
* Correspondence to: Dr. A. B. Lawson, Department of Mathematical Sciences, King's College, University of Aberdeen,
Old Aberdeen, AB24 3UE, U.K.

Contract/grant sponsor: European Union Biomed2; contract/grant number: BMH4-CT96-0633.

Copyright ( 2000 John Wiley & Sons, Ltd.

STATISTICS IN MEDICINE
Statist. Med. 2000; 19:2217}2241

Disease mapping models: an empirical evaluation

DISEASE MAPPING COLLABORATIVE GROUP

A. B. Lawson (Aberdeen),* A. B. Biggeri (Florence), D. Boehning (Berlin), E. Lesa!re (KU Leuven),
J-F. Viel (Besancon), A. Clark (Aberdeen), P. Schlattmann (Berlin), F. Divino (Florence)

SUMMARY

The analysis of small area disease incidence has now developed to a degree where many methods have been
proposed. However, there are few studies of the relative merits of the methods available. While many
Bayesian models have been examined with respect to prior sensitivity, it is clear that wider comparisons of
methods are largely missing from the literature. In this paper we present some preliminary results concerning
the goodness-of-"t of a variety of disease mapping methods to simulated data for disease incidence derived
from a range of models. These simulated models cover simple risk gradients to more complex true risk
structures, including spatial correlation. The main general results presented here show that the
gamma-Poisson exchangeable model and the Besag, York and Mollie (BYM) model are most robust across
a range of diverse models. Mixture models are less robust. Non-parametric smoothing methods perform
badly in general. Linear Bayes methods display behaviour similar to that of the gamma-Poisson methods.
Copyright ( 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

The analysis of geographical variation in rates of disease has many uses, not least in the

formulation and assessment of aetiological hypotheses, and also in the area of resource allocation

or risk assessment in public health.

The main aims of disease mapping are to:

(i) describe the spatial variation in disease incidence for the formulation of aetiological

hypotheses;

(ii) identify areas of unusually high risk so that action may be taken;

(iii) provide a &clean'map of disease risk in a region to allow better resource allocation and risk

assessment.

Case studies in disease mapping have covered a wide range of applications, including sudden

infant death syndrome [1], lip cancer in Scotland [2], child mortality [3], stomach cancer in



Missouri [4], cancer in France [5], lung cancer in Germany [6]. Work in this "eld has been

recently reviewed [7, 8].

The great proliferation of methods which have been proposed for the analysis of disease maps

has not been matched by any substantive examination of the relative merits of the methods except

in limited situations. For example, Clayton and Kaldor [2] made a comparison of a small set of

methods (empirical and full Bayes) and found that while the absolute relative risk estimates varied

between methods, the ranking of relative risks across the mapped area (Scottish lip cancer

example) remained the same. Some other attempts to assess full Bayesian model sensitivity have

been reported [9, 10]. These assessments have been limited to a small range of Bayesian models

only.

In this paper we present preliminary results of a large scale study on the behaviour of a range

of methods on simulated data, derived from a wide variety of models for the true underlying

risk. The models "tted range over simple empirical Bayes and linear Bayes methods, non-

parametric smoothing methods, marginal mixture models and full Bayes models. The results

presented here represent general goodness-of-"t results using global measures. More detailed

analysis of the spatial structure of the model "ts is not reported here, although global autocorrela-

tion measures applied to residuals from model "ts are examined. Hence, the results reported in

this preliminary paper mainly focus on the robustness of the "tted models to the variation of

underlying true risk, and the isolation of groups of true models for which the "tted model

performs well or badly.

In the next sections we outline the range of models "tted, followed by the simulation

procedures and true models examined. Finally we make summary results for the range of "tted

models examined.

2. THE BASIC LIKELIHOOD MODEL

In the following, we assume that disease incidence is available in the form of counts of cases within

small areas (such as census tracts or postal districts). Hence, our discussion is focused on the

analysis of small area count data. We do not consider here the performance of methods for the

analysis of case address locations. We also assume that the disease of interest is non-infectious,

and so we will examine purely descriptive methods for small area count data.

Within a map of n regions, let O
i
denote the observed count of disease in the ith region,

E
i
denote the expected count in the ith region and h

i
denote the relative risk in that region. We

assume that the expected counts are known constants. The observed count in the ith region is

assumed to be Poisson distributed with mean E
i
) h

i
, and the likelihood of MO

i
N is given by
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for a constant.
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3. MODELS

Often the focus of mapping is to highlight areas of a disease map which deserve further attention,

for example, areas with a high relative risk. It is therefore quite sensible to test whether each

region's relative risk is greater than one [11], or to estimate the order of the relative risks [12].

However, our examination focuses on a model-based approach where the aim is to provide

suitable relative risk estimates in each small area. It is possible to regard the problem of

estimation of subregion relative risk as an exercise in parameter estimation under an assumed

model. This model can be Bayesian in nature with log-likelihood as given in equation (1) or can be

non-parametric in nature.

3.1. Standardized mortality ratio

As a "rst step, it is often proposed that the standardized mortality ratio (or SMR for short) be

computed and mapped. It is de"ned as

u
i
"

O
i

E
i

(2)

the ratio of observed to expected counts in each region. This estimator is unbiased, and is

frequently used by epidemiologists. However, this estimate is based only on a sample size of one

and hence is not really statistically useful; it is a saturated model estimate.

While a crude map of Mu
i
N is useful it does have three main disadvantages:

(i) The variance of u
i
is h

i
/E

i
which is large in areas with a small population (and hence

a small E
i
) and small in areas with a large population; this makes decisions based on the

SMR di$cult.

(ii) It does not di!erentiate between regions when we observe no deaths.

(iii) It makes no attempt to reveal any underlying structure in the data, and is not parsimoni-

ous, which is a common #aw of all saturated model estimators.

3.2. Alternative approaches

To address aspects of the above problems a variety of alternative models have been proposed.

These can be broadly categorized as follows:

(i) smoothing models (for examples, non-parametric regression), which try to smooth out

noise based on functions of the data in surrounding areas;

(ii) linear Bayes methods, which are based on a linear function of the SMR,

(iii) Bayesian models, which assume that the relative risks are realizations from some distribu-

tion;

(iv) empirical Bayes models, which are similar to Bayesian models but which estimate the prior

distribution for the relative risks from the observed data.

3.3. Smoothing methods

An approach to exploratory analysis of data often adopted in univariate problems, is the use of

a smoothing method [13] which attempt to reveal the underlying signal or ground truth. A
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commonly used method in this class is the Nadaraya}=atson kernel smoother (for example,

Reference [13], chapter 5), which, when applied to the SMR, is simply a weighted average:

hL
i
" +

jOi

w
j
u
j

The weights are functions of neighbouring values

w
i
"

K((u
i
!u

j
)/h)

+
j
K ((u

i
!u

j
)/h)

where the function K ( ) ) is a zero mean radially symmetric probability density function, and h is

chosen to minimize some goodness-of-"t measure. Other weighting schemes are available, but do

not have the same statistical properties as this estimator. The smoothing constant h can be chosen

by using criteria based on cross-validation [13].

Another alternative to smoothing the SMR itself is to separately smooth the numerator and

denominator of u
i
. A procedure similar to this has been proposed for estimating the relative risk

for case address locations by Kelsall and Diggle [14, 15]. This method was applied to case event

and control event location data, where the observation locations were not matched on location,

and the authors employed least squares cross-validation to obtain a common smoothing constant

for the resulting ratio estimator. It was found that on theoretical grounds the common estimation

of the smoothing constant was preferred over the separate estimation of di!erent smoothing

constants for numerator and denominator. This method can be applied to count data in small

areas and as the counts and expected counts arise within the same areas then it is possible to use

deletion-based cross-validation to estimate a common smoothing constant. Note that these

methods do not use a likelihood formulation directly.

In our analysis we have applied these methods to simulated data using least squares cross-

validation to estimate the smoothing constants.

3.4. Linear Bayes estimators

The application of linear Bayes methodology [16] to disease mapping was introduced by

Marshall [3].

It can be shown that the linear Bayes estimator of h
i
based on the SMRs Mu

i
N is
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where E#Mh
i
N is the expectation over the prior distribution of Mh

i
N. This estimator is, as the name

suggests, the best estimator of the form (in the sense of minimum expected loss):

hL
i
"a#bu

i
(4)

The above equation leads to an estimator of the form:

hL
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#

v
i

m
i

E
i

#v
i
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i
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where m
i
and v

i
are, respectively, the prior mean and variance of the relative risk. Hence, if we can

estimate the prior mean and variance of h
i
we can easily obtain its posterior estimate. Marshall
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[3] proposed two such estimates. Before proceeding we highlight some advantages/disadvantages

of this method:

(i) If E
i
is large then the estimate tends to the SMR, and if it is small then the estimate tends

towards the prior mean

(ii) These estimators violate the likelihood principle and are hence questionable on theoretical

grounds. The likelihood principle speci"es that if two likelihoods are proportional to each

other, where the proportionality constant does not depend on the parameter of interest,

then the conclusions drawn should be the same.

(iii) This approach only provides estimated values and methods for the calculation of con"-

dence intervals or hypothesis tests or a measure of the variation, are not provided.

3.4.1. Global estimates. The so-called global estimates are obtained by assuming a constant mean

and variance (m
i
"m and v

i
"v) estimated via the method of moments:

mL "
+ O

i
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+ E
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i

Obviously the estimate of v can be negative so we adopt the convention that

hL
i
"mL

if vL (0.

3.4.2. Local estimates. The so-called local estimates are obtained by estimating the prior mean

and variance using only those regions which are neighbours of that region:
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Marshall estimated the standard error of these estimates using the delta method. However, it is

better to consider the variance of the posterior distribution. We are not interested in the variance

of the estimated values but rather the variance of the posterior distribution of the parameters, that

is, we require

var(h
i
D MO

i
N)

not

var(hL
i
)

where hL
i
is some summary measure of the posterior distribution, for example, the mean or mode.

In what follows we have computed both the global and local Marshall estimators using the

above estimators for m
i
and v

i
.
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3.5. Empirical Bayes estimators

Empirical Bayes estimators [17] assume that Mh
i
N follow some distribution, say g (h), which is

indexed by a set of parameters, say ). These can be estimated from the data by maximizing the

marginal likelihood

¸ ())"P f (x D h)g(h D )) dh

where f (x D h) is the joint distribution of the observed cases. The maximization can be done via the

EM algorithm, hence not requiring integration, or using an analytical approximation to the

integral such as Laplace's method.

3.5.1. Gamma-Poisson model. The gamma-Poisson model takes g(h) to be a gamma distribution

with parameters (a, b)3R2
`

"). It is easily shown that the posterior distribution is

h
i
D MO

i
N, a, b&GammaAOi

#a,
b

bE
i
#1B .

We can then estimate the Mh
i
N by the posterior mean

hL
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.

Using this we see that if both the observed and expected counts are large, then this gets pulled

towards the SMR, whereas if they are both small, then this tends towards the prior mean. In fact

we can write this as a linear combination of the two

hL
i
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i
E(h
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i
)u

i

where w
i
"(bE

i
#1)~1, and E (h

i
D a, b) is the posterior expectation of h

i
. Notice that this is simply

the global linear Bayes estimate with m"ab and v"ab2.

As regards the estimation of (a, b), the marginal likelihood is proportional to the negative-

binomial distribution

¸(a, b)"
1

M!(a)Nn

n
< ! (O

i
#a)bOi )

1

MbE
i
#1NOi`a

and in order to maximize this with respect to (a, b) we need to use a numerical algorithm, see, for

example Reference [2].

While the estimated values can be derived from the global linear Bayes estimator, the gamma-

Poisson model has some advantages:

(i) it estimates the full posterior which can be used to give con"dence intervals and hypothesis

tests whereas the linear Bayes methods do not;

(ii) even if the actual distribution of the relative risk is a gamma then the gamma-Poisson

model estimates it mean and variance via maximum likelihood which is superior to the

method of moments used by the linear Bayes methods.

One disadvantage of the gamma-Poisson model is its inability to cope with spatial correlation.

However, some recent advances have been made [18].
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In what follows we have estimated the gamma parameters from the full posterior marginal

distribution via maximization. In a later section, where we examine the change in Bayesian

information criterion (*BIC) between models [17], we have generated posterior samples of

h
i
from the full posterior gamma distribution.

3.5.2. Mixture models (Non-parametric maximum likelihood). It is possible to construct a model

where the marginal distribution of counts is governed by a mixture distribution consisting of a set

of discrete components. This approach di!ers considerably from the previous models in that the

variation in risk is modelled by a mixture of components and not by a global model for the

variation. The mixture model assumes that there are k distinct levels of risk, say Mh
1
,2, h

k
N, and

our observed count comes from a region with risk h
j
with probability p

j
. Thus our likelihood

becomes.
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n

<
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k
+
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p
j
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i
; E

i
, h

j
)

No closed form solution exists for the relative risks in this case, however reliable algorithms are

available [19]. These give MLEs for Mp
j
N, Mh

i
N and also can be used to classify each region with

a risk; an alternative is to use the posterior expectation, given by

hL
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We have applied this mixture model in our analysis, the parameter estimation being carried out

using the VEM algorithm [20].

3.6. Full Bayes estimators

Here we consider a model proposed by Besag, York and Mollie (BYM) [21]. In our basic model

described above the conditional distribution of an observed count O
i
given Mh

i
N is

O
i
D Mh

i
N&Pois(E

i
) h

i
)

The model proposed by BYM splits the relative risk parameter into three components (that is

log(h
i
)"t

i
#u

i
#v

i
):

(i) ¹rend. We can allow for spatial trend and/or covariates by having a regression term, say

t
i
"+ a

j
xj
i
yj
i
#+ b

k
z
k

where M(x
i
, y

i
)N are the centroids of the ith region and z is a vector of covariates. It is

important that this term does not contain an intercept, as it will not be identi"able. The

regression terms could be replace by a non-parametric alternative such as a generalized

additive model.

(ii) Overdispersion (spatial). It seems plausible that regions close to each other will have

similar relative risk, and we can allow for this possibility by having a random variable, say

u
i
, which is correlated with the other Mu

j
N. We usually assume a prior speci"cation such as

f (u)JexpMQ (u
i
!u

j
)N

where Q( ) ) is some prespeci"ed function.
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(iii) Overdispersion (non-spatial). By the formulation of the model for the spatially correlated

overdispersion, the variance depending on the number of neighbours, independence is

not well de"ned by the model. To combat this we can introduce another term, say v
i
, which

is a standard uncorrelated overdispersion parameter. Here, the prior distribution is given

by

v
i
*/$& N(0, p2l )

3.6.1. Choice of Q ( ) ). Although it is popular to choose Q( ) ) to be quadratic (the intrinsic

Gaussian model) it is not the only choice possible, and in fact other choices may be preferable for

di!erent situations. Here, we have assumed the quadratic form with variance p2
u
.

3.6.2. MCMC methods. We have implemented the BYM model as de"ned in the original work

[21]. We have used a Gibbs sampler for the Mp2
u
, p2

v
N, while a Metropolis step was used for

sampling Mu
i
, v

i
N. The hyperprior distributions for the variances were inverse exponential with

parameter e"0.05. For the purposes of this evaluation, we have not included a trend component.

This is consistent with many applications of the model and with the original publication. Because

it is essential to monitor for convergence of such MCMC algorithms, it was important to assess,

prior to implementing the large scale model-"tting exercise, the degree to which the MCMC

"tting could be automated. To do this we decided to perform an experiment to assess convergence

across a number of data sets. Based on a selection of ten representative data sets we made

convergence checks and assessed the variability of the time to convergence. It was found that

convergence occurred in all data sets by 18 000 iterations and we then added a &safety factor' of

2000 iterations. In the model "tting exercise we "xed the iteration length at 20 000 based on this

experiment.

The above models de"ne a range of possible approaches to the description of the underlying

relative risk for any given disease map. Our task was to examine the goodness-of-"t of these

models via an empirical evaluation based on simulated data from assumed true relative risk

models. In the next section we describe the simulation procedures used for this exercise.

4. SIMULATED MODELS AND METHODS

To assess which of the above models are good at recovering the true spatial variation we decided

to simulate data sets from a number of di!erent possible relative risk models and to evaluate the

relative merits of each of the "tted models using a variety of criteria. To this end we needed to

choose both a suitable map of small areas to simulate relative risks within, and a set of "xed

expected cases for these small areas. The intention was to simulate a range of count distributions

from a set of true risk models over this set of small areas. To this end we "rst considered what base

map to use for the simulation. Instead of using a regular lattice it was felt important to use a real

map, which included a large number of small areas (to reduce edge e!ects) where the small areas

were of similar size and shape, so as to eliminate artefacts of irregular small area form. As a result

we chose to use the map of former East Germany, which is relatively large and meets these criteria

quite closely. In addition, we also required to use a set of "xed expected counts for the mapped

area. These were chosen for a speci"c disease which had a reasonably regular spatial distribution

over the whole area. We decided to use the expected number of deaths from lip cancer for the
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Figure 1. Expected counts for lip cancer in the Eastern Germany region.

period 1980}1989 for this purpose. The total population in 1989 was close to 17 million, so that

the total rate is over 170 million person-years. The exact expected rate for the period was 2454.3,

and we decided to base our simulations on a rounded total of 2500. Figure 1 displays a choropleth

map of these expected rates.

Based on the Eastern Germany map of expected lip cancer counts we proceeded to simulate

from a range of models for excess risk (beyond that speci"ed by the expected counts). We decide

to simulate 100 data sets from each of the models chosen. Owing to the need to keep the data sets

consistent with the expected count it was necessary to constrain the observed counts to sum to the

total number of expected cases. Given this conditioning we used the multinomial model:

O&Multinomial ANt
;

E
i
h
i

+
j
E
i
h
i
B

where N
t
is the total number of expected cases. Hence, by specifying models for the relative risks

Mh
i
N i"1,2, n we can simulate count distributions within the mapped area and subsequently

examine the "t of a variety of models.

The models chosen for this examination ranged from simple constant risk models to complex

Bayesian random e!ect models, including trend and di!erentiated types of heterogeneity (corre-

lated and uncorrelated). In addition, mixture models of di!erent types were examined. Simulation

from the multinomial distribution described above was carried out by table look-up methods. As

we simulated 100 realizations from each model our goodness-of-"t (GOF) criteria had to be

averaged over these realizations. This averaging is discussed in greater detail in a later section. In

addition, given that realizations of counts were generated, we required to examine both GOF to

the realized counts and to the true relative risk model. For Bayesian ground truth models this is

not straightforward, as the parameters of the ground truth models also come from distributions.

In the following section we detail the true relative risk models de"ned in this study. The models

chosen were selected to represent the range of possible underlying risk that might be encountered.
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Thus, while basic trend models are present, we have also examined random e!ect and mixture

models with trend included. In addition we have introduced speci"c clusters into some random

e!ect models. The models can be grouped into broad classes: "xed e!ect models with trend

(models 1}3), random e!ect models with either trend, uncorrelated or correlated heterogeneity

(models 4}49); mixture model with a variety of components (such as trend, and random e!ects)

(models 50}109), and models with speci"c cluster terms and selections of random e!ects and trend

(models 110}151) and "nally gamma distribution models with a variety of "xed parameters

(models 152}154). These models are detailed in the next sections. The Appendix contains

a detailed description of all the simulated models.

The detailed di!erences between the models within each group were chosen to ensure that an

adequate range of true model relative risk were available in the class of models. This served to

provide robustness against conclusions based on single model choices, and also coverage of

possible ranges of true parameter settings. For example, in the case of trend models (2}3) the "rst

model has a strong y-gradient, while the second has a larger x-gradient. The "nal choice of

coe$cient values is of course arbitrary, but the choice is informed by the above balance of

robustness (model speci"city) and coverage (model generality).

4.1. Fixed ewect models

Constant risk-model 1:

h
i
"h"1

Linear trend: models 2}3:

h
i
"expMx

i
#2y

i
N

h
i
"expM5x

i
#y

i
N

4.2. Random ewect models

Linear trend (models 4, 5)

h
i
"expMax

i
#by

i
N

where a and b are random variables with the following distributions:

(i) a&N(1, 1); b&N(2, 1)

(ii) b&N(5, 1); b&N(1, 1)

Quadratic trend (models 6, 7)

h
i
"expMax

i
#by

i
#cx2

i
#dy2

i
#ex

i
y
i
N

where a, b, c, d and e are random variables with the following distribution:

(i) a&N(1, 1); b&N(2, 1); c&N(2, 1); d&N(2, 1); e&N(1, 1)

(ii) a&N(1, 1); b&N(2, 1); c&N(5, 1); d&N(0.01, 1); e&N(10, 1)
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BYM overdispersion model (models 8}49)

h
i
"expMp

1
t
i
#p

2
u
i
#p

3
v
i
N

The Mp
i
N allow us to de"ne the components of the data; t

i
is the trend in the ith region, u

i
is the

correlated heterogeneity and v
i
is the uncorrelated heterogeneity. For all of the following, t will be

as above and

Correlated

u&MVN(0, K)

where k
i,j

"p2 expM!d
i,j

/RN, this is the so-called exponential covariance model in geostatistics

[22]. The values to be used are

ln R&N(ln(0.5), 0.1)

ln R&N(ln(0.125), 0.1)

ln p2&N(0, 0.01)

ln p2&N(ln(10), 0.1)

;ncorrelated

v
i
&N(0, s)

where we use the values

ln s&N(0, 0.1)

ln s&N(log(10), 0.1)

Mixture model (model 50}53). De"ne Q(j) to be the one-point distribution at j, then the mixture

model is de"ned as:

h
i
&

k
+
j/1

w
j
Q(j

j
)

By varying k we change the number of di!erent relative risks in the data set and by varying w we

change the proportion of relative risks in the data set.

Mixture with Spatial Structure: discrete overdispersion (models 54}109). We can combine the BYM

model and the mixture model by de"ning:

h
i
&expMp

1
t
i
#p

2
u
i
N

k
+
j/1

w
j
Q(j

j
)

BYM with non-general clusters (models 110}151). We can de"ne a process which allows for both

spatially varying correlation and region speci"c variation but also including speci"c cluster

centres. This can be implemented via the model

h
i
"expMp

1
t
i
#p

2
u
i
#p

3
v
i
N G1#

nc
+
j/1

h(Ex
i
#x

cj
E)H
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where x
i

is a centroid and x
cj

are cluster centres. The cluster centres were generated under

complete spatial randomness with a Poisson distribution with mean 5.0 for the number of centres.

Global Gamma model (models 152}154). We can have a random e!ect equivalent of the equal risk

model via the gamma-Poisson model

h
i
&Gamma(a, b)

with parameter settings

(i) a"1; b"2

(ii) a"2; b"1

(iii) a"1; b"1

5. GOODNESS-OF-FIT

Whilst there is a large amount of literature on designing disease mapping models, as yet little

attention has been paid to how to assess the goodness-of-"t of these models. We have attempted

to employ conventional GOF measures which can be employed across a wide variety of models.

For example, we have employed the change of Bayesian information criterion (*BIC) ([17], p. 48)

to assess the discrepancy between the constant risk model and any speci"c appropriate "tted

model. This gives a relative measure of the GOF of any model and is equivalent asymptotically to

the Bayes factor for the two models. This criterion utilizes the likelihood within its formulation

and also penalizes parameter rich models. The BIC criterion is available for the BYM, gamma

and mixture models "tted. Because not all models "tted to the simulated count data had

associated likelihoods, we also adopted more general criteria for GOF. The model "tting was

examined for two sets of parameters: the true relative risks underlying the simulated models, and

the counts simulated from the models. Assessment of the di!erence between true risk and "tted

risk is important in detecting whether a true model can be recovered. On the other hand the

comparison of observed count and "tted count is usually the form of comparison which would be

made in any real data analysis situation (without knowing the true relative risk), and hence this

comparison may display the expected di!erences to be found in a model "tting exercise.

To assess the strength of correlation between the "tted model output and these two parameter

sets we have examined the Pearson and Spearman correlation coe$cient for the "tted count to

the simulate count and the relative risks, Pearson's chi-squared measure (RSS) applied to the

counts and relative risks, and an autocorrelation coe$cient (Moran's I ) applied to the (Pearson)

residuals from the "t. We also examined a generalized Kullback}Leibler measure of "t, but the

results of this measure were highly variable and we did not pursue its use. In the next sections we

describe the exact measures used for "tted counts. These measures were also applied to relative

risks (except for the *BIC which is applied to the simulated count data directly). All results are

presented as averages over the 100 simulations.

In the case of the count comparisons, we utilize the observed count (denoted O
ij
"hL

ij
) E

i
). In

the relative risk comparison case we de"ne h
j
as the relative risk for the true model for the jth

simulation, and hL
ij

as de"ned above for the "tted model relative risk. The following measures are

described for count data. However, they have also been computed for the relative risk compari-

sons, using the de"nitions above (except for the *BIC criterion).
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5.1. Pearson+s Correlation Coezcient

Given the "tted count (OK
i
"hL

i
) E

i
) and the observed count (O

i
), for a given simulation we can

compute the Pearson correlation coe$cient

+ OK
i
O
i
!1/n + OK

i
+ O

i
J(M+OK 2

i
!1/n [+OK

i
]2NM+ O2

i
!1/n[+ O

i
]2 )

5.2. Spearman+s Correlation Coezcient

Given the rank of the "tted count and the rank of the observed count we an compute the

Spearman correlation coe$cient

1!
6 + d2

i
n3!n

where d
i
"rank(OK

i
)!rank(O

i
).

5.3. Chi-squared (residual sum of squares RSS)

Perhaps the oldest goodness-of-"t measure is Pearsons's chi-squared:

+
(O

i
!E (O

i
D h

i
))2

var(O
i
D h

i
)

"+
(O

i
!OK

i
)2

OK
i

This a global goodness-of-"t measure and has limitations for comparison between two models.

However, we have used this measure to make relative comparisons between models, as it is well

known and is related to the standardization of the Pearson residuals when a Poisson model is

"tted.

5.4. Moran+s I

It is important, in many modelling situations, that any residual correlation be explained by the

model. The testing for autocorrelation in residuals is, however, complicated by the correlation

structure imposed by the "tted model. We could allow for this correlation by using the parametric

bootstrap (or Monte Carlo) on Moran's I. This would allow a closer comparison between true

models. An analysis of that kind is planned for a future publication. Here, in this preliminary

report, we present the relative magnitude of the coe$cient only. The coe$cient is de"ned as

n

2A

+
(2)

d
ij
(r
i
!rN ) (r

j
!rN )

+ (r
i
!rN )2

where we use the Pearson residuals resulting form the chi-squared measure:

r
i
"

O
i
!OK

i
JOK

i

Because we have not made allowance for the correlation induced by the "tted model, all

comparisons made with Moran's I should be treated with some caution. Comparisons between

DISEASE MAPPING MODELS 2229

Copyright ( 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2217}2241



groups of true models are less reliable than comparisons between "tted models for a given true

model.

5.5. Delta-BIC

A common method to choose between Bayesian models is the BIC value [17]. A more natural

choice is the di!erence in BIC values between our "tted model and our null model. The delta-BIC

is de"ned as

*BIC"2 ln G
¸(h)

¸ (h
0
)H!(p!1) lnMnN

where h
0

is the vector of estimated relative risks under the null (constant risk) model; p is the

number of parameters in the "tted model and n is the number of regions.

6. RESULTS

All of the models were "tted to each simulated data set. We call the model from which the

simulated data arose, the true model. The results are given in graphical form and the true models

have been ordered 1}154. We have examined the GOF of "tted counts to observed counts, and

the GOF of estimated relative risks to true relative risks. The "rst of these measures is what is

usually available in any modelling exercise, and the results of these "ts give indications of how

well the models "t a realization from the true model. Here we have averaged over the 100 model

simulations. Hence, this indicates how well we would expect to do in any given data analysis

situation. However, it should be borne in mind that ordinary GOF measures (except the *BIC

measure) do not penalize parameterization so that ultimately greater parameterizations can lead

to closer models. Still, some conclusions concerning relative GOF can be made in this situation.

In the case of relative risk comparisons, then we are examining the closeness of the "tted model to

the true model. We would expect in general that "tted models do well when recovering their

equivalent true models (i.e. BYM models should do well with BYM true models etc.). Plates 1}7

display the results in graphical form for all 154 true models. Plates 1}4 represents the count "ts

and are respectively, the BIC (Plate 1). Moran's I (Plate 2), Pearson correlation (Plate 3) and

residual SS (Plate 4). Plates 5}7 represent the relative risk "ts and are respectively: Moran's

I (Plate 5), Pearson's correlation (Plate 6), and residual SS (Plate 7). Below we summarize the

main features of the results for each GOF measure.

All models performed well on the constant risk model, but some models were unable to cope

with autocorrelation in the true relative risks. In some cases, the lack of "t was found to be so

great that the results for the method could not be shown (sensibly) in relation to other models.

This was true, across all measures for the Kelsall}Diggle method applied to count data. This

method resulted in very large residual SS and poor correlations for both count GOF and relative

risk GOF. Because of this we have excluded it from the "gures, as the relative merits of other

methods would be obscured by the scaling. The explanation for this problem, which is mirrored in

the (less extreme) behaviour of the kernel smoother, may be due to the considerable smoothing or

over-smoothing induced by least squares cross-validation. Inevitably, such smoothing methods

will induce autocorrelation in the resulting estimates. We have not presented the Spearman rank

correlation here as all the results show similar e!ects to that of the Pearson correlation.
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Plate 1. Residual sum of squares (RSS): count data comparison.
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Plate 2. Moran's I coefficient (Pearson residuals): count data comparison.

Plate 3. Pearson's count correlation coefficient.
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Plate 4. ∆BIC criterion: BYM, mixture and gamma-Poisson models.

Plate 5. Residual sum of squares (RSS): relative risk comparison.



Plate 6. Moran's I coefficient (Pearson residuals): relative risk comparison.
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Plate 7. Pearson's relative risk correlation coefficient.



In general, the gamma-Poisson model and BYM appear to behave similarly across a range

o f models, producing high correlations across all models for counts but more variable results for

relative risks. The BYM model achieves highest *BIC values across a range of models. It should

also be noted that across all models the true model has a greater e!ect on the GOF than the type

of method used.

7. RESULTS FOR GOF MEASURES BASED ON COUNTS

Plates 1}4 display the results for count data. Overall, the BYM, gamma-Poisson and linear Bayes

"tted models paper to perform well, with the mixture "tted models slightly less robust. Smoothing

methods are highly variable, however.

7.1. Residual sum of squares

Models with greater degrees of smoothing do not "t the observed data well. This is because the

more complicated the model the more smoothing that takes place, hence the estimated relative

risks will be further from the SMR (which has zero RSS).

We note that the RSS is highly variable with the gamma-Poisson model consistently giving

lower values than the others, this possibly being due to a lack of smoothing in this case. The

smoothing model's variability was greater than the rest, performing well in models with a strong

spatial correlation but poorly in models where unstructured heterogeneity dominated. Under

simple trend models the lowest RSS for counts are found for the gamma model and the global

Marshall.

7.2. Moran+s I

Plate 3 reveals that the gamma-Poisson, global and local Marshall estimators leave a large

amount of autocorrelation in the residuals. This indicates that neither model is capable of

distinguishing between long-term trend and autocorrelation. Further, the BYM estimators had

autocorrelation which #uctuated around zero, but goes negative for models with spatial autocor-

relation. The smoothing model also leaves negligible amounts of autocorrelation. The Local

Marshall estimator consistently produces negative autocorrelation. This should however be

treated with caution since the expected value of Moran's I is !1/(n!1)"!0.005.

It is clear from the "gures that the methods which allow for autocorrelation appear to capture

this autocorrelation when present in the true model.

7.3. Pearson+s correlation coezcient

From this graph we see that both the gamma-Poisson and the global Marshall estimators have

a very high correlation with the observed counts. However, this is to be expected since these are

the models whose estimated relative risks will be close to the SMR (which has correlation 1). In

addition the BYM and mixture models also achieve high correlations. The smoothing model is

much more erratic in its behaviour.

However, most of the models do not alter the ranking of the regions to any great extent. This

said, when the rankings change it is usually within the regions with a low observed count.
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7.4. Analysis of delta-BIC criteria

This criterion is only available for the BYM, gamma and mixture models. All the "tted models

appear to display similar behaviour, with only slight di!erences appearing for particular true

model types. Overall, the lowest *BIC values appear for the "xed trend, constant risk and simple

mixture true models. Models with true extra-variation lead to higher *BIC values for all "tted

models. Overall, the highest values are achieved for the BYM models, even when applied to

a variety of true mixture models. The "tted gamma model appears to behave closely to that of the

mixture model across a range of true models.

8. RESULTS OF GOF MEASURES ON RELATIVE RISKS

As with the count GOF measures we have presented the results graphically. Plates 5}7 display the

relative risk results. Overall a more variable picture has emerged for the relative risk analysis. All

"tted models appear to behave similarly across various models and criteria of GOF with the

exception of the residual autocorrelation (Moran's I ) where greater di!erences emerge.

8.1. Residual sum of squares

All models produced a similar pattern, with low values for models 50}120 and 151}154, but high

values elsewhere. Most models behave similarly, with low RSS for trend models but higher values

for true models with extra-variation. For true mixture models, all the methods appear to produce

low RSS, with little di!erentiation. The worst RSS values are found for true models with extra-

variation, and the Marshall estimators appear to have highest RSS for these models.

8.2. Moran+s I

Unlike the count analysis, all models produced a positive value of Moran's I, most lying between

0.1 and 0.3. The lowest values were found for "xed trend, simple mixture and gamma true models.

Overall there is considerably greater variability between "tted models and between results for

types of true models. Generally, the highest residual autocorrelation was found for the "tted

smoothing model and BYM model, whereas the lowest correlation was found for the "tted local

Marshall estimator and the "tted mixture models. Although the results are locally variable across

true models there are no large scale di!erences apparent for blocks of true models. This was also

found for the count residual autocorrelation.

8.3. Pearson+s correlation coezcient

For the relative risk analysis, the picture is more variable, although similar variation appears

across all the "tted model types. One notable feature is that all models yield low correlations for

certain true models. These are the true models with structured overdispersion and mixture

structure. Mostly the lowest correlation is achieved by the smoothing model. However, for true

models where the "tted models yield high correlations, then the lowest correlation is often found

for the "tted mixture model, and in some of these cases the smoothing model achieves high

correlation along with the BYM, global Marshall and gamma "tted models. The fact that the
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mixture "tted model cannot well recover the relative risks for a range of true mixture models is

important.

9. CONCLUSIONS AND FURTHER WORK

While a number of general conclusions can be made for this analysis, it should be borne in mind

that a number of artefacts may be apparent due to the fact that we have averaged over 100

simulated data sets. Nevertheless, some general conclusions can be drawn from this simulation

study:

(i) The non-spatial methods leave considerable autocorrelation in the residuals, although

they appear to perform reasonably well overall.

(ii) All models do well in the trivial constant risk case

(iii) The BYM model achieves the highest *BIC and also universally high Pearson correlation

for counts and is always high for relative risk "ts when the "tted models do well. It does

does not do well in estimation of relative risks for certain mixture models and where there

is structured overdispersion. Other "tted models do badly in this situation, however.

(iv) All models appear to perform badly in the relative risk analysis, when there is combined

structured and unstructured overdispersion or heterogeneity. However, most models do

uniformly well in the count analysis.

(v) Mixture models do not recover relative risks well even when the true relative risk is from

a mixture. Mixture models perform well in the count analysis but are usually bettered by

the gamma and BYM models.

(vi) Of the linear Bayes methods, the global Marshall appears to yield better results than the

local version, although it leaves greater autocorrelation in residuals.

(vii) The use of kernel smoothers cannot be recommended. However, these estimators might

perform better applied to the log-relative risk. Kernel smoothers tend to work poorly in

the presence of autocorrelation. In addition, the use of the Kelsall}Diggle method

(applied to count data) performs very poorly. These can only be recommended for

exploratory data analysis.

(viii) With regards to robustness against misspeci"cation, it would appear that amongst the

models "tted, the BYM model with both uncorrelated and correlated overdispersion/het-

erogeneity included provides the greatest robustness. It is also clear that using only

uncorrelated overdispersion (as in the gamma or global linear Bayes models) does not

provide such robustness, and will lead to increased residual autocorrelation: a fact that

may have been deduced a priori from the nature of the model speci"cations.

Further work is needed to examine small groups of true models in detail and to make more

detailed comparisons between "tted models. It would also be of interest to examine the e!ect of

changes in neighbourhood speci"cation, edge e!ects and spatial residual analysis.

In this study only a small group of "tted models has been examined* many other methods

could have been tested. However, we believe that the methods considered yield good indications

as to the behaviour of general classes of methods, and it should be possible to relate these results

to other methods based on similarities in approach. For example, the poor performance of the

smoothing methods examined, may also be predicted for other smoothing methods which do not

account for autocorrelation, or the likelihood structure inherent in the data.
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APPENDIX

The following list describes the 154 models simulated in the study. Each numbered entry has the

following description: number; description; parameter settings.

1 Constant risk

2 linear trend a"1; b"2

3 linear trend a"5; b"1

4 linear trend a 8 N(1,1) b J N(2,1)

5 linear trend a 8 N(5,1) b J N(1,1)

6 quadratic trend a 8 N(1,1) b J N(2,1) c J N(2,1) d 8 N(2,1) e 8 N(1,1)

7 quadratic trend a 8 N(1,1) b J N(2,1) c J N(5,1) d 8 N(0.01,1) e 8 N(10,1)

8 unstructured overdispersion v 8 N(0,s) ln s 8 N(0,0.1)

9 unstructured overdispersion v 8 N(0,s) ln s 8 N(ln(10), 0.1)

10 structured overdispersion u 8 MVN(0,K) ln R 8 N(ln(0.5),0.1) ln sig ( sq 8 N(0,0.1)

11 structured overdispersion u 8 MVN(0,K) ln R 8 N(ln(0.5),0.1) ln sig ( sq 8 N((ln(10),0.1)

12 structured overdispersion u 8 MVN(0,K) ln R 8 N(ln(0.125),0.1) ln sig ( sq 8 N(0,0.1)

13 structured overdispersion u 8 MVN(0,K) ln R 8 N(ln(0.125),0.1) ln sig ( sq 8 N(ln(10),0.1)

14 trend#unstructured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e J N(1,1)

v J N (0,s)ln s 8 N(0,0.1)

15 trend#unstructured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e J N(1,1)

v J N(0,s)ln s 8 N(ln(10),0.1)

16 trend#unstructured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e J N(10,1)

v J N(0,s)ln s 8 N(0,0.1)

17 trend#unstructured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e J N(10,1)

v J N(0,s)ln s 8 N(ln(10),0.1)

18 trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e J N(1,1)

u J MVN(0,K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

19 trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e J N(1,1)

u J MVN(0,K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

20 trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e J N(1,1)

u J MVN(0,K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

21 trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e J N(1,1)

u J MVN(0,K)ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

22 trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e J N(10,1)

u J MVN(0,K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

23 trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e J N(10,1)

u J MVN(0,K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

24 trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e J N(10,1)

u J MVN(0,K)ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

25 trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e J N(19,1)

u J MVN(0,K)ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

26 structured#unstructured overdispersion v 8 N(0,s)ln s 8 N(0,0.1) u J MVN(0,K)ln R J N

(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

27 structured#unstructured overdispersion v 8 N(0,s)ln s 8 N(0,0.1) u J MVN(0,K)ln R J N

(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)
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28 structured#unstructured overdispersion v 8 N(0,s)ln s 8 N(0,0.1) u J MVN(0,K)ln R J N

(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

29 structured#unstructured overdispersion v 8 N(0,s)ln s 8 N(0,0.1) u J MVN(0,K)ln R J N

(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

30 structured#unstructured overdispersion v 8 N(0,s)ln s 8 N(ln(10),0.1) u J MVN(0,K)ln R J

N(ln(0.5),0.1)ln sig ( sq 8 N((0,0.1)

31 structured#unstructured overdispersion v 8 N(0,s)ln s 8 N(10),0.1) u J MVN(0,K)ln R J N

(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

32 structured#unstructured overdispersion v 8 N(0,s)ln s 8 N(10),0.1) u J MVN(0,K)ln R J N

(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

33 structured#unstructured overdispersion v 8 N(0,s)ln s 8 N(ln(10),0.1) u J MVN(0,K)ln

R J N (ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

34 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(2,1) d J N(2,1) e 8 N(1,1) v J N(0,s)ln s 8
N(0,0.1) u J MVN(0, K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

35 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(2,1) d J N(2,1) e 8 N(1,1) v J N(0,s)ln s 8
N(0,0.1) u J MVN(0, K)ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

36 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(2,1) d J N(2,1) e 8 N(1,1) v J N(0,s)ln s 8
N(0,0.1) u J MVN(0, K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10,0.1)

37 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(2,1) d J N(2,1) e 8 N(1,1) v J N(0,s)ln s 8
N(0,0.1) u J MVN(0, K)ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

38 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(2,1) d J N(2,1) e 8 N(1,1) v J N(0,s)ln s 8
N(ln(10),0.1) u J MVN(0, K )ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

39 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(2,1) d J N(2,1) e 8 N(1,1) v J N(0,s)ln s 8
N(ln(10),0.1) u J MVN(0, K )ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

40 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(2,1) d J N(2,1) e 8 N(1,1) v J N(0,s)ln s 8
N(0,0.1) u J MVN(0, K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

41 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(2,1) d J N(2,1) e 8 N(1,1) v J N(0,s)ln s 8
N(ln(10),0.1) u J MVN(0, K )ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

42 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(5,1) d J N(0.01,1) e 8 N(10,1) v J N(0,s)

ln s 8 N(0,0.1) u J MVN(0, K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

43 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(5,1) d J N(0.01,1) e 8 N(10,1) v J N(0,s)ln

s 8 N(0,0.1) u J MVN(0, K)ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

44 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(5,1) d J N(0.01,1) e 8 N(10,1) v J N(0,s)ln

s 8 N(0,0.1) u J MVN(0, K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

45 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(5,1) d J N(0.01,1) e 8 N(10,1) v J N(0,s)ln

s 8 N(0,0.1) u J MVN(0, K)ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

46 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(5,1) d J N(0.01,1) e 8 N(10,1) v J N(0,s)ln

s 8 N(ln(10),0.1) u J MVN(0, K)ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

47 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(5,1) d J N(0.01,1) e 8 N(10,1) v J N(0,s)ln s

8 N(ln(10),0.1) u J MVN(0, K )ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

48 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(5,1) d J N(0.01,1) e 8 N(10,1) v J N(0,s)ln s

8 N(ln(10),0.1) u J MVN(0, K )ln R J N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

49 trend#overdispersion a 8 N(1,1) b 8 N(2,1) c J N(5,1) d J N(0.01,1) e 8 N(10,1) v J N(0,s)ln s

8 N(ln(10),0.1) u J MVN(0, K )ln R J N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

50 mixture weights"M0.3,0.7N components"M0.7,1.5N
51 mixture weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N
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52 mixture weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,2.6N
53 mixture weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N
54 mixture#structured overdispersion weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN

(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

55 mixture#structured overdispersion weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN

(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

56 mixture#structured overdispersion weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN

(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

57 mixture#structured overdispersion weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN

(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

58 mixture#structured overdispersion weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N
u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

59 mixture#structured overdispersion weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N
u 8 MVN (0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

60 mixture#structured overdispersion weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N
u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

61 mixture#structured overdispersion weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N
u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

62 mixture#structured overdispersion weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,

2.6N u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

63 mixture#structured overdispersion weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,

2.6N u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

64 mixture#structured overdispersion weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,

2.6N u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

65 mixture#structured overdispersion weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,

2.6N u 8 MVN (0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

66 mixture#structured overdispersion weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,

1.5N u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

67 mixture#structured overdispersion weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,

1.5N u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

68 mixture#structured overdispersion weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,

1.5N u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

69 mixture#structured overdispersion weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,

1.5N u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

70 mixture#trend a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1) weights"M0.3,0.7N
components"M0.7,1.5N

71 mixture#trend a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1) weights"M0.2,0.7,0.1N
components" M0.3,1.0,2.5N

72 mixture#trend a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1) weights"M0.2,0.3,0.3,

0.2N components"M0.6,0.9,1.7,2.6N
73 mixture#trend a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1) weights"M0.2,0.3,0.3,

0.2N components"M0.7,0.9,1.2,1.5N
74 mixture#trend a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1) weights"M0.3,0.7N

components"M0.7,1.5N
75 mixture#trend a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1) weights"M0.2,0.7,

0.1N components"M0.3,1.0,2.5N
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76 mixture#trend a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1) weights"M0.2,0.3,

0.3,0.2N components"M0.6,0.9,1.7,2.6N
77 mixture#trend a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1) weights"

M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N
78 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN(0, K )ln R 8 N(ln(0.5),

0.1)ln sig ( sq 8 N(0,0.1)

79 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N
(1,1) weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN(0, K )ln R 8 N(ln(0.5), 0.1)ln sig (

sq 8 N(ln(10),0.1)

80 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN(0, K )ln R 8 N(ln(0.125),

0.1)ln sig ( sq 8 N(0,0.1)

81 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN(0, K )ln R 8 N(ln(0.125),

0.1)ln sig ( sq 8 N(ln(10),0.1)

82 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N
(1,1) weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N u 8 MVN(0, K )ln R 8 N(ln(0.5),

0.1)ln sig ( sq 8 N(0,0.1)

83 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N
(1,1) weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N u 8 MVN(0, K )ln R 8 N(ln(0.5), 0.1)

ln sig ( sq 8 N(ln(10),0.1)

84 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N u 8 MVN(0, K)ln R 8 N(ln(0.

125), 0.1)ln sig ( sq 8 N(0,0.1)

85 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N u 8 MVN(0, K)ln R 8 N(ln

(0.125), 0.1)ln sig ( sq 8 N(ln(10),0.1)

86 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,2.6N u 8 MVN(0, K )

ln R 8 N(ln (0.5), 0.1)ln sig ( sq 8 N(0,0.1)

87 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,2.6N u 8 MVN(0, K )ln R 8 N
(ln (0.5), 0.1)ln sig ( sq 8 N(ln(10),0.1)

88 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,2.6N u 8 MVN(0, K )ln R 8 N
(ln (0.125), 0.1)ln sig ( sq 8 N(0,0.1)

89 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,2.6N u 8 MVN(0, K )ln R 8 N
(ln(0.125), 0.1)ln sig ( sq 8 N(ln(10),0.1)

90 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N u 8 MVN(0, K )ln R 8 N
(ln (0.5), 0.1)ln sig ( sq 8 N(0,0.1)

91 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N
(1,1) weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N u 8 MVN(0, K)ln R 8 N(ln

(0.5), 0.1)ln sig ( sq 8 N(ln(10),0.1)
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92 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N
(1,1) weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N u 8 MVN(0, K)ln R 8 N(ln

(0.125), 0.1)ln sig ( sq 8 N(0,0.1)

93 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N u 8 MVN(0, K)ln

R 8 N(ln (0.125), 0.1)ln sig ( sq 8 N(ln(10),0.1)

94 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN(0, K )ln R 8 N(ln (0.5),

0.1)ln sig ( sq 8 N(0,0.1)

95 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN(0, K )ln R 8 N(ln (0.5),

0.1)ln sig ( sq 8 N(10),0.1)

96 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN(0, K )ln R 8 N(ln (0.125),

0.1)ln sig ( sq 8 N(0,0.1)

97 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.3,0.7N components"M0.7,1.5N u 8 MVN(0, K )ln R 8 N(ln (0.125),

0.1)ln sig ( sq 8 N(ln(10),0.1)

98 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N u 8 MVN(0, K)ln R 8 N(ln

(0.5), 0.1)ln sig ( sq 8 N(0,0.1)

99 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N u 8 MVN(0, K)ln R 8 N(ln

(0.5), 0.1)ln sig ( sq 8 N(ln(10),0.1)

100 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N u 8 MVN(0, K)ln R 8 N(ln

(0.125), 0.1)ln sig ( sq 8 N(0,0.1)

101 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.7,0.1N components"M0.3,1.0,2.5N u 8 MVN(0, K)ln R 8 N(ln

(0.125), 0.1)ln sig ( sq 8 N(ln(10),0.1)

102 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,2.6N u 8 MVN(0, K )ln R 8
N(ln(0.5), 0.1)ln sig ( sq 8 N(0,0.1)

103 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,2.6N u 8 MVN(0, K )ln R J

N(ln (0.5), 0.1)ln sig ( sq 8 N(ln(10),0.1)

104 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,2.6N u 8 MVN(0, K )ln R 8
N(ln (0.125), 0.1)ln sig ( sq 8 N(0,0.1)

105 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.3,0.3,0.2N components"M0.6,0.9,1.7,2.6N u 8 MVN(0, K)ln

R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

106 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N u 8 MVN(0, K )ln R 8
N(ln (0.5), 0.1)ln sig ( sq 8 N(0,0.1)
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107 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N u 8 MVN(0, K )ln R 8
N(ln (0.5), 0.1)ln sig ( sq 8 N(ln(10),0.1)

108 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N u 8 MVN(0, K )ln R 8
N(ln (0.125), 0.1)ln sig ( sq 8 N(0,0.1)

109 mixture#trend#structured overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) weights"M0.2,0.3,0.3,0.2N components"M0.7,0.9,1.2,1.5N u 8 MVN(0, K )ln R 8
N(ln (0.125), 0.1)ln sig ( sq 8 N(ln(10),0.1)

110 clustering#unstructured overdispersion v 8 N(0,s)ln s 8 N(0,0.1)

111 clustering#unstructured overdispersion v 8 N(0,s)ln s 8 N(ln(10),0.1)

112 clustering#structured overdispersion u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N
(0,0.1)

113 clustering#structured overdispersion u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N
(ln(10),0.1)

114 clustering#structured overdispersion u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N
(0,0.1)

115 clustering#structured overdispersion u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N
(ln(10),0.1)

116 clustering#trend#unstructured a 8 N(1,1) b J N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1) v 8 N
(0,s)ln s 8 N(0,0.1)

117 clustering#trend#unstructured a 8 N(1,1) b J N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1) v 8 N
(0,s)ln s 8 N(ln(10),0.1)

118 clustering#trend#unstructured a 8 N(1,1) b J N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(0,0.1)

119 clustering#trend#unstructured a 8 N(1,1) b J N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(ln(10),0.1)

120 clustering#trend#structured overdispersion a 8 N(1,1) b J N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) u 8 MVN(0, K )ln R 8 N(0.5),0.1)ln sig ( sq 8 N(0,0.1)

121 clustering#trend#structured overdispersion a 8 N(1,1) b J N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) u 8 MVN(0, K )ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

122 clustering#trend#structured overdispersion a 8 N(1,1) b J N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) u 8 MVN(0, K )ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

123 clustering#trend#structured overdispersion a 8 N(1,1) b J N(2,1) c 8 N(2,1) d 8 N(2,1)

e 8 N(1,1) u 8 MVN(0, K )ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

124 clustering#trend#structured overdispersion a 8 N(1,1) b J N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) u 8 MVN(0, K )ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

125 clustering#trend#structured overdispersion a 8 N(1,1) b J N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) u 8 MVN(0, K )ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

126 clustering#trend#structured overdispersion a 8 N(1,1) b J N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(10,1) u 8 MVN(0, K )ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

127 clustering#trend#structured overdispersion a 8 N(1,1) b J N(2,1) c 8 N(5,1) d 8 N(0.01,1)

e 8 N(19,1) u 8 MVN(0, K )ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

128 clustering#structured#unstructured v 8 N(0,s)ln s J N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln

(0.5),0.1)ln sig ( sq 8 N(0,0.1)
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129 clustering#structured#unstructured v 8 N(0,s)ln s J N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln

(0.125),0.1)ln sig ( sq 8 N(0,0.1)

130 clustering#structured#unstructured v 8 N(0,s)ln s J N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln

(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

131 clustering#structured#unstructured v 8 N(0,s)ln s J N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln

(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

132 clustering#structured#unstructured v 8 N(0,s)ln s J N(ln(10),0.1) u 8 MVN(0,K)ln R

8 N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

133 clustering#structured#unstructured v 8 N(0,s)ln s J N(ln(10),0.1) u 8 MVN(0,K)ln R

8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

134 clustering#structured#unstructured v 8 N(0,s)ln s J N(ln(10),0.1) u 8 MVN(0,K)ln R

8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

135 clustering#structured#unstructured v 8 N(0,s)ln s J N(ln(10),0.1) u 8 MVN(0,K)ln R

8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

136 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1)

v 8 N(0,s)ln s 8 N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

137 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1)

v 8 N(0,s)ln s 8 N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

138 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1)

v 8 N(0,s)ln s 8 N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

139 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1)

v 8 N(0,s)ln s 8 N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

140 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1)

v 8 N(0,s)ln s 8 N(ln(10),0.1) u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

141 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1)

v 8 N(0,s)ln s 8 N(ln(10),0.1) u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

142 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1)

v 8 N(0,s)ln s 8 N(ln(10),0.1) u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

143 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(2,1) d 8 N(2,1) e 8 N(1,1)

v 8 N(0,s)ln s 8 N(ln(10),0.1) u 8 MVN(0,K)ln R 8 N (ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

144 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(0, 0.1)

145 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0, 0.1)

146 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

147 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(0,0.1) u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)

148 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(ln(10),0.1) u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(0,0.1)

149 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(ln(10),0.1) u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(0,0.1)

150 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(ln(10),0.1) u 8 MVN(0,K)ln R 8 N(ln(0.5),0.1)ln sig ( sq 8 N(ln(10),0.1)

151 clustering#trend#overdispersion a 8 N(1,1) b 8 N(2,1) c 8 N(5,1) d 8 N(0.01,1) e 8 N(10,1)

v 8 N(0,s)ln s 8 N(ln(10),0.1 u 8 MVN(0,K)ln R 8 N(ln(0.125),0.1)ln sig ( sq 8 N(ln(10),0.1)
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