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Disease Mapping and Spatial Regression with Count Data

Jon Wakefield

Departments of Statistics and Biostatistics, Box 357232, University of Washington, Seattle, Washington 98195-

7232, U.S.A.

Summary. In this paper we provide critical reviews of methods suggested for the analysis of aggregate count

data in the context of disease mapping and spatial regression. We introduce a new method for picking prior

distributions, and propose a number of refinements of previously-used models. We also consider ecological bias,

mutual standardization, and choice of both spatial model and prior specification. We analyse male lip cancer

incidence data collected in Scotland over the period 1975–1980, and outline a number of problems with previous

analyses of these data. A number of recommendations are provided. In disease mapping studies, hierarchical

models can provide robust estimation of area-level risk parameters, though care is required in the choice of

covariate model, and it is important to assess the sensitivity of estimates to the spatial model chosen, and to the

prior specifications on the variance parameters. Spatial ecological regression is a far more hazardous enterprise

for two reasons. First, there is always the possibility of ecological bias, and this can only be alleviated via the

inclusion of individual-level data. For the Scottish data we show that the previously used mean model has limited

interpretation from an individual perspective. Second, when residual spatial dependence is modelled, and if the

exposure has spatial structure, then estimates of exposure association parameters will change when compared

with those obtained from the independence across space model, and the data alone cannot choose the form and

extent of spatial correlation that is appropriate.

Keywords: Bayesian Methods; Ecological Bias; Ecological Correlation Studies; Hierarchical Models; Prior Distri-

butions; Spatial Epidemiology; Standardization.

1. Introduction

In this paper we consider the analysis of population and health counts, aggregated over a set of disjoint

geographical areas; recent reviews of methods for spatial epidemiological data in general may be found in

Lawson et al. (1999), Elliott et al. (2000) and Waller and Gotway (2004). We critically review a number of

approaches for the analysis of spatially aggregated count data, propose a number of refinements to currently-

used models, and describe a procedure for prior choice. We consider two distinct aims: disease mapping to

obtain relative risk estimates for each study area, and spatial regression to estimate the association between

relative risk and potential risk factors. In general, counts in areas that are geographically close will display

residual spatial dependence; residual here acknowledges that known confounders have been included in

the analysis model. In a disease mapping context this dependence may be exploited in estimation of risk

summaries, by smoothing across “neighbouring” areas. In a regression context, the dependence must be

acknowledged since conventional statistical analysis techniques are inappropriate for dependent data.

Disease mapping has a long history in epidemiology (Walter, 2000) as part of the classic triad of per-

son/place/time. A number of statistical reviews are available, see for example Smans and Esteve (1992),

Clayton and Bernardinelli (1992), Mollié (1996) and Wakefield et al. (2000). There are numerous examples

of both cancer atlases, see for example, Kemp et al. (1985) and Devesa et al. (1999), and mapping studies for
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2 Jon Wakefield

specific cancer sites; for example, Toledano et al. (2001) report spatio-temporal trends for testicular cancer,

and Jarup et al. (2002) carry out mapping for prostate cancer. Similarly, numerous ecological correlation

studies have been reported. For example, the contribution of environmental factors to cancer risk have been

summarised by Boffetta and Nyberg (2003), who report evidence from ecological studies including three that

considered mesothelioma and lung cancer in relation to asbestos, eight that investigated lung cancer and

proximity to various industries that produce air pollution, and six which assessed the association between

nitrates in drinking water and stomach cancer. Exposures may be directly measured in air, water or soil, or

be indirect surrogates such as distance from a point source of risk such as an incinerator (e.g. Elliott et al.,

1996) or a foundry (e.g. Lawson and Williams, 1994), or a line source such as a road.

As motivating example we examine incidence rates of lip cancer in males in 56 counties of Scotland, registered

in 1975–1980. These data were originally reported by Kemp et al. (1985). The data consist of the observed

and expected number of cases (based on the age population in each county), a covariate measuring the

proportion of the population engaged in agriculture, fishing, or forestry (AFF) (exposure to sunlight is a risk

factor for lip cancer, and the AFF variable is related to exposure to sunlight), and the standardised morbidity

ratio (SMR), which is the ratio of the observed to expected cases. The AFF variable was read from Figure 3.6

of Kemp et al. (1985) by Clayton and Bernardinelli (1992) and takes one of only 6 values. The data include

the centroids of each area under the Great Britain National Grid projection system. This is a conformal

projection that preserves local shape when moving from three-dimensional to two-dimensional coordinates

for the purposes of mapping, Waller and Gotway (2004) provide details on this and other projections. The

data, along with a figure displaying the labelled centroids of each county, are available as supplementary

material at http://www.biostatistics.oxfordjournals.org.

The structure of this paper is as follows. In Sections 2 and 3 we describe and critique models for disease

mapping and spatial regression, respectively, illustrating their use with the Scottish data. In Section 4 we

analyse a more comprehensive version of these data, obtained from the original source, and we conclude with

a discussion in Section 5.

2. Disease Mapping

2.1. Motivation

Disease mapping is often carried out to investigate the geographical distribution of disease burden. Area

specific estimates of risk may inform public health resource allocation by estimating the disease burden in

specific areas, and the informal comparison of risk maps with exposure maps may provide clues to etiol-

ogy/generate hypotheses. An additional use is to provide a context within which specific studies may be

placed; for example, surveillance will be greatly helped if we have a knowledge of the variability in residual

spatial risk, and the nature of that variability (spatial versus non-spatial), in order to know the “null” dis-

tribution, that is, the distribution in the absence of a “hot spot”. In a similar vein, regression will be aided

if we have a “prior” on the magnitude and forms of the non-spatial and spatial background variability.

2.2. Drawbacks of Simple Approaches

We assume that the study region is partitioned into n non-overlapping, areas. Though the total burden

of disease is of interest, control for confounding allows the residual geographical distribution of risk to be
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(a) SMR estimates
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(b) Smoothed estimates

Fig. 1. Raw and smoothed estimates in 56 counties of Scotland. On this and subsequent maps, the Shetland Isles

(county 8) has been moved south by 100km in order to use space more efficiently

investigated and modelled. Consider a confounder with K strata and let Nik and Yik be the population size

and number of cases in area i, stratum k, i = 1, ..., n, k = 1, ..., K. A starting model is E[Yik|pik] = Nikpik,

where pik is the probability of disease in area i and confounder stratum k. For small-area studies in particular,

the estimation of n × K probabilities is not feasible, and for a rare disease it is usual to assume that the

effect of being in area i is to multiplicatively change “reference” stratum specific risks, pk, by a constant, i.e.

pik = θi × pk. (1)

The assumption Yik|pik ∼ Poisson(Nikpik) leads to

Yi|θi ∼ Poisson(Eiθi) (2)

where Ei =
∑K

k=1 Nikpk are the expected numbers of cases in area i, based on the confounder-specific

populations. This procedure is known as indirect standardization.

The SMR is given by SMRi = Yi/Ei, and is an estimate of the relative risk associated with area i, and

corresponds to the maximum likelihood estimator (MLE) of θi in model (2), i = 1, ..., n. Figure 1(a) shows

the SMRs for the Scottish lip cancer data, and indicates a large spread with an increasing trend in the south-

north direction. The variance of the estimator is var(SMRi) = SMRi/Ei, which will be large if Ei is small.

For the Scottish data the expected numbers are highly variable, with range 1.1–88.7. This variability suggests

that the extreme SMRs may be based on small expected numbers, many of the large, sparsely-populated

rural areas in the north have high SMRs.

Maps showing p-values of exceedence of 1 are even less informative than maps of SMRs. Although they

account for sample size they do not show the extent of the risk, and areas with large populations may

provide statistically significant SMRs, even for small exceedences of 1.
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4 Jon Wakefield

The above considerations led to methods being developed to smooth the SMRs using random effects models

that use the data from the totality of areas to provide more reliable estimates in each of the constituent

areas. We first describe models that do not use spatial information (Tsutakawa et al., 1985; Manton et al.,

1989) before turning to models that allow both spatial and non-spatial variability (Clayton and Kaldor,

1987; Besag et al., 1991).

2.3. Non-Spatial Models

We begin by describing a simple Poisson-Gamma two-stage model that offers analytic tractability and ease

of estimation, and is useful for exploratory analyses, for example, to decide on the form of the area-level

risk-exposure model. At the first stage assume the likelihood is given by

Yi|θi, β ∼ind Poisson (Eiµiθi) , (3)

where µi = µ(xi, β) describes a regression model in area-level covariates xi. At the second stage assume

that across the map the deviations of the relative risks from the mean, µi, are modelled by

θi|α ∼iid Ga(α, α), (4)

a gamma distribution with mean 1, and variance 1/α. The marginal distribution of Yi|β, α is negative

binomial with mean and variance

E[Yi|β, α] = Eiµi, var(Yi|β, α) = E[Yi|β, α](1 + E[Yi|β, α]/α), (5)

so that the variance increases as a quadratic function of the mean, and the scale parameter α can accom-

modate “overdispersion”. This form is substantively more reasonable than the naive Poisson model; it is

important to consider excess-Poisson variability resulting from unmeasured confounders, data anomalies in

numerator and denominator, and model misspecification (Wakefield and Elliott, 1999, provide a discussion

of these aspects).

A fully Bayesian approach to inference would consider the posterior distribution p(θ1, ..., θn, β, α|y) and

carry out inference via the marginal distributions p(θi|y). Unfortunately the latter are unavailable in closed

form, but an empirical Bayes approach obtains estimates β̂, α̂ and then proceeds as if these are known,

i.e. considers p(θ1, ..., θn|β̂, α̂, y). Estimates β̂, α̂ usually correspond to the MLEs from
∏n

i=1 Pr(Yi|β, α).

If the aim is to gain clues to unexplained variability, θi may be examined; here we report the relative

risk, RRi = θiµi, where relative is with respect to Ei. Using Bayes theorem the conditional posterior is

θi|y, β̂, α̂ ∼ Ga(α̂ + yi, α̂ + Eiµ̂i), yielding empirical Bayes estimates

R̂Ri = E[RRi] × (1 − wi) + SMRi × wi, (6)

a weighted combination of the estimate E[RRi] = µ̂i × E[θi] = µ̂i, and the SMR in area i. The weight

wi =
Eiµ̂i

α̂ + Eiµ̂i
. (7)

on the observed SMR increases as Ei increases so for areas with large populations the data dominate. If α is

large then the random effects have a tight spread, and there is more shrinkage since SMRs that are far from

unity are inconsistent with the total collection of estimates. This behavior illustrates both the potential

benefits and hazards of smoothing; the estimates will be less variable than the SMRs, but an outlying
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estimate that is not based on a large expected number, will be shrunk, and we may miss an important

excess. Conlon and Louis (1999) provide a discussion of the inherent bias due to shrinkage of random effects

estimators.

The above model is subtly different from the alternative Yi|RRi ∼ind Poisson(Ei × RRi) with RRi ∼ind

Ga(α?µi, α
?) which has mean E[RRi] = µi and variance var(RRi) = µi/α?. The subtlety is that this model

implies first two moments of E[Yi|β, α?] = Eiµi and var(Yi|β, α?) = µi(1+Ei/α?), so that the mean coincides

with (5), but the variance differs. For this model empirical Bayes estimates differ from (6) and are given by

R̂Ri = µ̂i ×
α̂?

α̂? + Ei
+

yi

Ei
× Ei

α̂? + Ei
= E[RRi] × (1 − w?

i ) + SMRi × w?
i

where w?
i = Ei/(α̂? + Ei). One would be concerned if the two models gave significantly different esti-

mates, revealing a general issue: there are multiple choices for the manner in which random effects may be

incorporated, and the data will often be insufficiently numerous to decide between competing options.

A Poisson-lognormal non-spatial random effect model is given by:

Yi|β, Vi ∼ind Poisson(Eiµie
Vi), Vi ∼iid N(0, σ2

v) (8)

where Vi are area-specific random effects that capture the residual unexplained log relative risk in area i,

i = 1, ..., n. The marginal distribution of this model is not available in closed form though the variance

agrees with (5); the addition of spatial random effects is straightforward, however. Empirical Bayes is not

so convenient for this model, and so we resort to a fully Bayesian approach, for which prior distributions are

required.

2.4. Prior Choice for Non-Spatial Model

For a rare disease, a log-linear link is a natural choice: log µ(xi, β) = β0 +
∑J

j=1 βjxij , where xij is the value

of the j-th covariate in area i. For regression parameters β = (β0, β1, ..., βJ ), an improper prior p(β) ∝ 1

may often be used, but such a choice may lead to an improper posterior (an example with a linear link

is given in Section 3.8). If there are a large numbers of covariates, or there is high dependence amongst

the elements of x, then more informative priors will be beneficial. In this case it is convenient to specify

lognormal priors for positive parameters exp(βj), since one may specify two quantiles of the distribution,

and directly solve for the two parameters of the lognormal. Denote by LN(µ, σ) the lognormal distribution

for a generic parameter θ with E[log θ] = µ and var(log θ) = σ2, and let θ1 and θ2 be the q1 and q2 quantiles

of this prior. Then it is straightforward to show that

µ = log(θ1)

(
zq2

zq2
− zq1

)
− log(θ2)

(
zq1

zq2
− zq1

)
, σ =

log(θ1) − log(θ2)

zq1
− zq2

. (9)

As an example, suppose that for the ecological relative risk eβ1 we believe there is a 50% chance that

the relative risk is less than 1, and a 95% chance that it is less than 5; with q1 = 0.5, θ1 = 1.0 and

q2 = 0.95, θ2 = 5.0, we obtain µ = 0 and σ = log 5/1.645 = 0.98.

It is not straightforward to specify a prior for σv, which represents the standard deviation of the log residual

relative risks, a difficult parameter to interpret epidemiologically. The choice of a gamma distribution,

Ga(a, b), for the precision τv = 1/σ2
v, is convenient since it produces a marginal distribution for the residual

relative risks in closed form. Specifically the two-stage model

Vi|σv ∼iid N(0, σ2
v), τv = σ−2

v ∼ Ga(a, b)
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6 Jon Wakefield

produces a marginal distribution for Vi which is t2a(0, b/a), a Student’s t distribution with 2a degrees

of freedom, location zero, and scale b/a; this is equivalent to the residual relative risks following a log t

distribution. To determine a and b we specify the range exp(±R) within which the residual relative risks lie

with probability q, and use the relationship ±t2a
q/2

√
b/a = ±R, where t2a

q is the q-th quantile of a Student t

random variable with 2a degrees of freedom, to give b = R2a/(t2a
q/2)

2. For example, if we assume a priori that

the residual relative risks follow a log Student t distribution with 2 degrees of freedom, with 95% of these

risks falling in the interval (0.5,2.0), we obtain the prior, τv ∼ Ga(1, 0.0260), an exponential distribution. In

terms of σv this results in (2.5%, 97.5%) quantiles of (0.084,1.01) with posterior median 0.19.

It is important to assess whether the prior allows all reasonable levels of variability in the residual relative

risks, in particular small values should not be excluded. As pointed out by Kelsall and Wakefield (1999) the

prior Ga(0.001,0.001), which has previously been suggested, should be avoided for this reason; this choice

corresponds to relative risks which follow a log t distribution with 0.002 degrees of freedom.

2.5. Non-Spatial Analysis of the Scottish Lip Cancer Data

Figure 2 shows relative risk estimates from a variety of models, with the SMRs on the left, referenced as

position 0. At position 1 the empirical Bayes estimates obtained without the use of the covariate AFF are

displayed. The weights on the SMR, (7), range between 0.45 and 0.99, with median 0.83. For these data the

residual variability is large, from (4) the standard deviation of the random effects is 1/
√

α, and is estimated

as 0.73, with 90% interval for residual relative risks (0.16,2.4).

In position 2 empirical Bayes estimates using a log-linear model in AFF, log µi = β0 + β1xi, are displayed.

Four of the counties (4, 6, 14 and 32) have proportion in AFF equal to 0.24 (the highest value) and we see

that the estimates for these counties are all moved upwards relative to the no covariate model (position 1)

when the covariate is added to the model. The latter is worrying, and we see the reason in Figure 3; the

log-linear model (dashed line) does not fit the data well for large values of AFF. This suggests that we use

a more flexible model; exploratory work suggests the cubic form

log µi = β0 + β1(xi − x) + β2(xi − x)2 + β3(xi − x)3. (10)

Figure 3 shows that this cubic model provides a better fit to the data (dotted line), and in particular flattens

off for larger values of x. With the linear and cubic covariate models the standard deviation of the random

effects are 0.58 and 0.53, respectively. We might expect the standard deviation to be reduced in size when

we add an important covariate but this does not have to happen, for an explanation see Price et al. (1996).

In position 3 of Figure 2 estimates under the cubic model are plotted, and we see that for counties 4, 6, 14

and 32 the estimates appear more reasonable. This illustrates the importance of deciding how much local

smoothing is appropriate. A similar issue is relevant to the extent and nature of spatial smoothing.

We now report a fully Bayesian version of the normal model, (8), with log-linear cubic model (10) using

Markov chain Monte Carlo (MCMC). The covariates are centered in (10) to reduce dependence in the

posterior distribution, thereby reducing the dependence in the Markov chain. Flat priors were placed on

β0, β1, β2, β3 and the previously-discussed gamma prior, Ga(1, 0.0260), was assumed for σ−2
v .

We see that the estimates under the empirical Bayes gamma and fully Bayesian lognormal model, at positions

3 and 4 respectively, each with cubic mean model, are very similar, illustrating that the most important

aspect is not the inferential method or the choice of gamma or lognormal random effects, but a judicious

choice of the covariate model. We define the random variables exp(±1.96 × σv) as the endpoints of a 95%

http://biostats.bepress.com/uwbiostat/paper286
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Fig. 2. Relative risk estimates for Scottish lip cancer data: 0 denote the SMRs; 1 the empirical Bayes non-spatial

estimates without the use of AFF; 2 the empirical Bayes non-spatial estimates with a log-linear model in AFF; 3 the

empirical Bayes non-spatial estimates with a log-linear cubic model in AFF; 4 the fully Bayes non-spatial estimates with

a log-linear cubic model in AFF; 5 the joint model with a log-linear cubic model in AFF; 6 the initial ICAR model with a

log-linear cubic model in AFF; 7 the refined ICAR model with a log-linear cubic model in AFF. Plotting symbol is county

number.
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Fig. 3. Plot of Y/E versus proportion in AFF, x, with plotting symbol county number. Solid line corresponds to a model

with identity link and linear in x; dashed line to a log link and linear in x; and dotted line to a log link and cubic in x.

interval for the residual relative risks. Posterior mean estimates of these endpoints are (0.35,2.96), showing

that the posterior interval is considerably wider than the prior interval of (0.5,2.0). A 95% posterior interval

for σv is (0.40,0.73) with median 0.55.

2.6. Spatial Models

In general we might expect residual relative risks in areas that are “close” to be more similar than in areas

that are not “close”, and we would like to exploit this information in order to provide more reliable relative

risk estimates in each area. This is analogous to the use of a covariate x, in that areas with similar x

values are likely to have similar relative risks. Unfortunately the modelling of spatial dependence is much

more difficult since spatial location is acting as a surrogate for unobserved covariates; we need to choose an

appropriate spatial model, but do not directly observe the covariates whose effect we are trying to mimic.

We first consider the model

Yi|β, γ, Ui, Vi ∼ind Poisson(Eiµie
Ui+Vi) (11)

with

log µi = g(Si, γ) + f(xi, β), (12)

where Si = (Si1, Si2) denotes spatial location, represented as the centroid of area i, and g(Si, γ) is a

regression model that we may include to capture large-scale spatial trend. The random effects Vi|σ2
v ∼iid

N(0, σ2
v) represent non-spatial contributions to the overdispersion, and Ui spatial contributions. We describe

two forms for the latter.
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We may assume that U = (U1, ..., Un) arise from a zero mean multivariate normal distribution with variances

var(Ui) = σ2
u and correlations corr(Ui, Uj) = ρdij where dij is the distance between the centroids of areas i

and j, and ρ is a parameter that determines the extent of the correlation. This model is isotropic since it

assumes that the correlation is the same in all spatial directions. We refer to this as the joint model, since

we have specified the joint distribution for U .

To define a conditional model we need to specify a rule for determining the “neighbours” of each area.

A number of authors have taken areas i and j to be neighbours if they share a common boundary. This

is reasonable if all regions are of similar size and arranged in a regular pattern (as is the case for pixels

in image analysis where these models originated), but is not particularly attractive otherwise. Various

other neighbourhood/weighting schemes are possible, for example Cressie and Chan (1989) assumed the

neighbourhood structure was a function of the distance between area centroids. For area i we let ∂i denote

the indices of the set of neighbours of area i. Besag et al. (1991) suggested a model that included a non-spatial

and a spatial random effect and assigned the spatial random effects an intrinsic conditional autoregressive

(ICAR) prior. Under this specification Ui|Uj , j ∈ ∂i ∼ N
(
U i,

ω2

u

mi

)
, where mi is the number of neighbours

of area i, and U i is the mean of the spatial random effects of these neighbours. The parameter ω2
u is a

conditional variance and its magnitude determines the amount of spatial variation. The variance parameters

σ2
v and ω2

u are on different scales, σv is on the log relative risk scale while ωu is on the log relative risk

scale, conditional on Uj , j ∈ ∂i. Hence they are not comparable, in contrast to the joint model in which σu

is on the same scale as σv. Notice that if ω2
u is “small” then although the residual is strongly dependent

on the neighbouring value the overall contribution to the residual relative risk is small. This is a little

counterintuitive but stems from spatial models having two aspects: the extent and total amount of spatial

dependence, and in the ICAR model there is only a single parameter controlling both aspects. In the joint

model the extent of spatial dependence is determined by ρ and the total amount by σ2
u. A non-spatial

random effect should always be included along with ICAR random effects since this model cannot take a

limiting form that allows non-spatial variability; in the joint model with Ui only, this is achieved as ρ → 0.

If the majority of the variability is non-spatial, inference for the ICAR model might incorrectly suggest that

spatial dependence was present. Leroux et al. (1999) showed via a simulation study that if the data were

truly independent, a model with ICAR random effects and no non-spatial random effects produced a serious

overestimation of ω2
u, which led to very poor efficiency in the estimation of regression coefficients. In terms

of implementation, both models require MCMC, but the conditional model needs far less computation than

the joint model, for which n × n matrix inversions are typically necessary at each iteration.

Unfortunately, both the joint and conditional models suffer from a level of arbitrariness in their specification

because the areas are not regular in shape or constant in size in a spatial epidemiological setting. For

both models, normality of random effects can be replaced by other choices such as Laplacian and Student t

distributions; see the discussion of Besag et al. (1991) and Best et al. (1999). The simple correlation structure

described for the joint model can be extended to more complex forms, the Matérn class for example; see

Matérn (1986), and the discussion of Diggle et al. (1998). For the Scottish data, in common with many

applications, the data are spatially sparse, and little can be learnt about even a single parameter, hence we

do not proceed to more complex forms here. Prior specification on the variances and spatial parameters

also requires careful thought, as we discuss in the next section. Various other residual spatial models have

been proposed, see for example, Cressie and Chan (1989), Besag et al. (1991), Clayton et al. (1993), Diggle

et al. (1998), Leroux et al. (1999), Best et al. (2000), Mugglin et al. (2000), Knorr-Held and Raßer (2000),

Kelsall and Wakefield (2002), Fernández and Green (2002), Christensen and Waagepetersen (2002) and

Green and Richardson (2002). Richardson (2003) provides an excellent review of this literature. A number
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10 Jon Wakefield

of comparisons between spatial models have been carried out, see for example Lawson et al. (2000) and Best

et al. (2005).

We have concentrated on Bayesian spatial models, but a number of frequentist approaches are possible,

though have not been extensively investigated. Thurston et al. (2000) describe a negative binomial additive

model, that potentially offers a useful alternative to the models described here; the negative binomial aspect

would allow for overdispersion, while the generalised additive model allows flexible modelling of latitude

and longitude to model non-small scale spatial variability. Recent work on generalised linear models with

splines may be applicable also, see for example Lin and Zhang (1999) and Gu and Ma (2005). Allowing for

small-scale residual spatial dependence in these models would be desirable, however.

2.7. Prior Choices for Spatial Models

Previously, priors have been specified for each of the variance components separately, but it is more practical

to represent beliefs about the total variability. Proper priors are required for the parameters of the spatial

model, see Berger et al. (2001) for a discussion in the context of the joint model.

For the joint model in which a multivariate normal distribution is assigned to U , we have Vi ∼iid N(0, σ2
v)

and, independently, Ui ∼iid N(0, σ2
u) so that the residual relative risk eVi+Ui is lognormal with parameters

0 and σ2
v + σ2

u. If we specify inverse gamma priors for σ2
v and σ2

u, the implied prior for σ2
v + σ2

u is not inverse

gamma so that we cannot easily control the total residual relative risk. We write the total precision as

τT = (σ2
v + σ2

u)−1, and as in Section 2.4 specify τT ∼ Ga(a, b) so that marginally we have a log Student’s

t distribution for the total residual relative risks. We let p = σ2
u/(σ2

u + σ2
v) represent the proportion of the

total residual variation that is attributable to the spatial component, and assign a beta prior, Be(c, d), to p,

and transform from (σ2
T , p) to (σ2

v , σ2
u) via

σ2
v = (1 − p)τ−1

T = (1 − p)(σ2
v + σ2

u)

σ2
u = pτ−1

T = p(σ2
v + σ2

u).

This prior allows us to control the amount of total residual variability, a quantity for which prior knowledge

is available, and induces positive dependence in the joint prior for (σ2
v , σ2

u).

Rather than consider the parameter ρ, we specify a lognormal prior, using equations (9), for the distance at

which the correlations fall to a half, d1/2 = log 2/ log ρ. For example, if we believe there is a 5% chance that

the correlation falls to a half in less than 4km, and a 95% chance that it falls to a half in less than 125km

we obtain d1/2 ∼ LN(3.11, 1.052).

Given its conditional interpretation, it is not straightforward to specify a prior for the ICAR parameter ω2
u.

Specifying an ICAR model for the spatial effects does not define a proper n-dimensional joint distribution,

and none of the marginal distributions for Ui exist. Rather

p(U |ω2
u) ∝ (ω2

u)−(n−1)/2 exp

[
−1

2
UTQU

]
= (ω2

u)−(n−1)/2 exp


− 1

2ω2
u

∑

i<j

(Ui − Uj)
2


 , (13)

where Q is the n × n matrix with, for i 6= j, Qij = −1/ω2
u, if areas i and j are neighbours and Qij = 0

otherwise, and Qii = mi/ω2
u.

For prior specification we follow an approximate strategy and consider the n − 1, random variables Z =

(Z1, ..., Zn−1) where Zi = Ui−Un, i = 1, ..., n−1. Hence Z = AU , where A = [I|-1], I is the (n−1)×(n−1)
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Fig. 4. Priors for the joint spatial model. First row: univariate and joint marginals for σv and σu. Second row: the

residual relative risk exp(Vi + Ui) margin, the distance at which correlations fall to a half, d1/2, and the correlation

between areas whose centroids are 10km apart, ρ10.

identity matrix, and -1 is an (n− 1)× 1 vector of -1’s. The joint distribution of Z exists, and is an (n− 1)-

dimensional normal distribution with mean zero and variance-covariance matrix AQ−1A
T

with A = [I|0]T a

generalized inverse of A, and 0 the (n−1)×1 vector of 0’s; Besag and Kooperberg (1995) give further details,

see Lemma 3.1 and Corollary 3.1. The marginal variance for Zi is var(Zi) = aiω
2
u, where the constants ai are

determined by the neighbourhood structure, and are the diagonal elements of AQ−1A
T

. We let σ2
z = aω2

u

represent the average marginal variance, and specify a prior for σ2
z, which induces a prior for ω2

u. Once the

calibration between ω2
u and σ2

z has been carried out we specify priors for τT = (σ2
v +σ2

z)
−1 and p, as described

for the joint model, and then take σ2
v = (1 − p)τ−1

T and ω2
u = pτ−1

T /a. This procedure is approximate in a

number of ways, we have considered Z rather than U , and Ui is not marginally normally distributed, but

we have found it more useful than previously available prescriptions; see for example, Bernardinelli et al.

(1995).

2.8. Spatial Models for the Scottish Lip Cancer Data

We assign improper flat priors to each element of β, and for the joint spatial model assume that τT ∼
Ga(1, 0.0260), p ∼ Be(1, 1) and d1/2 ∼ LN(3.11, 1.052). Figure 4 shows smoothed marginal densities based

on samples from these priors, including induced quantities of interest such as the residual relative risk,

exp(Ui + Vi), and ρ10, the correlation at a distance of 10km. The induced dependence between σv and σu is

apparent.

For the ICAR model the same priors were assumed and we set ω2
u = pτ−1

T /a where a = 1.164 for the Scottish

geography with a common boundary neighbourhood scheme. This neighbourhood scheme is not particularly

appealing for Scotland because of the irregularity of the areas. Following other authors (e.g. Thomas et

al. 2000) we initially assume that the three islands, which have no common boundary neighbours, only have

a non-spatial random effect.
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(a) Threshold = 2
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(b) Threshold = 3
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(c) Threshold = 4

Fig. 5. Posterior probabilities of exceedance of different thresholds under the joint model.

Positions 5–7 of Figure 2 show estimates from spatial models, each with the cubic model in AFF. In the

non-spatial model we have shrinkage to the overall regression model but for the spatial model we have, in

addition, local smoothing so that estimates can move away from the regression model.

A striking feature of Figure 2 is the differences in the estimates for areas 8 and 11 under the joint spatial

(position 5) and the ICAR (position 6) models. The explanation is that for the three islands without

neighbours under the ICAR formulation, there are only non-spatial contributions to the relative risk. Table

1 reports posterior summaries for the parameters of the random effects distributions, and shows that the

majority of the total variability is spatial for these data. Hence we see large shrinkage for the three islands

since we are assuming a common non-spatial model across islands and non-islands, resulting in too much

shrinkage for the islands. There are a number of possibilities for refining the model. One is to assume

Vi ∼iid N(0, τ−1
T ) for the islands so that we have the same total variability as non-islands, but with all of

this variability assumed to be non-spatial. Given our parameterization of the prior it is straightforward to

fit this model. The resultant estimates are shown in position 7, and differ little from those in position 6,

which is reassuring. This model may be useful in general circumstances in which there are areas which have

no neighbours due to physical boundaries. Further possibilities include defining neighbours for the islands

as the nearest points of the mainland (or the nearest island), or assuming a distinct non-spatial distribution

for the islands, with only three islands this option is not feasible here, however.

Figure 1(b) shows relative risk estimates under the joint model; the smoothness compared to the SMRs

in Figure 1(a) is apparent. Under a Bayesian sampling-based approach it is straightforward to carry out

inference for functions of interest. As an illustration, Figure 5(a)–(c) show the posterior probabilities that

the relative risk in each area exceeds the values 2, 3 and 4. We see a number of areas with high probabilities,

suggesting that, in a serious investigation, these be examined more closely to discover the characteristics of

the individuals, or health hazards that are present, in these areas to explain these excesses. Such plots are

also useful for reflecting the uncertainties inherent in smoothed maps.

In Table 1 we examine the sensitivity of estimates of the non-spatial and spatial contributions of residual

relative risk, by comparing the original gamma prior for τT to the alternative Ga(1, 0.1399). This prior gives

relative risks that follow a log student t distribution with 2 degrees of freedom, and fall within the range
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Table 1. Sensitivity of spatial model parameters to prior choice for

τT = (σ2

u + σ2

v)−1, p is the proportion of the total variability that is

spatial.

Spatial Posterior median

Model
Prior Specification

σv σu p d1/2 (km)

Joint τT ∼ Ga(1, 0.0260) 0.23 0.48 0.82 79

Joint τT ∼ Ga(1, 0.1399) 0.24 0.49 0.82 80

ICAR τT ∼ Ga(1, 0.0260) 0.23 0.53 0.85 –

ICAR τT ∼ Ga(1, 0.1399) 0.22 0.54 0.86 –

(0.2,5) with probability 0.95. We see that across these prior scenarios the majority of the residual variability,

82%–86%, is explained by the spatial component. Overall there is little sensitivity of the parameters in Table

1 to the priors considered, though the joint and ICAR models can give quite different estimates in particular

areas. Interval estimates for d1/2 are very wide, reflecting the lack of information on the strength of the

residual spatial variability. For example, for the prior choice in row 1 of Table 1, a 95% interval for d1/2 is

(32km,243km).

2.9. Conclusions

The preferred model here would be that which includes a cubic model in AFF and a spatial component,

since the association with AFF is strong and there is significant residual spatial dependence. A full analysis

would examine the sensitivity of the relative risk estimates to the prior specifications. There is a large

amount of residual variability for these data, which is not surprising since we have no information on risk

factors such as smoking, alcohol and diet. Although it is important to consider models that include residual

spatial dependence for small-area studies, empirical Bayes non-spatial models are very useful for exploratory

purposes, particularly for choosing an appropriate mean model. Estimates from these models, along with

the SMRs, provide baseline estimates which may be compared with those from spatial models.

3. Spatial Regression

Spatial regression differs from disease mapping in that the aim is to estimate the association between risk

and covariates, rather than to provide area-specific relative risk estimates. This is a crucial distinction which

has important implications for modelling both the mean function and the residual variability.

3.1. Drawbacks of Approaches Under Independence

In the usual implementation of regression models the standard errors are calculated under the assumption

that the response data are independent, after control for known covariates. In a spatial context, and partic-

ularly when the areas are small, one would expect “residual” dependency between counts in areas that are

geographically close, due to unmeasured risk factors, or errors in the data, that have spatial structure.
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3.2. Non-Spatial Models

We begin by fitting models with no spatial dependency, in order to see the subsequent effect of including

such dependency. A naive starting point is the Poisson regression model Yi|β ∼ Poisson(Eiµi), where

µi = µ(xi, β), for i = 1, ..., n. As discussed in Section 2.3, this model will almost always be inappropriate for

spatial count data, since the Poisson model does not have a variance parameter. An easy way of extending

this model is to use quasi-likelihood (McCullagh and Nelder, 1989) and specify the first two moments:

E[Yi|β] = Ei exp(β0 + β1xi), var(Yi|β) = κ × E[Yi|β], (14)

κ represents the level of non-Poisson variability and fitting is straightforward with identical point estimates

to the Poisson model, and standard errors multiplied by κ1/2. This model does not assume a distribution

for the data, and so is not helpful in the context of disease mapping where prediction is required, though

Kriging approaches for non-Gaussian data may be useful. The parametric disease mapping models described

earlier, in particular the Poisson models with gamma, (4), and lognormal, (8), random effects models may

also be used in a regression setting.

3.3. Non-Spatial Regression Models for the Scottish Lip Cancer Data

The exposure variable AFF only takes one of six values since it was read from a map key, and hence AFFi is

measured with error and, in theory, an errors-in-variables model could be built, based on the widths of the

cut-points. In common with the other authors who have examined these data, including Clayton and Kaldor

(1987), Clayton and Bernardinelli (1992), Breslow and Clayton (1993), Yasui and Lele (1997), Leroux et al.

(1999), Conlon and Louis (1999), Leroux (2000), Lee and Nelder (2001), Banerjee et al. (2004) and Waller and

Gotway (2004)) we begin by assuming the log-linear model log µ(xi, β) = β0 +β1xi. We provide a discussion

of the appropriateness of this model in Section 3.7, where we also provide a more careful interpretation of

the coefficients of the model; the ecological interpretation is that exp(β1) is the multiplicative change in risk

between an area with all individuals in AFF, and another area with no individuals in AFF.

Table 3 gives estimates from a number of regression models, in all cases d1/2 ∼ LN(3.11, 1.052). The simple

Poisson regression model gives an estimate of 7.4 so that the area-level multiplicative difference in risk

between areas with proportion in AFF 0.24 and 0 (the range of the observed data) is exp(7.4 × 0.24) = 5.9.

Model (14) gives κ̂ = 4.9, a considerable amount of overdispersion, giving a more than doubling in the

standard error. The negative binomial parametric version of this model with first two moments (5) gives a

slight reduction in the size of the coefficient and a very similar standard error.

Plots of AFF versus Eastings and Northings were examined, and there is spatial structure in the exposure,

Figure 6, with a skewed U-shaped trend in the south-north direction, with low values in the heavily-populated

urban areas in the Glasgow region, and a general increase with northings. Leroux et al. (1999) and Ler-

oux (2000) include northings (latitude) in the log-linear model. When we include the Northing projection

centroids in the model the AFF coefficient is reduced, because of the south-north trend in exposure. The

inclusion of eastings gave a far smaller change since there is little east-west gradient in the exposure surface.

The decision of whether to include a large-scale trend in the risk surface is a difficult one in a regression

setting since exposures of interest will often have spatial structure and so estimates of relative risks of interest

will in general change. Non-removal of the trend will attribute any such trend to the exposure estimate, and

may also invalidate the assumption of stationarity of spatial models such as the joint specification. Ideally

the choice will be based on epidemiological grounds; if it believed that the trend is due to plausible unmea-
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Table 2. Estimates and standard errors for ecological regression coefficient, β1, in log-linear

model in AFF.

Model Further specifications Estimate St. Err.

Poisson – 7.4 0.60

Quasi-likelihood – 7.4 1.3

Quasi-likelihood Northings 5.5 1.2

Quasi-likelihood Eastings and northings 5.6 1.2

Negative binomial – 7.2 1.3

Poisson lognormal σ−2

v ∼ Ga(1, 0.0260) 6.8 1.5

Poisson lognormal σ−2

v ∼ Ga(1, 0.0260), β1 ∼ N(0, 4.21) 6.1 1.4

Poisson Joint τT ∼ Ga(1, 0.0260) 3.4 1.3

Poisson Joint τT ∼ Ga(1, 0.1399) 3.4 1.3

Poisson Joint τT ∼ Ga(1, 0.0260) 3.5 1.3

Poisson ICAR τT ∼ Ga(1, 0.0260) 4.9 1.3

Poisson ICAR τT ∼ Ga(1, 0.1399) 4.9 1.4

100 200 300 400 500

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Eastings (km)

No
rth

ing
s (

km
)

0
0.

02
4

0.
04

8
0.

07
2

0.
09

6
0.

12
0.

14
0.

17
0.

19
0.

22
0.

24

Fig. 6. Map of the exposure, percentage individuals employed in agriculture, fishing and farming (AFF).
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sured factors such as socio-economic status then the trend should be included, though it is clearly preferable

to have a direct measure of the variable responsible for the trend.

We now turn to the Poisson-lognormal model, (8). We choose improper flat priors on β0 and β1, and a

Ga(1,0.0260) prior on σ−2
v . This yields a posterior mean and standard deviation of 6.8 and 1.5, showing

reasonable agreement with the comparable quasi-likelihood/negative binomial models. To illustrate the use

of a proper prior on β1, suppose we believe that the 50% and 95% points of the relative risk between areas

with 10% and 0% in AFF are 1 and 2. This yields a normal prior for β1 of N(0,4.21), and a posterior mean

and standard deviation of 6.1 and 1.4, illustrating the effect of the prior in reducing both the estimate of

the association, and the standard error.

3.4. Spatial Models

Unfortunately there are currently no simple ways of fitting frequentist fixed effects, non-linear models with

spatially dependent residuals, and so we concentrate on random effects models, and the form given in (11)

and (12), with no large-scale trend. It would be desirable to perform sandwich estimation in a spatial

regression setting, but unfortunately the non-lattice nature of the data does not easily allow any concept of

replication across space, as was used by Heagerty and Lumley (2000) in the case of lattice data.

3.5. Spatial Regression Models for the Scottish Lip Cancer Data

We specify identical priors for σ2
v, σ2

u, d1/2 and ω2
u as in the disease mapping analyses. Improper flat priors

were placed on β0 and β1.

Table 3 shows that the estimated relative risks are greatly attenuated under each of the spatial models.

The explanation is spatial dependence in AFF, and in the disease counts. The choice of the level of spatial

smoothing is a difficult one without knowing the true spatial dependence model. Here, the use of an

informative prior distribution based on another study region might be useful. It is interesting to see that

the standard error is reduced when spatial dependence is acknowledged, perhaps in conflict with intuition,

Wakefield (2003) provides more discussion of this issue. Under the first joint model in Table 3 the posterior

5%, 50%, 95% quantiles of the distance at which correlations fall to a half are (35km,72km,199km); the prior

5%, 50%, 95% quantiles are (4km, 22km, 125km), again illustrating that there is very little information in

the data on the range of the correlation, though the posterior is shifted to the right, relative to the prior.

Spatial variation accounts for 77% of the total, with posterior means for σv and σu of 0.26 and 0.52.

3.6. Ecological Bias

There is a vast literature describing sources of ecological bias, see for example, Richardson et al. (1987),

Piantadosi et al. (1988), Greenland and Morgenstern (1989), Greenland (1992), Greenland and Robins

(1994), Morgenstern (1998) and Wakefield (2003). Ecological bias occurs because of within-area variability

in exposures and confounders, and there are a number of distinct consequences of this variability; we discuss

pure specification bias, confounding and standardization.
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3.6.1. Pure Specification Bias

So-called pure specification bias arises because a nonlinear risk model changes its form under aggregation.

To illustrate, we specify a model at the level of the individual and then aggregate to determine the implied

ecological form. Let Yij denote the individual binary disease outcome with Yij = 0/1 representing non-

case/case, and xij the exposure of individual j in area i, i = 1, ..., n, j = 1, ..., Ni. For simplicity we assume

a univariate exposure and no confounders and let p(α, x) denote the risk for an individual with exposure

x as a function of parameters α. The individual outcome, Yij , is Bernoulli with probability of disease pij ,

written as Yij |xij ∼ind Bern(pij). The implied aggregate (average) risk is

pi =
1

Ni

Ni∑

j=1

pij (15)

where pij = p(α, xij); (15) clearly shows that to avoid ecological pure specification bias we require the

average of the individual risks, rather than the risk associated with the average exposure, which would be

used in a naive model. If Ni is large, then an alternative derivation is to assume that exposures xij are

drawn independently from a distribution fi(x|φi) where φi denote the parameters of this distribution. It

then follows that, marginally, Yij |φi is Bernoulli with probability of disease

pi =

∫
p(α, x)fi(x|φi) dx, (16)

for a continuous exposure, and

pi =

K∑

k=1

p(α, xk)fi(xk|φi) (17)

for a K-level discrete exposure. In a disease mapping context Knorr-Held and Besag (1998, p.2050) considered

a discrete exposure with fi(x|φi) the distribution of a generalised Bernoulli random variable with φi =

(υi1, ..., υiK) and υik representing the probability of falling in exposure category k in area i. In this case we

obtain pi =
∑K

k=1 pikυik as the risk associated with an individual randomly selected from area i and with no

knowledge of their exposure. In an ecological regression context Richardson et al. (1987) and Plummer and

Clayton (1996) considered (16) with fi(x|φi) a normal distribution with φi = {xi, s
2
i }. As an illustration of

the problems that arise due to pure specification bias we present a simple example using the normal model.

For a rare outcome, a common disease model is pij = p(α, xij) = eα0+α1xij and (16) assumes the closed-form

pi = exp(α0 + α1xi + α2
1s

2
i /2) (18)

which may be compared with the naive ecological model eβ0+β1xi , where we have used β0, β1 in the ecological

model to emphasise that in this model we are not estimating the individual-level parameters α0, α1. To gain

intuition as to the extent of the bias we observe that in (18) the within-area variance s2
i is acting like a

confounder, and there is no pure specification bias if the exposure is constant within each area, or if the

variance is independent of the mean exposure in the area. The expression (18) also allows us to characterise

the direction of bias. For example, if α1 > 0 and the within-area variance increases with the mean, then

overestimation will occur. In general, there is no pure specification bias if the disease model is linear in x,

or if all the moments of the within-area distribution of exposure are independent of the mean. Bias will also

be small if α1 is close to zero, since the risk model is then approximately linear.
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3.6.2. Confounding

Between-area confounding is analogous to conventional confounding, since the area is the unit of analysis,

and so the implications are relatively straightforward to understand. Within-area confounding is more

complex. In an ecological study we need to control for the complete within-area distribution of exposures

and confounders. We illustrate in the simplest situation in which we have a binary exposure, x1, a binary

confounder, x2, and assume the individual-level risk model: p(α, x) = exp(α0 + α1x1 + α2x2 + α3x1x2).

Then Lasserre et al. (2000) show that the aggregate form is

pi = xi00e
α0 + xi10e

α0+α1 + xi01e
α0+α2 + xi11e

α0+α1+α2+α3 , (19)

where xix1x2
is the proportion of individuals in area i in exposure/confounder stratum x1, x2. Letting xi1+

and xi+1 represent the proportion of individuals in area i who have x1 = 1 and x2 = 1 respectively (the

marginal prevalences) we may rewrite the average risk (19) as

pi = (1 − xi1+ − xi+1 + xi11)e
α0 + (xi1+ − xi11)e

α0+α1 + (xi+1 − xi11)e
α0+α2 + xi11e

α0+α1+α2+α3 ,

showing that the marginal prevalances alone, which ecological data will often consist of, are not sufficient to

characterise the joint distribution, unless x1 and x2 are independent, in which case x2 is not a within-area

confounder.

3.6.3. Standardization

If the response is standardized with respect to confounders, then the exposure must be also; this is known

as mutual standardization; Rosenbaum and Rubin (1984) provide a discussion in the context of direct

standardization. To illustrate the problem in the context of ecological studies consider a continuous exposure

x and suppose the individual level model is given by pk(α, γ, xik) = exp(α0 + α1xik + γk), for k = 1, ..., K

stratum levels with associated relative risks eγk , with γ = (γ1, ..., γK) and γ1 = 0; we will refer to the

confounder as age. For an individual randomly selected in stratum k the aggregate risk is

pik = exp(α0 + γk)

∫
exp(α1x)fik(x|φik) dx,

where fik(x) is the distribution of the exposure in area i and confounder stratum k, with parameters φik. If

the population in area i stratum k is Nik, with Yik cases, then summing over stratum:

E[Yi|α, γ, φi] =
∑

k

{
Nikeα0+γk

∫
eα1xfik(x|φik) dx

}
. (20)

If we assume a common exposure distribution across stratum, fi(x|φi), so that age does not correspond to

a within-area confounder, then (20) simplifies to

E[Yi|α, γ, φi] = Eie
α0

∫
eα1xfi(x|φi) dx,

where Ei =
∑K

k=1 Nikeγk . This mean is often used in conjuction with a Poisson model; we have standardized

for the confounder, via indirect standardization, but for this to be valid we need to assume that the exposure

is constant across age groups. The correct mean model is given by (20), and requires the exposure distribution

by age, which will rarely be available.
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The above discussion makes it clear that to prevent ecological bias we need individual-level data to control

for the within-area distribution of confounders and exposures. Prentice and Sheppard (1995) describe a very

powerful method for reducing ecological bias based on subsamples of individual exposure-confounder data,

but not individual disease outcomes, within each area. Haneuse and Wakefield (2005,2006) describe a hybrid

design in which case-control and ecological data are combined.

3.7. Ecological Bias in the Scottish Lip Cancer Data

We build a model from the level of the individual in order to aid interpretation of an ecological association.

Let Yij be an indicator of lip cancer with Yij |pij ∼ Bern(pij), and let the risk for individual j in area i, who

is in age group kij ∈ {1, ..., K} be given by

pij = exp(α0 + α1xij + γkij
) = {(1 − xij)e

α0 + xije
α0+α1}eγkij , (21)

with xij an indicator of whether individual j in area i works in AFF; the second form illustrates that we

have a linear model in the exposure xij . The parameters exp(γk) are the risks associated with being in age

stratum k, k = 1, ..., K, while exp(α1) is the parameter of primary interest and is the multiplicative change

in risk for an exposed individual when compared to an unexposed individual, which is assumed the same

across all age groups so that there is no interaction between exposure and age.

We now consider the effect of aggregation. Suppose the number of individuals in stratum k who are unexposed

(exposed) in area i is Ni0k (Ni1k), and Yi0k (Yi1k) of these are cases. For a rare disease: Yixk|α, γ ∼ind

Poisson(Nixkeα0+α1x+γk), and so Yi0k+Yi1k|α, γ ∼ind Poisson(Ni0keα0+γk +Ni1keα0+α1+γk). We now assume

that the proportions exposed, xi, and unexposed, 1 − xi, in area i are constant across age groups, that is

Ni0k = (1− xi)Nik, Ni1k = xiNik, where Nik is the population in confounder stratum k in area i. Summing

over k: Yi|α, γ ∼ind Poisson
(
[1 − xi]e

α0

∑K
k=1 Nikeγk + xie

α0+α1

∑K
k=1 Nikeγk

)
to give

Yi|α, γ ∼ind Poisson
(
Ei(γ){[1 − xi]e

α0 + xie
α0+α1}

)
(22)

where Ei(γ) =
∑K

k=1 Nikeγk .

The addition of random effects to this model is straightforward; if we begin with the individual-level model

pij = exp(α0 + α1Zij + γkij
+ Vi + Ui), we obtain

Yi|α0, α1, γ, Vi, Ui ∼ind Poisson(Ei(γ){[1 − xi]e
α0 + xie

α0+α1} exp{Vi + Ui}). (23)

The above model is an example of inference over a collapsed margin. Byers and Besag (2000) considered

such a situation with a Poisson model, but were apparently unaware that the likelihood is available in closed

form, and instead introduced auxiliary variables within an MCMC scheme.

From an individual-level perspective we see there are a number of problems with the analyses reported in

Section 3.5, and those carried out previously. The most obvious is that model (22) is linear, and not log-

linear, in form, because the original model, (21), is linear and a linear model is preserved under aggregation.

The correct interpretation of the parameters in the log-linear model that was fitted in Section 3.5 is that

exp(β1) is the relative risk associated with the contextual effect of the proportion of individuals who are

exposed to AFF in each area; i.e. it is not individual occupation in AFF that is relevant to individual

risk, but the proportion of individuals in the area who are employed in AFF, a model that does not make

substantive sense. The case of a binary covariate has been extensively studies in the social sciences literature,

see Wakefield (2004) for further details.
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Table 3. Estimates and standard errors for individual rel-

ative risk, exp(α1), in linear model.

Model Relative risk St. Err.

Quasi-likelihood 23 7.0

Poisson lognormal 21 7.5

Poisson Joint 6.4 3.3

Poisson ICAR 9.9 3.3

In order for model (22) to be relevant we also need to assume that the proportion in AFF is constant across

age-groups, which is unlikely to hold, but unfortunately we do not have data on the proportion in AFF by

age group. Finally, if the expected numbers are age-standardized using a priori internal standardization,

rather than external standardization in which reference rates are based on data from another region, then

the subsequent estimation of the AFF association will be distorted if age is a confounder, since some of

the effect of AFF will already have been absorbed into the age effects. The disease and population counts

are required by county and age stratum in order to fit a model in which age and AFF are simultaneously

estimated.

3.8. Individual-Level Models for the Scottish Lip Cancer Data

Table 3 contains estimated relative risks under a number of different models. A quasi-likelihood version of

(22) is given by

E[Yi|α0, α1] = xi1e
α0 + xi2e

α0+α1 , var(Yi|α0, α1) = κ × E[Yi|α0, α1],

where xi1 = Ei(1 − xi) and xi2 = Eixi, a linear model. Fitting this model gave κ̂ = 4.15 with an estimate

of the relative risk of 23 with standard error 7.0. The fit corresponding to this model is shown as the solid

line in Figure 3, and is certainly better than the log-linear model.

Turning to a Bayesian approach, perhaps surprisingly, the use of an improper flat prior for α1 leads to an

improper posterior. Consider the model Yi|α ∼ind Poisson(Ei{[1−xi]e
α0 +xie

α0+α1). Assigning an improper

uniform prior to α0 we integrate this parameter from the model to give

p(α1|y) ∝
n∏

i=1

(
Ei[(1 − xi) + xie

α1 ]∑n
i=1 Ei[(1 − xi) + xieα1 ]

)yi

p(α1),

the likelihood contribution of which tends to the constant
n∏

i=1

(
Ei(1 − xi)∑n
i=1 Ei(1 − xi)

)yi

(24)

as α1 → −∞, showing that a proper prior is required. The constant (24) is non-zero unless xi = 1 in any

area with yi 6= 0. The reason for the impropriety is that α1 = −∞ corresponds to a relative risk of zero,

so that exposed individuals cannot get the disease, which is not inconsistent with the observed data unless

all individuals in area i are exposed, xi = 1, and yi 6= 0 in that area, since then clearly the cases are due

to exposure. A similar argument holds as α → ∞, with replacement of 1 − xi by xi, in (24) providing the

limiting constant. Figure 7 illustrates this behavior for the Scottish lip cancer example, for which xi = 0 in

five areas.

In the Bayesian analyses we now describe next assumed that the relative risk was less than 1 with probability

0.5 and less than 50 with probability 0.95 to give the lognormal prior LN(0, 2.382) for the relative risk eα1 .
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Fig. 7. Log likelihood for α1 for the Scottish data; the horizontal line is the constant to which this function tends to as

α1 → −∞.

Priors for the other parameters were the initial choices described above. The non-spatial Poisson-lognormal

model, (8) gave posterior mean and standard deviation of 21 and 7.5, in close agreement with quasi-likelihood.

We fit joint and ICAR versions of (23) with the priors used previously. The posterior mean and standard

deviation of the relative risk from the joint analysis are 6.4 and 3.3 while under the ICAR model the posterior

mean and standard deviation are 9.9 and 3.3.

3.9. Conclusions

There are a number of problems with the spatial regressions described here. There are likely to be missing

confounders as we have no information on lifestyle characteristics of the individuals in the areas such as diet,

smoking and alcohol. A priori internal standardization was carried out which may distort the regression

coefficient. Finally, the assumption of constant proportions of individuals in AFF across age groups is

highly dubious. However, the coefficients observed are very large, and so we may conclude that there is

an association between lip cancer incidence and occupations that lead to exposure to sunlight; placing a

numerical value on the relative risk would be hazardous, however!

In general, an appropriate individual model should be aggregated to give the ecological model, so that the

assumptions and aggregate data required for accurate inference can be clarified. The models representing

spatial trends in risk, at both short and non-short scales, should also be carefully chosen, in order to decide

on the manner in which spatial dependence is modelled.

4. Postscript: Analyses with Augmented Data

In previous sections we used the Scottish lip cancer data that are routinely available and have been analysed

by numerous authors. We now analyse data provided by Michel Smans of the International Agency for
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Research on Cancer. These data consist of disease counts, Yik and populations Nik by county i and age

group k, i = 1, ..., 56, k = 1, ..., 10. The first nine age strata were collapsed from the original 18 5-year

strata due to sparsity of cases, so that the age categories are: [0,44), [45,49), ... , [80,85), 85+. Two county-

level covariates were also provided: the proportion in AFF, and the proportion of all economically active

households in Social class IV (partly skilled) and V (unskilled); these variables were obtained from General

Register Office (1983). There were some small differences in the expected numbers constructed from the

full data, when compared to the widely-used data, due to rounding errors. The new AFF x variable did

not always agree with the widely-used data, even accounting for measurement error, apparently due to the

mis-reading of Figure 3.6 in the cancer atlas. For example, four values of 0.16 in the widely-used data were

actually 0.01.

With respect to disease mapping, the proportionality assumption (1) was assessed by splitting the data into

two sets of age categories (< 65, ≥ 65) and calculating SMRs for each. This resulted in very similar SMRs

in each age category across areas, so proportionality appears reasonable for these two age groups. This could

be examined more formally using regression modelling with interactions between age and county.

Fitting a quasi-likelihood model with the original expected numbers, the new AFF variable and the naive

log-linear ecological regression model gave an estimate of β1 of 8.9 with standard error 1.15, compared to 7.4

with standard deviation 1.3 for the original data. Hence we see attenuation when using the mis-measured

x variable. The reduced standard error was due to a reduction in κ of 4.9 to 3.8, perhaps due to induced

model misspecification when the mis-measured x is used.

To assess whether a priori internal standardisation distorts the estimate of the AFF association we carry

out simultaneous quasi-likelihood estimation of age and AFF using the naive mean model E[Yik|β, γ] =

Nik exp(β0 + β1xi + γk), and var(Yik|β, γ) = κ × E[Yik|β, γ]. The estimate of β̂1 = 7.5 differs from the

expected numbers estimate of 8.9, showing that age is a confounder, and bias due to a lack of mutual

standardization.

We also analyzed the age-stratified data using the more appropriate individual model (22), and the new AFF

variable with the joint spatial model, and the same priors as previously with flat priors on γk, k = 2, ..., 10.

The posterior mean for the relative risk was 17 with standard deviation 6.3, and 95% interval (7.2,32), which

is considerably larger than in Table 3.8. With an ICAR spatial model the corresponding figures were 19

and 6.0 with 95% interval (9.5,33). For each pair of analyses in Sections 3 and 4 the ICAR model gives less

attenuated relative risk estimates than the joint model, perhaps because the smoothing is more local under

the ICAR model, and so less of the south-north trend in risk is being absorbed into the spatial residuals.

The social class variable may be seen, at least potentially, as an ecological surrogate for lifestyle characteristics

such as smoking, diet and alcohol consumption. Perhaps surprisingly, the inclusion of the social class variable

did not lead to a significant change in the coefficient associated with AFF. This is only an attempt to

assess between-area confounding, however. To examine within-area confounding would require the cross-

classification of AFF and social class within each area, which is unavailable.

The final aspect of these data that we cannot access is within-area confounding due to age, since we do not

have information on the proportion in AFF within each age stratum; if this were available then we would

not be susceptible to ecological bias, at least due to this source, since we could completely characterise the

within-area distribution of exposure and confounder.
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5. Discussion

Throughout this paper we have stressed that though the models applied in disease mapping and spatial

regression studies have similar features, the enterprises have very different aims, and modelling strategies

should reflect this. Disease mapping is an exercise in prediction and therefore the form of the regression model

can be very flexible, and need not reflect any causal mechanism. The use of the raw SMR is statistically valid

(as Ei increases the SMRi tends to the correct area-level relative risk), but residual spatial dependence is

potentially useful since it may be exploited to smooth estimates in neighbouring areas. Area-level estimates

should be carefully examined, however, to see that appropriate amounts of smoothing (in both regression and

spatial models) have been used. Inappropriate smoothing may be reflected in unexpected changes in estimates

when compared to the SMRs, as we saw with the Scottish data. Prior choice for the variance parameters

is important, particularly if the number of areas is not large. In spatial regression the aim is to estimate

causal parameters, and so the form of the mean model is of vital importance. Building an aggregate model

from the level of the individual is an important step towards understanding potential sources of ecological

bias. Valid inference in spatial regression also requires acknowledgment of residual spatial dependence.

Careful modelling of residual spatial dependence, at both small and large scales, is required however, since

regression coefficients of interest will often be sensitive to the form of the dependence assumed. Whether to

include large-scale trends should be based on epidemiological considerations concerning likely unmeasured

confounders. Short-scale dependence models should ideally be informed by priors based on previous studies

of the disease under study. We have discussed prior choices in some detail, but we stress that each study

must be considered separately, and we would not recommend uncritical use of the specific prior choices used

here.

All fitting was carried out using the freely-available R and WinBUGS packages; code to implement each of the

models described here may be found at http://faculty.washington.edu/jonno/cv.html. The WinBUGS

software is a very flexible piece of freely-available computer software that uses MCMC algorithms to generate

dependent samples from the posterior distribution of a user-specified model. The GeoBUGS software has a

library of many common spatial models; see Thomas et al. (2000) for further details. Rue and Held (2005)

provide details of alternative MCMC algorithms.

Multilevel models provide a means for modelling dependencies in data in order to provide appropriate

standard errors and to allow smoothing, but they cannot control for confounding. As argued in Wakefield

(2003), in spatial regression studies more effort should be placed on confounding/within-area modelling than

spatial dependence, as the latter will be of secondary importance. This was illustrated in the Scottish

lip cancer data, where previous analyses had investigated a variety of spatial models, but with an incorrect

mean function. In principle, residual spatial dependence is a problem for individual-level studies also, though

the collection of individual-level confounder variables is likely to reduce the extent of shared unmeasured

variables, and hence residual dependence.

We have seen that for disease mapping great care is required in modelling both covariates and the large-term

spatial trend. Splines are appealing in disease mapping studies, to model both covariates and spatial coordi-

nates, as they provide flexible modelling and, at least for non-spatial models, can easily be incorporated into

an empirical Bayes procedure. Computationally simple frequentist fitting is ideal for exploratory analyses,

though incorporating residual spatial dependence is currently not straightforward.

Inferentially we have described frequentist methods for inference in non-spatial models, since these are com-

putationally convenient, and Bayesian methods for spatial models; for spatial regression fitting an appropriate
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mean model is more important than the choice of any particular inferential paradigm.
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Lawson, A.B., Biggeri, A.B., Böhning, D., Lesaffre, E., Viel, J.F., and Bertollini, R. (1999). Disease Mapping

and Risk Assessment for Public Health. New York: John Wiley and Sons.
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