact struc-

ture is the heterogeneity of contacts per individual (figure

1c,d): a few individuals have far more contacts than aver-

age. This is a generic property of human contact networks

(Klovdahl 1985; Klovdahl et al. 1994; Brisson et al. 1999;

Rosenburg et al. 1999; Liljeros et al. 2001) that is generally

omitted from non-network models (e.g. cellular automata

and small-world models).

Birth and death rates of the host (b and d, respectively)

are assumed to be equal and independent of modelled

population size, although the model does not specifically

require this. New susceptibles (births) are introduced at

random locations in contact space and connected to other

individuals according to the distance between them, with

a probability specified by the connection kernel (see

Appendix A). The death of an individual simply removes

them from the network, together with any associated con-

tact links.

The infection statuses of individuals are divided into

three discrete classes: susceptible, infectious and recovered

(SIR) as in the traditional SIR model framework

(Anderson & May 1992). All individuals begin life as sus-

ceptibles. A susceptible in contact with an infectious indi-

vidual becomes infected by that particular strain of the

disease at a strain-specific probabilistic rate t (see Appen-

dix A). Infected individuals remain in this class for a fixed

period (Pin f ), determined by the infecting strain, during

which they maintain a constant level of transmission to all

their contacts. Finally, the host’s immune system is

assumed to combat the infection, and they move directly

into the recovered class, where individuals are no longer

infectious and are assumed to have full immunity from

further infection. For simplicity, we assume no multiple
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Figure 1. Example regions of (a) local and (b) global networks, showing individuals (black circles) and their contact links (grey

lines). The distribution of contacts per individual, n, for (c) local and (d) global networks. Finally, to demonstrate the

connectivity of the entire network, we calculate the proportion of the network reached, p, in t steps from a random individual

in each network type, (e) local and ( f ) global; the solid line is the mean of 100 such procedures, and the dashed lines are the

standard deviations of the mean.

infections and that, once recovered, an individual acquires

full cross-immunity to all possible strains of the disease.

This allows us to consider the evolution of one dominant

infection strategy, without the complication of multiple

coexisting strains of infections (Gog & Swinton 2002).

In this model, disease strains have two characteristic

components that determine their local behaviour: the pro-

babilistic transmission rate between an infected and a sus-

ceptible individual across a link (t) and the duration of

infection (Pin f ). Both of these characteristics are inherited

from ancestral infections with mutation and, for sim-

plicity, are assumed to mutate independently (see Appen-

dix A). Thus, as in nature, evolution proceeds via the

accumulation of many random mutations.

As the transmission of infection is a stochastic process

and the population size is finite, we can expect to observe

Proc. R. Soc. Lond. B (2003)

extinctions of the disease. To counteract this, a low level

of infection is assumed to enter the population from an

external source, at a probabilistic rate m. These imported

infections are positioned at random in contact space, and

are connected using the appropriate kernel (in the same

way as births); their characteristic parameters follow the

most recent strain parameters within the network (see

Appendix A). Thus, imports will not cause dramatic

jumps in disease parameters, and they act as if we are

observing the dynamics in a single element of a weakly

coupled metapopulation (Grenfell & Harwood 1997).

3. SIMULATIONS

A typical simulation consists of the following sequential

events: network generation, the introduction of disease
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Table 1. Values assigned to parameters in simulations.

parameter meaning value

N population size 10 000

T time-period of simulation (iterations) 100 000

n average contacts per individual 8

D measure of connection distance 1 (local) or 50 (global)

b average births per iteration 0.39

d average deaths per iteration b

m infected immigrants per iteration 0.01

std(t) mutation distance in transmission rate 0.05

std(Pinf ) mutation distance in infectious period 0.5

initial t initial transmission rate 0.025

initial Pinf initial infectious period (iterations) 20

into the susceptible population, and subsequent iterations

until the end of the allotted simulation time (T). During

an iteration, births and deaths may occur, individuals may

become infected or recovered (depending on their status

and circumstance) and the import of infection may occur.

A full account of assigned parameter values is given in

table 1.

Networks of susceptibles were generated using the pre-

scribed connection kernel. Two main network forms were

simulated: local connections, with an average of eight con-

tacts per individual; and global connections, also with an

average of eight contact neighbours. These correspond to

two extreme levels of contact structure, and allow us to

ascertain the effects of cliques within host populations on

the evolution of transmissible disease.

Initially, a single individual was infected by a disease

strain with t = 0.025 and Pin f = 20 iterations. Average daily

birth and death rates were chosen to maintain a stable

population size, and to set the average lifespan of the host

at 25 550 iterations—if each iteration corresponds to 1 day

then the average host lifespan is 70 years. In most human

societies, however, removals and additions to contact net-

works (in our model, deaths and births) may occur much

more rapidly, and therefore an iteration may correspond

to a far shorter time-scale. Hence, the evolutionarily stable

parameters are not only functions of the network struc-

ture, but also scale directly with the rate of turnover of

connections. (One simulation therefore corresponds to

about four complete regenerations of the network.)

The model population status was updated synchron-

ously, and most simulations were performed for up to

100 000 iterations; a few longer (T = 1 million iterations)

simulations were also performed to check the long-term

validity of results. Stochasticity enters our model formu-

lation from four distinct sources: the demographic dynam-

ics that determine the network, occasional imported

infection, the transmission of infection, and the random

mutation of strain parameters. Therefore, to observe gen-

eral trends, 100 replications were made of each treatment,

and the disease parameters and timing of every new infec-

tion were recorded.

4. RESULTS

The standard mean-field model of SIR-type infection

predicts that if two strains are competing for susceptible

hosts, the strain with the greater basic reproductive ratio,
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R0 ~ t.Pin f, will always outcompete the other. Stochastic

birth, death and transmission processes do not signifi-

cantly alter this conclusion (figure 2a,b). Therefore, evol-

ution will always favour infections with greater values of

R0, so that in such mean-field models we observe runaway

behaviour with selection for ever higher transmission rates

and ever longer infectious periods. In particular, determin-

istic theory supported by stochastic simulations of this

process (figure 2a,b) predicts that the transmission rate

experiences by far the strongest selective pressure and

therefore increases most rapidly.

In contrast to the mean-field models, the results from

network simulations consistently show more constrained

evolutionary behaviour (figure 2; note the disparity of

time-scales): the rate of evolutionary change is far slower

and is not limited simply by the mutation rate. The evol-

utionary dynamics also show greater variability than their

mean-field counterparts, being strongly influenced by

recent epidemic history. In particular, there is strong

selection against rapid changes in R0. Large reductions in

the value of R0 render the infection unable to survive in

the environment. However, there are also severe penalties

for high transmission rates: an infection with a high trans-

mission rate will spread rapidly through all accessible sus-

ceptibles within a connected cluster. In such a scenario,

there is an increased risk of the host resource becoming

exhausted before enough births are introduced to provide

a link to other susceptible parts of the network (host

‘burn-out’); extinction of the strain lineage is therefore

more likely to occur (Rand et al. 1995; Keeling 2000b).

Thus the dynamics are naturally constrained to evolve

much more slowly than the mutation rate allows.

Within the global networks, average transmission rate

evolves to an asymptotic optimum rate, t < 0.16 (figure

2f ). Short-duration and low-transmission strains are

strongly selected against, as the ability of the disease to

infect would be severely reduced, while very high-trans-

mission strains are not favoured because of the increased

risk of depleting the susceptibles and the consequently

greater risk of extinction. However, an increase in the

birth rate (increased ‘restocking’ of the susceptible

population) should result in a decreased extinction risk,

and in correspondingly reduced penalties for high trans-

mission rates in global networks. Indeed, in additional

simulations performed, where b = 3.9, disease extinction

ceased to occur, the infection became endemic, and very

high transmission rates were selected for.
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Figure 2. Evolution of average strain characteristics from a stochastic mean-field model (a,b), and within local (c,d) and global

(e,f ) networks. For the mean-field model (a) and (b) show the average infectious period (Pinf ) and transmission rate (t)

respectively per iteration across 100 simulations. For the local and global networks, the parameters are averaged over 1000

iterations, and again 100 simulations are used. Although all models use the same mutation rates, the mean-field model shows

far more rapid dynamics—note that the mean-field behaviour is shown over a much shorter time-scale.

By contrast, no such optimum transmission rate is

reached in the local-network simulations within the stan-

dard time-frame simulated. When simulations were

performed over a greater time-period (T = 1 million

iterations) transmission rate steadily increased in local net-

works. Local networks are characterized by a high aggre-

gation of contacts and the forming of small social cliques,

and this attribute generates a strong selective pressure on

infections. As any two connected individuals generally

share some mutual contacts, direct competition between

disease progeny for available susceptible hosts is likely to

be commonplace, causing selection for a more rapid trans-

mission rate. That no optimum transmission rate is

attained in local-network simulations suggests that this

competition is a far stronger selective force than the

increased risk of extinction.

No optimum infectious period is attained in either local-

or global-network simulations, and Pin f gradually increases

throughout the simulation, though at a greater rate in glo-

bal networks. We have found this to hold true even in

simulations of longer duration.
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The differences between the evolutionary behaviours on

local and global networks are clearly the result of the gov-

erning network structure and connection kernel. To

understand how, we must consider how successive infec-

tions, and birth and death processes, alter the available

transmission network of susceptibles. In a typical simul-

ation, there is an initial large epidemic that quickly

depletes the number of susceptibles. During this period,

evolution is rapid, owing to the fast turnover of infection

and the high selective pressures upon disease strains with

parameter values near the initial values. In all of our simul-

ations, disease extinction occurs when the level of suscep-

tibles is driven so low that only very small susceptible

‘clusters’, which cannot support the infection, remain.

The infection at this moment has previously evolved only

in an environment of abundant susceptibles. In simula-

tions where the birth rate is dramatically increased, these

isolated clusters soon become connected, and the disease

can persist.

Under normal circumstances, with subsequent iter-

ations, births gradually increase the number of suscep-
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Figure 3. Characteristics of susceptible clusters at the end of the simulation, t = 100 000. The probability, p, of a susceptible

individual selected at random belonging to a particular cluster size in (a) local- and (b) global-network simulations, across all

replicates. The average number of contacts per individual member of a cluster, n, plotted against the total size of the cluster in

(c) local and (d) global networks.

tibles, and connectivity between susceptibles also

increases. The subsequent reintroduction of an infectious

individual (infectious import; see Appendix A) may cause

a small epidemic that is localized to the cluster of connec-

ted individuals it happens to infect.

The size of the resulting epidemic (if there is one)

depends on the size and the density of these susceptible

clusters, which are determined by three interrelated factors:

the location and magnitude of previous epidemics, the

rates of infectious import and birth, and the contact kernel

determining network connections. Previous epidemics

form ‘barriers’ of recovered individuals between clusters

of susceptibles that may isolate them from subsequent

infection (Rand et al. 1995; cf. Friedman et al. 2000). Iso-

lated susceptibles become more connected with time, as

new susceptibles (births) are added to contact space, con-

necting previously isolated individuals and clusters: birth

rate and infectious-import rate effectively govern the inter-

val between epidemics. How an individual connects to the

existing population will also influence subsequent epi-

demic dynamics, as globally connected individuals will

tend to form a network that facilitates disease spread.

Thus, the disease dynamics influence the available suscep-

tible network, which, in turn, determines future epidemic

behaviour and the evolutionary dynamics of the disease.

Figure 3 shows the likelihood of a reintroduced infec-

tion encountering a suitable cluster of susceptibles for

both network types at the end of the simulations; this

snapshot of the average network is representative of net-

works throughout the latter half of the simulations. In gen-
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eral, the local network develops small clusters of highly

connected individuals (each individual has many suscep-

tible neighbours), whereas the global network develops

larger weakly connected clusters (the average number of

susceptible neighbours is consistently no more than two).

These differences arise primarily from the ease with which

infection spreads across the entire network: in the local

network, where spread is more restricted (figure 1e), clus-

ters may remain isolated and uninfected for longer periods

of time, allowing them to grow. The characteristics of such

susceptible clusters can be used to explain the different

evolutionary forces that are operating.

In the small well-connected clusters of local networks

there are many short loops between individuals adjacent

in contact space. Thus, a strain’s progeny (secondary

infections) are more likely to be in direct competition for

available hosts. This leads to ‘scramble’ competition,

where the most transmissible strains are the fittest: those

progeny with the fastest transmission rates are likely to

produce the most descendants in the next generation. It

is therefore not surprising that high transmission is selec-

ted for, as this is the only way that a strain can outcompete

other strains, even though it confers an increased chance

of extinction, as the strain will infect and ‘burn through’

the cluster in a shorter time. Interestingly, this is contrary

to some well-established views on altruistic behaviour, in

which spatial clustering generally promotes self-sacrifice

(May et al. 1995; van Baalen & Rand 1998).

By contrast, in a global network, progeny are unlikely

to be in direct competition for hosts, so a moderate trans-
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mission rate that balances persistence against infection is

an evolutionarily stable strategy. In all situations, diseases

face a trade-off between leaving a suitable environment for

their progeny (the conservation of susceptible hosts) and

the immediate benefit of producing a large number of sec-

ondary infections (causing rapid depletion of immediately

available susceptibles)—this places a natural constraint on

the evolutionary dynamics. The network structure deter-

mines where the trade-off between long-term and short-

term gains lies. The dominant selective force in global net-

works is the ability to persist, whereas in local networks

ability to infect is most important.

Longer infectious periods are selected for in both local

and global networks; indeed, even when the initial starting

strain has a very long infectious period (Pin f = 100

iterations), selection still acts to increase it. Therefore,

while it is clear that a high transmission rate destroys the

local patch dynamics for future generations, a longer

infectious period has no such disadvantage. The strength

of selection for long infectious periods is, however, very

weak and variable, relative to the strength of selection for

transmission rate, although statistical tests show that the

infectious period is not simply undergoing a random walk.

Therefore, while an unconstrained model predicts the

slow continual increase in Pin f, even small physiological

constraints or trade-offs could easily overcome this.

Figure 4 shows the average direction and strength of

evolution at each parameter value: as such it represents

the evolutionary bias to the random drift caused by

mutation. We stress that these are average quantities; the

actual values are subject to large amounts of stochasticity

and are highly dependent upon the recent epidemic and

evolutionary history. Low values of transmission rate or

infectious period have large evolutionary forces acting

towards increasing values. Both types of network show

some evidence for a stable fixed point (an evolutionarily

stable strategy) but this is strongly influenced by the stoch-

astic nature of the evolutionary dynamics. The global net-

work clearly has a fixed point close to t = 0.1; however, in

this region the selective pressure on the infectious period is

weak and we expect to observe a random drift to ever

higher values. For local networks, there is again a weak

locally stable fixed point, but once stochasticity pushes the

disease parameters away from the immediate vicinity of

this point, we expect to see runaway evolution to ever

higher values. Thus, these evolutionary diagrams support

our earlier conclusions.

A similar pattern for transmission rate and infectious

period is observed when the average number of contacts

per individual is doubled (n = 16). Owing to the increase

in the number of contacts, comparable levels of trans-

mission translate into a doubling of the reproductive ratio

R0. As the number of neighbours increases, so the system

becomes more like the mean-field models, which experi-

ence runaway evolution—so we may predict selection for

higher transmission rates than when n = 8. This is what we

find in global networks: doubling n increases the optimal

transmission rate; however, in the local networks, the evol-

ution of transmission rate is unaffected. These dynamics

can again be attributed to the structure of available sus-

ceptible clusters. Increasing n reduces the number of large

susceptible clusters in the global network, as it is less likely

that they remain isolated, and so are more likely to be
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infected. However, increasing n has little effect on suscep-

tible-cluster properties in local networks, which are

determined largely by the disease dynamics. These

phenomena highlight the complicated relationship

between evolution of pathogen and network in our model.

5. DISCUSSION

Standard homogeneous models for disease dynamics

ignore the heterogeneities and correlations that develop in

the realistic spread of infection across a network of con-

tacts. In mean-field models, those strains with the largest

reproductive ratio dominate, and therefore constraints or

trade-offs need to be included to achieve meaningful evol-

utionary behaviour (Anderson & May 1992; Frank 1992;

Mosquera & Adler 1998; Boots & Sasaki 1999). By con-

trast, we have shown here that the dynamics of infection

through a network place strong constraints on evolution-

ary behaviour, and, in particular, that the form of the net-

work can determine the evolutionarily stable parameters

of a disease.

The history of epidemics largely determines the course

of the evolutionary behaviour of a disease: once a network

pattern has emerged it is difficult for radically different

strains to invade and take over. Essentially, any new

strains with a lower reproductive ratio (and in particular

a lower transmission rate) are immediately outcompeted;

however, although those with a higher reproductive ratio

do better locally, they rapidly deplete the environment of

susceptibles, thereby disadvantaging their progeny. The

balance between immediate reproductive gain and preser-

vation of the local environment for one’s descendants is

central to the evolution of diseases, and may have parallels

in the evolution of other natural enemy systems.

We have considered two distinct forms of network, local

and global, as caricatures of two extreme types of human

contact network structure. The host demography was para-

meterized according to human lifespans and assuming that

network connections were made for life. Assuming a

shorter lifespan or a more rapid turnover of connections

should be reflected in a simple rescaling of all parameters.

Obviously, the true mixing patterns of humans are far more

complex than can be captured by such simple networks,

but the full simulation of realistic scenarios is beyond the

scope of this paper and of current computational power.

However, our results suggest that differences in observed

disease behaviour may be explained by the character of

contact networks, without necessarily invoking other

constraints such as virulence–transmission trade-offs

(Bonhoeffer & Nowak 1994; Messenger et al. 1999).

While the transmission rate is clearly constrained by the

network dynamics, the infectious period consistently

shows a slow increase with a clear deterministic compo-

nent. This evolutionary trend is far slower, however, than

in the mean-field models, suggesting that even a very weak

functional trade-off between transmission rate and infec-

tious period would be sufficient to balance the dynamics.

Evidence for such a trade-off can be observed in sexually

transmitted diseases (Blanchard 2002), although whether

this is the result of physiological constraints, or the result

of evolutionary processes, is not clear. The most obvious

candidates for creating trade-offs would be host coevol-

ution, or the interaction of the disease with the host
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Figure 4. The direction and strength of strain evolution over parameter space for (a) local and (b) global networks. The

arrows show the average evolutionary trajectory of simulations that pass through each region of parameter space. The size of

the arrow indicates the speed of evolution, while the shade indicates the amount of data available and therefore the certainty

of the prediction (black is for the most data).

immune system—both of these factors would add con-

siderably to the computational costs of the model.

In essence, our model predicts that diseases that trans-

mit via networks that consist of many long-distance ran-

dom connections (non-cliquey) should have conservative

transmission rates and long infectious periods. By com-

parison, where a disease transmission network contains

many cliques, diseases should possess very high trans-

mission rates and shorter infectious periods. Examples of

human contact networks that are unambiguously local or

global in character are difficult to identify: real networks

tend to contain the structural characteristics of both local

Proc. R. Soc. Lond. B (2003)

and global networks (see Klovdahl 1985; Klovdahl et al.

1994; Potterat et al. 2002), and links are not usually static

for the lifetime of an individual. More research is required

to evaluate the impact of such attributes on our predic-

tions. In addition, we have found that both the average

number of contacts per individual and the rate of contact

turnover affect selection pressure; the comparison of dis-

ease characteristics found on real networks is likely to be

confounded by differences in these qualities. This suggests

that predicting the likely evolutionary effects of social

change on human diseases may be complicated by the

presence of interacting factors.
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The role of spatial structure in the evolution of organ-

isms, and in particular of infectious diseases, is far from

clear-cut: several facets interact over a range of spatial and

temporal scales. As with many systems, evolutionary fit-

ness is environment-specific and the environment is in

turn modified by the organism. Much more work is neces-

sary before modelling techniques can quantitatively pre-

dict the behaviour of diseases from an evolutionary

perspective, although general patterns have emerged. We

have highlighted the complexities involved in understand-

ing evolution in a spatial context, and have demonstrated

that ignoring the spatial component (as in mean-field

models) leads to large qualitative errors.

This work was supported by the BBSRC and The Royal
Society (M.J.K.). We thank Debora Field and three anony-

mous reviewers for their helpful comments and for greatly
improving this paper.

APPENDIX A

(a) Network construction

A transmission network is comprised of N individuals

(nodes) uniformly distributed across a plane of dimen-

sions ÖN ´ ÖN, thereby ensuring the average density of

individuals remains constant regardless of network size.

The connectivity kernel, K, defines the probability of con-

nection between nodes separated by a distance d:

K = p.expS 2d2

2D2 D ,

where the value of p is chosen such that the expected num-

ber of connections per individual is n, and D determines

the average distance between linked individuals. In this

way local networks (D = 1) and global networks (D = 50)

can be constructed such that they have approximately the

same mean number of connections per node. For an infi-

nitely large population,

p =
n

2pD2
.

In practice, the finite size of the population together with

edge effects will mean that p will have to be increased from

this theoretical prediction. This discrepancy is corrected

by comparing the average number of connections per node

within a trial network (constructed assuming a value of p

for an infinitely large population) to the desired n, and

scaling p accordingly. During a simulation, new nodes

(births or infectious imports) are connected to the existing

network using K, in an identical manner to normal net-

work construction.

(b) Disease dynamics

The model is updated synchronously and therefore

compares to a discrete-time model of infection. Given a

link between a susceptible individual and an infected indi-

vidual, the per iteration probability, p, that infection

passes across the link is

p = 1 2 exp(2t),

where t is the transmission rate of the strain concerned.

The time since infection is tracked so that the infectious

period is modelled as a fixed length, which is an integral

Proc. R. Soc. Lond. B (2003)

number of iterations. After this allotted time individuals

pass into the recovered class, and are removed from the

network as they play no further role in the SIR model.

(c) Strain evolution

Whenever a susceptible host becomes infected, the dis-

ease parameters of the ‘strain’ that colonizes the newly

infected host deviate slightly from those possessed by the

source of infection, thus mimicking the random mutation

of disease parameters. This mutation occurs at each new

infection event. In particular, for a given transmission rate

t, the transmission rate of secondary infections is given by

t9 = t(1 1 «t),

where «t is a Gaussian distribution with mean zero and a

standard deviation of std(t), and for a given infectious per-

iod

P 9in f = Pin f 1 «Pin f,

where «Pin f is a Gaussian distribution with mean zero and

a standard deviation of std(Pin f ). Mutated infectious per-

iods are rounded to the nearest integer and must be posi-

tive or zero. It is more natural to deal with transmission

rate in this form, so that mutation acts multiplicatively,

although this does not affect our results. Thus mutation

alone should lead to an unbiased random walk.

(d) Infected imports

To prevent complete extinction of the disease for the

whole time-period of each simulation, we introduce

infected individuals at a low probabilistic rate, m, at the

end of an iteration and connect them to the host contact

network in a similar manner to births. We assume that

these imports are representative of recent infections by

using running averages of both t and Pin f over the last

100 infections.
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