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An ever-expanding number of disease-modifying drugs for multiple sclerosis have become available in recent years, after demonstrating

efficacy in clinical trials. In the real-world setting, however, disease-modifying drugs are prescribed in patient populations that differ from

those included in pivotal studies, where extreme age patients are usually excluded or under-represented. In this multicentre, observational,

retrospective Italian cohort study, we evaluated treatment exposure in three cohorts of patients with relapsing-remitting multiple sclerosis

defined by age at onset: paediatric-onset (418 years), adult-onset (18–49 years) and late-onset multiple sclerosis (550 years). We

included patients with a relapsing-remitting phenotype, 55 years follow-up, 53 Expanded Disability Status Scale (EDSS) evaluations

and a first neurological evaluation within 3 years from the first demyelinating event. Multivariate Cox regression models (adjusted hazard

ratio with 95% confidence intervals) were used to assess the risk of reaching a first 12-month confirmed disability worsening and the

risk of reaching a sustained EDSS of 4.0. The effect of disease-modifying drugs was assessed as quartiles of time exposure. We found

that disease-modifying drugs reduced the risk of 12-month confirmed disability worsening, with a progressive risk reduction in different

quartiles of exposure in paediatric-onset and adult-onset patients [adjusted hazard ratios in non-exposed versus exposed 462% of the

follow-up time: 8.0 (3.5–17.9) for paediatric-onset and 6.3 (4.9–8.0) for adult-onset, P50.0001] showing a trend in late-onset patients

[adjusted hazard ratio = 1.9 (0.9–4.1), P = 0.07]. These results were confirmed for a sustained EDSS score of 4.0. We also found that

relapses were a risk factor for 12-month confirmed disability worsening in all three cohorts, and female sex exerted a protective role in

the late-onset cohort. This study provides evidence that sustained exposure to disease-modifying drugs decreases the risk of disability ac-

cumulation, seemingly in a dose-dependent manner. It confirms that the effectiveness of disease-modifying drugs is lower in late-onset

patients, although still detectable.
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Introduction
Multiple sclerosis is an inflammatory demyelinating disease

of the CNS that is characterized by inflammation, demyelin-

ation, and degenerative changes. Most individuals are diag-

nosed with multiple sclerosis at age 20–40 years (Finlayson,

2004). Paediatric-onset multiple sclerosis (POMS), before the

age of 18, represents 3–10% of the whole multiple sclerosis

population (Iaffaldano et al., 2017), while late-onset multiple

sclerosis (LOMS), after the age of 50, now accounts for

3–5% of all multiple sclerosis diagnosis (Vaughn et al.,

2019). Age at onset plays an important prognostic role, not

fully understood, and may impact disease course and treat-

ment response. Clinic (Tutuncu et al., 2013) and population

(Confavreux and Vukusic, 2006a; Kremenchutzky et al.,

2006) based studies suggested that the onset of the progres-

sive phase and time to Expanded Disability Status Scale

(EDSS) milestones is an age-dependent phenomenon,

independent of the initial course of multiple sclerosis.

Nevertheless, predicting disability accumulation only on

chronological age would be an oversimplification. In both

POMS and adult-onset multiple sclerosis (AOMS), the stron-

gest predictor for reaching the EDSS milestones is age at

clinical onset: the earlier the onset of disease, the younger

the age at which the main disability milestones are reached

(Confavreux and Vukusic, 2006b; Renoux et al., 2007).

Moreover, considering disease progression solely as an age-

dependent phenomenon would hide the high variability in

progression rate observed among individuals with multiple

sclerosis (Tremlett et al., 2006).

Additionally, age at onset influences the response to dis-

ease-modifying therapy (DMT). A recent meta-analysis of

the main randomized clinical trials (RCTs) demonstrated

that the efficacy of DMTs on disability worsening has an in-

verse correlation with increasing age (Weideman et al.,

2017). These clinical results seem to be in line with the
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progressive weakening of both adaptive and innate immune

system called immunosenescence (Musella et al., 2018). This

model, however, was based on RCTs that generally excluded

patients younger than 18 or older than 50 years. As the

prevalence of LOMS is increasing (Vaughn et al., 2019),

data regarding DMT effectiveness in this group of patients

are warranted. This is even more relevant due to comorbid-

ity and possibly higher risks of treatment-related adverse

events in this age group (Schweitzer et al., 2019). As for the

paediatric counterpart, clinical trials in POMS subjects are

extremely limited, also due to ethical considerations on the

use of placebo owing to highly active disease in this popula-

tion (Waubant et al., 2019). Although most of the DMTs

are not licensed for POMS, their off-label prescription is

increasing in this subpopulation (Iaffaldano et al., 2017).

Therefore, benefit to risk balance and treatment decision-

making in these extreme age populations present unique

age- and disease-related challenges.

As a sizeable proportion of paediatric and older patients

are treated in the real-world setting, registry-based cohort

studies represent a major source of data to elucidate the

above issues.

The research question, addressed in this multicentre study

based on the Italian multiple sclerosis register, was whether

and how treatment response differ in three cohorts of

patients with relapsing-remitting multiple sclerosis (RRMS)

defined by age at onset: POMS (418 years), AOMS (18–49

years) and LOMS (550 years).

Patients and methods

Ethics statement

The Italian iMedWeb network was approved by the Policlinico
of Bari Ethics Committee and by the local ethics committees in
all participating centres. Written informed consent was obtained
from all enrolled patients, or in the case of POMS from their
parents, in accordance with the Declaration of Helsinki.

Study design

We conducted a multicentre, observational, retrospective cohort
study based on prospectively acquired clinical data. The aim
was to evaluate how the effectiveness of DMTs can vary in three
subgroups of RRMS patients defined by their age at onset.
Anonymized clinical records of patients with a first demyelinat-
ing event were extracted from the Italian multiple sclerosis regis-
ter (Trojano et al., 2019) in November 2018. Inclusion criteria
were: patients with a first neurological evaluation within 3 years
from the first demyelinating event; a minimum of three visits
with EDSS evaluation; a minimum of 5 years follow-up. We
excluded patients with a primary progressive course and those
enrolled in RCTs. Multiple sclerosis duration was calculated
from the first demyelinating event. The follow-up time was
defined as the time between the first and last available EDSS
entry.

The Italian multiple sclerosis register protocol requires, for all
patients registered, a minimum baseline dataset (Trojano et al.,

2019). The minimum dataset required for this study also com-
prised clinical course, follow-up visit dates, EDSS scores
recorded at each visit, date of all relapses, start and end dates of
all DMT commencements and DMT type. Quality assurance
through online certification of EDSS competency is required at
each participating site.

RRMS patients meeting the eligibility criteria were divided
into three subgroups according to their age at the first demyeli-
nating event: POMS (418 years), AOMS (19–49 years) and
LOMS (550 years).

We considered the following outcomes: 12-month confirmed
disability worsening (CDW) and EDSS 4.0. As an exploratory
outcome, we also considered the time to EDSS 6.0. A minimum
of three visits per patient over a minimum period of 12 months,
with complete EDSS assessment, was required to assess the first
12-month CDW.

CDW events were defined as 512-month confirmed increase
of: 51.0 point for those with a baseline EDSS score between
1.0 and 5.5, inclusive; and 51.5 points for those with a baseline
EDSS score of 0. Irreversible assignment of EDSS score 4.0 or
6.0 was defined as reaching of EDSS score 4.0 or 6.0 with all
subsequent EDSS scores being either equal to these scores, or
greater. EDSS recorded within 30 days from a clinical relapse
were excluded to avoid artificial increase of EDSS score changes
over time. The Italian MS Register protocol stipulates a required
biannual update of the minimum dataset, but patients with less
frequent visits were not excluded from the analyses. The base-
line of the study was the first visit. For each subgroup, we eval-
uated as possible prognostic predictors sex, symptom at onset
(multifocal/unifocal), number of relapses, number of EDSS eval-
uations and treatment exposure.

Statistical analysis

The baseline and follow-up characteristics were expressed as
mean and standard deviation (SD) or frequency and percentage
for continuous and categorical covariates, respectively.
Categorical and continuous variables were compared by using
v2 statistic and Kruskal-Wallis test, respectively. Non-parametric
tests were most conservative.

Predictors of first 12-month CDW and EDSS 4.0 were
assessed using multivariable Cox proportional hazard regres-
sions. The date of the first visit with full EDSS evaluation was
used as time origin of the model to mitigate a possible immortal
time bias. In the absence of a worsening or reaching EDSS 4.0,
data were censored at the latest EDSS available. Results of Cox
regression models were expressed as hazard ratio (HR) and
95% confidence interval (CI) of reaching the outcomes. We per-
formed different models for each subgroup of patient (POMS,
AOMS and LOMS). The multivariable modelling analyses were
adjusted for the following covariates: sex (female versus male),
symptom at onset (multifocal versus unifocal), number of relap-
ses, percentage of time spent before the outcome (in quartiles)
and EDSS score at first visit. As the visit frequency was different
across the three cohorts, we further adjusted all the multivariate
models for the number of EDSS evaluations. For DMT expos-
ure, we considered the total time a patient spent on treatment,
including any switches and gaps in treatment. During the sur-
vival time, we did not consider gaps 43 months as a therapy
interruption. As the percentage spent on DMT before the out-
come was not normally distributed, a statistical stratification in
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four groups, of equal size (quartiles), was used. The fourth quar-
tile (Q4), including patients who were above the 75th percentile,
was regarded as the reference class in the Cox models. In the
present study, ‘never treated’ was the patient group that did not
receive any DMT treatment before the first disability worsening
or EDSS 4.0 attainment. The exposure time was censored at the
reaching of the outcome or at the last visit if a worsening event
had not yet occurred. A sensitivity analysis was carried out by
including patients registered after 2000.

All statistical analyses were performed with R version 3.2.0
and P-value 5 0.05 was considered statistically significant.

Data availability

Anonymized data, not published in the article, will be shared on
reasonable request from a qualified investigator.

Results

Baseline and follow-up
characteristics

The data extraction was completed in November 2018. We

had access to 55 669 register patients from 77 Italian

centres. By applying inclusion and exclusion criteria, we

identified 646 POMS, 8473 AOMS and 382 LOMS patients

at the first demyelinating event (Fig. 1). The baseline and fol-

low-up characteristics of the three cohorts are described in

Tables 1 and 2.

There was a comparable female prevalence in all three

groups. Spinal cord symptoms at onset were more frequent

in LOMS (P5 0.001), whereas optic neuritis was more rep-

resented in the two younger cohorts. LOMS patients had,

on average, a higher mean EDSS baseline score compared

with the other two cohorts (P5 0.001).

As for the first treatment (Table 1), we distinguished be-

tween moderately effective DMTs (IFNb1a, IFNb1b, glatir-

amer, dimethyl fumarate, teriflunomide and azathioprine)

and highly effective DMTs (monoclonal antibodies, mitox-

antrone, cladribine and fingolimod) (Rotstein and

Montalban, 2019).

The vast majority of patients in the three groups received

a moderately effective DMT as first treatment. Compared

with the other two groups, a higher proportion of

LOMS subjects (21.8%) were never exposed to a DMT

(Table 1).

The mean follow-up time was �12 years for POMS, 11

years for AOMS and 9 years for LOMS patients

(P5 0.0001). Mean disease duration was longer in POMS

(13 years) compared with AOMS (12 years) and LOMS

(10 years). The first EDSS evaluation was made, on aver-

age, within 13 months from disease onset in all the three

cohorts (P = 0.28). The mean number of EDSS evaluations

was higher in the two younger cohorts (P5 0.0001);

moreover, LOMS patients exhibited lower annualized

EDSS evaluations compared with the two younger cohorts

(P = 0.005).

All three cohorts received the first DMT, on average, with-

in 3 years from symptom onset, without any significant dif-

ference (P = 0.568). LOMS patients spent a lower

percentage of follow-up time under a DMT than the other

two cohorts (5.8 versus 6.8 and 7.2 years of AOMS and

POMS patients, respectively P = 0.003). During the follow-

up period, the mean number of relapses was higher in

POMS (6.8) and AOMS (5.3) compared with LOMS (3.7)

subjects, P5 0.0001.

The frequency of switch from moderate to highly

effective DMTs was significantly higher in the POMS and

AOMS compared with the LOMS cohort, P5 0.0001

(Table 2).

In terms of outcome, the LOMS cohort experienced

a higher rate of 12-month CDW and accrual of EDSS

4.0 than the two younger cohorts (P5 0.0001), al-

though the number of EDSS evaluations was lower

(Table 2).

Figure 1 Flow-chart showing patients selection. DE = demyelinating event.
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Treatment effect on 12-month
confirmed disability worsening and
EDSS 4.0

Table 3 shows the results of the adjusted multivariate Cox

regression model for the outcome 12-month CDW, whereas

Table 4 shows the results for the outcome EDSS 4.0. To

mitigate for possible secular trend bias, the same models

were run as sensitivity analyses by including only patients

registered after 2000 (Tables 5 and 6). The results were

adjusted for sex, type of onset (unifocal versus multifocal),

number of relapses and of EDSS evaluations and, for the

EDSS 4.0 outcome, for baseline EDSS score. We evaluated

the treatment effect with a time-dependent approach consid-

ering the total time a patient spent on treatment, including

any switches and gaps. We further divided exposure time

into quartiles. The fourth quartile (Q4) was the quartile of

patients who were above the 75th percentile and has been

Table 1 Baseline characteristics of the three cohorts defined by age at onset

Total, n = 9567 Paediatric-onset Adult-onset Late-onset P-value

n = 646 n = 8473 n = 448

Age at onset, mean ± SD 15.48 ± 2.43 31.21 ± 7.91 54.29 ± 9.20 50.0001

Sex, female n (%) 448 (69.35) 5704 (67.32) 299 (66.74) 0.541

CIS topography n (%)

Optic neuritis 156 (24.15) 1818 (21.48) 67 (15.02) 50.0001

Brainstem symptoms 140 (21.67) 1646 (19.44) 90 (20.18)

Spinal symptoms 82 (12.69) 1659 (19.60) 113 (25.34)

Supratentorial symptoms 170 (26.32) 2167 (25.60) 124 (27.80)

Combination of symptoms 98 (15.17) 1175 (13.88) 52 (11.66)

First EDSS score, mean ± SD 1.52 ± 1.12 1.68 ± 1.21 2.39 ± 1.51 50.0001

Treatment n (%)

First DMT, moderate efficacy 583 (90.25) 7378 (87.01) 336 (75.0) 0.167

First DMT, high efficacy 34 (5.26) 336 (4.36) 14 (4.00)

Never treated 29 (4.48) 759 (8.96) 98 (21.8)

Percentage of follow-up spent on DMT 43.52 ± 27.04 39.99 ± 27.47 36.52 ± 27.71 0.003

Time to first DMT, days 959.46 ± 1341.97 880.46 ± 1132.51 835.28 ± 919.36 0.568

Moderate efficacy DMTs comprise IFNb1a, IFNb1b, glatiramer, dimethyl fumarate, teriflunomide and azathioprine. High efficacy DMTs comprise monoclonal antibodies, mitoxan-

trone, cladribine and fingolimod. CIS = clinically isolated syndrome.

Table 2 Follow-up characteristics of the three cohorts defined by age at onset

Total n = 9567 Paediatric-onset MS Adult-onset MS Late-onset MS P-value

n = 646 n = 8473 n = 448

Follow-up, years, mean ± SD 12.18 ± 6.09 11.30 ± 5.79 9.47 ± 3.60 50.0001

Disease duration, years, mean ± SD 13.18 ± 5.81 12.27 ± 5.85 10.03 ± 9.83 50.0001

Time to first EDSS evaluation, months, mean ± SD 13.01 ± 10.33 12.46 ± 10.12 13.02 ± 10.35 0.28

Number of EDSS evaluations per patient, mean ± SD 21.73 ± 13.30 19.72 ± 13.24 15.81 ± 10.07 50.0001

Mean annualized EDSS evaluation, mean ± SD 1.94 ± 1.08 1.87 ± 1.12 1.76 ± 1.00 0.005

Time to first DMT, days, mean ± SD 959.46 ± 1341.97 880.46 ± 1132.51 835.28 ± 919.36 0.5685

Time spent on DMT, years 7.18 ± 4.14 6.81 ± 4.77 5.83 ± 3.79 50.0001

Quartiles of time spent on DMT, n (%) (n = 6353)

Q1 (1–19.6%) 115 (22.07) 1416 (25.17) 58 (28.16) 0.099

Q2 (19.7–40.4%) 113 (21.69) 1420 (25.24) 55 (26.70)

Q3 (40.5–65.5%) 149 (28.60) 1393 (24.76) 46 (22.33)

Q4 (465.5%) 144 (27.64) 1397 (24.83) 47 (22.82)

Number of relapses, mean ± SD 6.80 ± 5.08 5.26 ± 3.94 3.72 ± 2.39 50.0001

Mean annualized assessment rate of relapses 0.59 ± 0.37 0.50 ± 0.34 0.42 ± 0.27 50.0001

Patients who changed from moderate to high efficacy DMT, n (%) 253 (38.57) 1819 (21.47) 42 (9.37) 50.0001

Outcome, n (%)

12 months CDW 128 (19.81) 2078 (24.52) 150 (33.48) 50.0001

EDSS 4.0a 67 (10.81) 1496 (18.66) 130 (34.57) 50.0001

Moderate efficacy DMTs comprise IFNb1a, IFNb1b, glatiramer, dimethyl fumarate, teriflunomide and azathioprine. High efficacy DMTs comprise monoclonal antibodies, mitoxan-

trone, cladribine and fingolimod.
aFor the outcome EDSS 4.0 the patients with a first EDSS 5 4 were excluded.
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regarded as the reference class in the Cox models. In the pre-

sent study, patients who did not receive any DMT before

reaching the two clinical outcomes represented the ‘never

treated’ class. The exposure time was censored at the reach-

ing of the outcome or the last visit if a worsening event had

not occurred yet.

Female sex was a protective factor for LOMS patients

decreasing the risk of reaching EDSS 4.0 of 58% [adjusted

HR (aHR) = 0.42, 95% CI 0.29–0.60, P5 0.001].

Sensitivity analyses confirmed the same protective role with

a similar magnitude.

A higher number of relapses was associated with an

increased risk of both 12-month CDW and EDSS 4.0 in all

the three cohorts (Tables 3 and 4). These results were also

confirmed in the sensitivity analyses, with an adjusted HR

for 12-month-CDW and EDSS 4.0 ranging from 1.15 to

2.11 (Tables 5 and 6).

As for type of onset (multifocal versus unifocal), a multi-

focal onset showed a weak protective effect for a first 12-

month CDW in AOMS (aHR = 0.87, 95% CI = 0.78–0.98,

P5 0.005) but did not significantly influence the risk of

reaching the EDSS 4.

The most significant predictive factor of 12-month CDW

was DMT treatment, which was especially evident in the

two younger cohorts. In POMS and AOMS, increasing the

DMT exposure resulted in a stepwise reduction of �2 points

Table 3 Multivariate Cox model for the first 12-month confirmed disability worsening in the overall sample

(n = 9567)

Overall sample, n = 9567 Paediatric-onset MS Adult-onset MS Late-onset MS

n = 646 n = 8473 n = 448

Number of events, n (%) 128 (19.8%) 2078 (24.5%) 150 (33.4)

Variable Reference class aHR (95%CI) aHR (95%CI) aHR (95%CI)

Sex, female Male 1.15 (0.78–1.70) 1.04 (0.95–1.14) 0.74 (0.53–1.04)

Symptom at onset, multifocal Unifocal 1.06 (0.67–1.68) 0.87 (0.78–0.98)* 1.13 (0.69–1.85)

Number of relapses – 1.17 (1.14–1.20)** 1.17 (1.17–1.18)** 1.40 (1.32–1.48)**

Number of EDSS evaluations – 0.97 (0.95–0.98)** 0.98 (0.98–0.99)** 0.98 (0.96–1.00)*

DMTexposurea Q4b

Never treated 7.98 (3.55–17.95)** 6.27 (4.92–7.98)** 1.95 ( 0.94–4.06)

Q1 3.69 (1.61–8.48)* 4.46 (3.47–5.73)** 1.10 ( 0.47–2.54)

Q2 3.59 (1.53–8.44)* 3.07 (2.37–3.97)** 1.40 ( 0.61–3.25)

Q3 2.94 (1.22–7.06)* 2.30 (1.76–3.02)** 0.85 ( 0.32–2.28)

aHR = adjusted hazard ratio; MS = multiple sclerosis.
aFor DMTexposure, we considered the total time a patient spent on treatment, including any switches and/or gaps.
bWe divided exposure time into quartiles. The fourth quartile (Q4) is the quartile of patients who were above the 75th percentile and has been regarded as the reference class in

the Cox models. ‘Never treated’ were the patients who did not receive any DMT before the first 12 months disability worsening or EDSS 4.0. The exposure time was censored at

the reaching of the outcome or most recent visit if a worsening event had not yet occurred.

*P-value 5 0.05; **P-value 5 0.001.

Table 4 Multivariate Cox model for the risk of reaching EDSS 4 in the overall sample (n = 9012)

Overall sample (n = 9012) Paediatric-onset MS Adult-onset MS Late-onset MS

n = 620 n = 8016 n = 374

Number of events, n (%) 67 (10.81) 1496 (18.66) 130 (34.57)

Variable Reference class aHR (95% CI) aHR (95% CI) aHR (95% CI)

Sex, female Male 0.91 (0.53–1.59) 0.97 (0.87–1.08) 0.42 (0.29–0.60)**

Symptom at onset, multifocal Unifocal 0.92 (0.49–1.71) 1.03 (0.90–1.19) 1.52 (0.87–2.64)

First EDSS – 1.48 (1.12–1.97)* 1.76 (1.66–1.86)** 1.89 (1.55–2.29)**

Number of relapses – 1.15 (1.12–1.18)** 1.17 (1.16–1.17)** 1.49 (1.39–1.59)**

Number of EDSS evaluations – 0.99 (0.97–1.01) 1.00 (1.00–1.01)* 1.00 (0.99–1.02)

DMTexposurea Q4b

Never treated 7.06 (2.05–24.34)* 10.34 (7.42–14.40)** 9.36 (1.30–67.67)*

Q1 4.76 (1.35–16.76)* 6.67 (4.74–9.38)** 9.21 (1.22–69.51)*

Q2 3.86 (1.07–13.97)* 4.44 (3.13–6.30)** 3.80 (0.48–29.81)

Q3 3.17 (0.87–11.58) 3.44 (2.39–4.95)** 2.95 (0.35–24.64)

aHR = adjusted hazard ratio; MS = multiple sclerosis.
aFor DMTexposure, we considered the total time a patient spent on treatment, including any switches and/or gaps.
bWe divided exposure time into quartiles. The fourth quartile (Q4) is the quartile of patients who were above the 75th percentile and has been regarded as the reference class in

the Cox models. ‘Never treated’ were the patients who did not receive any DMT before the first 12-month disability worsening or EDSS 4.0. The exposure time was censored at

the reaching of the outcome or most recent visit if a worsening event had not yet occurred.

*P-value 5 0.05; **P-value 5 0.001.
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in the rate of 12-month CDW. In the same cohorts, adjust-

ing for baseline EDSS and number of EDSS evaluations, we

found similar results considering the risk of reaching EDSS

4.0. Furthermore, the sensitivity models confirmed that the

protective role of treatment in POMS and AOMS is related

to the cumulative time spent under treatment, seemingly in a

time-dependent manner.

As for the LOMS cohort, there was a trend towards a

DMT treatment-related lower risk of 12-month CDW. We

found that never treated, and the first quartile classes were

at higher risk of EDSS 4.0 (Table 4). The sensitivity analyses

performed on patients registered after 2000 confirmed the

results of the primary model (Tables 5 and 6).

As an exploratory analysis, we investigated the risk of

reaching EDSS 6.0. In the AOMS cohort, treatment expos-

ure confirmed its protective role in all the four quartiles. In

the LOMS cohort, never treated patients confirmed to be at

higher risk of reaching this disability milestone. In the

POMS cohort, where only 4.8% of the subjects reached

EDSS 6.0, the results were not statistically significant

(Supplementary Table 1).

Discussion
In recent years, various modern DMTs for multiple sclerosis

have become available after demonstrating efficacy in

Table 5 Multivariate Cox model for the first 12-month confirmed disability worsening performed in patients with

disease onset after 2000 (n = 7416)

Overall sample (n = 7416) Paediatric-onset MS Adult-onset MS Late-onset MS

n = 460 n = 6574 n = 382

Number of events, n (%) 52 (11.30) 1205 (18.33) 115 (30.10)

Variable Reference class aHR (95%CI) aHR (95%CI) aHR (95%CI)

Sex, female Male 0.64 (0.33–1.25) 1.02 (0.90–1.15) 0.74 (0.51–1.09)

Symptom at onset, multifocal Unifocal 1.06 (0.44–2.55) 0.95 (0.81–1.11) 1.54 (0.86–2.77)

Number of EDSS evaluations – 0.95 (0.93–0.98)* 0.97 (0.97–0.98)** 0.99 (0.97–1.01)

Number of relapses – 1.41 (1.33–1.49)** 1.37 (1.36–1.39)** 1.40 (1.31–1.49)**

DMTexposurea Q4b

Never treated 9.71 (2.72–34.61)** 6.96 (5.14–9.43)** 1.82 (0.83–3.99)

Q1 6.88 (1.92–24.72)* 4.21 (3.07–5.76)** 0.81 (0.32–2.03)

Q2 2.25 (0.60–8.50) 4.17 (3.03–5.73)** 1.61 (0.68–3.86)

Q3 2.34 (0.61–8.93) 2.45 (1.75–3.43)** 0.43 (0.11–1.66)

aHR = adjusted hazard ratio; MS = multiple sclerosis.
aFor DMTexposure, we considered the total time a patient spent on treatment, including any switches and/or gaps.
bWe divided exposure time into quartiles. The fourth quartile (Q4) is the quartile of patients who were above the 75th percentile and has been regarded as the reference class in

the Cox models. ‘Never treated’ were the patients who did not receive any DMT before the first 12-month disability worsening or EDSS 4.0. The exposure time was censored at

the reaching of the outcome or most recent visit if a worsening event had not yet occurred.

*P-value 5 0.05; **P-value 5 0.001.

Table 6 Multivariate Cox model for the risk of reaching EDSS 4.0 in patients with disease onset after 2000

(n = 7006)

Overall sample (n = 7006) Paediatric-onset MS Adult-onset MS Late-onset MS

n = 444 n = 6234 n = 328

Number of events, n (%) 25 (5.63) 857 (13.75) 104 (31.71)

Variable Reference class aHR (95%CI) aHR (95%CI) aHR (95%CI)

Sex, female Male 0.82 (0.30–2.24) 0.80 (0.69–0.92)* 0.44 (0.29–0.67)**

Symptom at onset, multifocal Unifocal 0.74 (0.20–2.72) 0.83 (0.69–0.99)* 2.04 (1.07–3.90)*

Number of EDSS evaluations – 0.96 (0.91–1.01) 1.01 (1.01–1.02)** 1.01 (0.99–1.03)

Number of relapses – 1.60 (1.42–1.80)** 1.31 (1.29–1.32)** 1.48 (1.38–1.59)**

First EDSS – 2.16 (1.24–3.78)* 1.91 (1.76–2.06)** 1.87 (1.51–2.32)**

DMTexposurea Q4b

Never treated 30.39 (5.14–179.76)** 8.97 (6.13–13.11)** 7.75 (1.07–56.38)*

Q1 7.19 (1.17–44.14)* 6.69 (4.54–9.87)** 8.04 (1.07–60.42)*

Q2 6.46 (1.11–37.44)* 3.96 (2.65–5.92)** 3.38 (0.42–27.50)

Q3 2.98 (0.45–19.83) 1.33 (0.85–2.08)** 2.73 (0.33–22.91)

aHR = adjusted hazard ratio; MS = multiple sclerosis.
aFor DMTexposure, we considered the total time a patient spent on treatment, including any switches and/or gaps.
bWe divided exposure time into quartiles. The fourth quartile (Q4) is the quartile of patients who were above the 75th percentile and has been regarded as the reference class in

the Cox models. ‘Never treated’ were the patients who did not receive any DMT before the first 12-month disability worsening or EDSS 4.0. The exposure time was censored at

the reaching of the outcome or most recent visit if a worsening event had not yet occurred.

*P-value 5 0.05; **P-value 5 0.001.

DMT can reduce disability progression in MS BRAIN 2020: 143; 3013–3024 | 3019

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/143/10/3013/5906150 by Sapienza U

niversità di R
om

a user on 11 January 2021

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa251#supplementary-data


clinical trials. However, after evaluation and approval by

regulatory agencies, in the real-world setting, these drugs are

prescribed in patient populations that differ from those

included in pivotal studies. Age can represent a key factor

that could change the benefit-risk balance and the therapeut-

ic choice, as it may associate with different efficacy and risk

of adverse events of DMTs. Therapeutic decision-making

can be particularly challenging in paediatric and older

patients who are usually excluded from RCTs. As observa-

tional data from registry studies are, therefore, of critical

relevance to address issues that are otherwise difficult or im-

possible to study (Trojano et al., 2017). In this multicentre

registry Italian study, we aimed to elucidate how different

age at onset can influence the prognostic outcomes and ef-

fectiveness of DMTs in preventing disability worsening.

Our real-world data covered a mean follow-up period of

�10 years in nearly 9500 patients. Prior works suggested

that a 12-month confirmation period of disability worsening

is a robust outcome measure as it reliably captures irrevers-

ible disability accrual (Trojano et al., 2018). Furthermore,

EDSS 4.0 is a meaningful clinical milestone as it marks the

patient reduced autonomy in ambulation. Moreover, the

results of our exploratory analysis of EDSS 6.0 altogether

were in line with those of the primary analysis. However,

they did not reach the statistical significance in POMS

patients, due to the low number of events in this cohort. It is

likely that a longer follow-up period is needed to fully inves-

tigate harder disability milestones (Tremlett et al., 2006;

Scalfari et al., 2013; Cree et al., 2016).

In most of our patients the first treatment was represented

by a moderately effective drug. However, during the follow-

up period, the two younger cohorts, with more clinically ac-

tive disease, exhibited a higher proportion of patients who

switched to a highly effective drug.

Overall, our study showed that DMTs can reduce the risk

of 12-month CDW and accrual of EDSS 4.0. These findings

are consistent with previous observational studies performed

with the use of immunomodulatory drugs (Kappos et al.,

2009; Jokubaitis et al., 2016; Trojano et al., 2018). In par-

ticular, in our AOMS cohort, we found that, in different

quartiles of exposure, the risk reduction was related to the

cumulative time spent under therapy. This adds evidence

that the longer the exposure time, the more likely the pro-

tective role against a confirmed disability progression

(Trojano et al., 2009; Uitdehaag et al., 2009, 2011;

Jokubaitis et al., 2015, 2016), which was also confirmed in

sensitivity analyses. These findings are in line with those of

Jokubaitis et al. (2015) who found a significant benefit on

12-month CDW in patients treated for 450% of the obser-

vation period, versus 550% of the time. Notably, we also

found very similar results in our large POMS cohort

(Alroughani and Boyko, 2018). An international consensus

(Chitnis et al., 2012) highlighted the importance for early

initiation of DMTs in children and adolescents with multiple

sclerosis. POMS patients have, on average, a higher relapse

rate, shorter duration between relapses and subsequent accu-

mulation of disability. Although progression may be slower

than in adults, moderate-to-severe disability is reached at a

younger age (Alroughani and Boyko, 2018). Moreover, al-

though the recovery from relapses seems to be more efficient

in POMS because of neuronal plasticity, cognitive impair-

ment is observed in nearly one-third of patients (Amato

et al., 2014). To date, however, the only approved DMTs in

paediatric multiple sclerosis (410 years) are interferons, gla-

tiramer and, more recently, fingolimod. The literature

describing the effectiveness of DMTs in POMS is limited to

observational studies with small sample size (Ghezzi et al.,
2016; Alroughani and Boyko, 2018; Waubant et al., 2019).

Paediatric clinical trials are challenging due to ethical con-

cerns and difficulties in the recruitment, the study follow-up

and site-specific issues (Waubant et al., 2019). In this study,

we found that POMS patients never exposed to DMTs dur-

ing the observation period had the highest risk of experienc-

ing a first CDW or reaching the EDSS 4.0. Despite the small

sample, consistent findings also resulted from sensitivity

analyses. Furthermore, also in this cohort, a prolonged

DMT exposure was associated with a stepwise risk reduc-

tion. Further studies are necessary to assess the safety profile

of a prolonged DMT exposure, to establish the role of DMT

in cognitive impairment in this subset of patients and to

evaluate the effectiveness of an escalation versus induction

approach.

In the LOMS cohort, DMTs did not significantly influence

the time to the first 12-month CDW, but we found that they

significantly reduced the risk of reaching EDSS 4.0. RCTs of

DMTs for RRMS were not designed to assess efficacy in

ageing patients. Pivotal clinical trials specifically excluded

individuals aged 450 years [glatiramer acetate (Johnson

et al., 1995), IFNb1b (Paty and Li, 1993), natalizumab

(Polman et al., 2006), alemtuzumab (Panitch et al., 2008)]

and aged 455 years [IFNb1a (Jacobs et al., 2000), dimethyl

fumarate (Gold et al., 2012), fingolimod (Kappos et al.,

2010), teriflunomide (O’Connor et al., 2011), rituximab

(Hauser et al., 2008), ocrelizumab (Hauser et al., 2017) and

ozanimod (Comi et al., 2019)]. Moreover, a recent meta-

analysis of 38 RCTs found that, after age 53, there is no

predicted benefit of immunomodulatory therapy (Weideman

et al., 2017). This model, however, was based on the above-

cited clinical trials, so that the analyses were underpowered

in patients aged 450 years. Furthermore, the model was

based on patients’ mean outcomes, whereas the clinical

choice has to deal with individual patient’s outcome. It is,

therefore, reasonable to hypothesize that among LOMS

patients there can also be responders to DMTs. Indeed, the

post hoc analyses of the CLARITY trial (cladribine tablets

treating multiple sclerosis orally), where the upper age limit

was 65 years (Giovannoni et al., 2010), revealed that the

medication was similarly effective in younger and older

patients with RRMS using a cut-off of 40 years of age

(Giovannoni et al., 2011; Rammohan et al., 2012).

Similarly, in the CONCERTO trial on laquinimod, although

the primary outcome was negative, the authors were able to

find a subgroup of patients that responded to the drug, rep-

resented mainly by older females (Bovis et al., 2019).
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Overall, our findings confirmed previous works (Shirani

et al., 2015; Guillemin et al., 2017, Weideman et al., 2017;

Vaughn et al., 2019) and age-based subgroup analyses of

RCTs (Devonshire et al., 2012; Miller et al., 2012) that sug-

gested the existence of different impactful periods of inter-

vention: higher impact in POMS and AOMS and

progressively lower, although still detectable, impact in

LOMS. At the same time, our results emphasize the import-

ance of further research to clarify the existence of a hypo-

thetical ‘upper limit’ of age for the response to DMTs;

moreover, to characterize good responders among LOMS,

in which benefits may overwhelm treatment-related risks.

Long-term safety studies are warranted in this more vulner-

able population.

Our study also highlighted the prognostic role of relapses

and gender.

As expected, the mean number of relapses was higher in

POMS than in AOMS and LOMS. Natural history studies

in RRMS (Tremlett et al., 2009; Scalfari et al., 2010) found

that only early relapses can significantly impact time to

EDSS 6.0 and secondary progression. It has also been

reported that the effect of relapses is modulated by age, as

the impact seems to be higher in younger (525 years at

onset) than in older (435 years) patients (Tremlett et al.,

2009). In our three cohorts, the total number of relapses pre-

dicted a higher risk of mid-term disability progression. Our

study, however, was not specifically designed to explore the

effect of relapses on disability, and we did not stratify early

versus late relapses. Despite these limitations, we found that

a higher number of relapses was associated with a greater

risk of disability, also in the LOMS cohort. We can therefore

hypothesize that, although neurodegenerative mechanisms

may be prevalent in the later stages of the disease, the in-

flammatory process can persist and impact disability accrual

also in older patients.

As for gender, our female:male ratio of 2.00 in LOMS

was more elevated compared to previous studies (Polliack

et al., 2001; Tremlett and Devonshire, 2006) that did not

control for phenotype at onset, while it was similar to that

reported in another study (Bove et al., 2012) considering

phenotype at onset. Our study suggested that female sex can

exert a protective role only in the LOMS cohort. This result

was confirmed in sensitivity analyses. Previous studies assess-

ing the effect of gender on disability worsening did not con-

trol for progressive compared with relapsing onset (Polliack

et al., 2001; Tremlett and Devonshire, 2006). The only study

that specifically investigated the effect of gender in RR-

LOMS found that time to EDSS 6.0 was delayed in AOMS

female but not in LOMS female in a large cohort (Bove

et al., 2012). Different reasons can explain our conflicting

results. First, we assessed the time to EDSS 4.0 after adjust-

ing for baseline EDSS, relapses and treatment exposure.

Second, the authors in the cited study did not explicitly re-

port the number of events they registered. Finally, it was a

monocentric study, and the presence of referral bias cannot

be ruled out. The impact, if any, of menopause on multiple

sclerosis course is controversial with some authors reporting

no differences in disability progression before and after

menopause (Ladeira et al., 2019), while others suggest a pos-

sible worsening of multiple sclerosis disability (Bove et al.,

2016). At low levels, oestrogens seem to worsen the course

of multiple sclerosis, while at higher levels they seem to have

anti-inflammatory properties that are under investigation

(Collongues et al., 2018). As neither the age at menopause

was systematically recorded in Italian multiple sclerosis regis-

try nor the proportion of LOMS female under hormone re-

placement therapy, we are not able to assess the effect that

menopause had in RR-LOMS females. Further investigations

are warranted to shed some light in this field.

In interpreting our results, we have to take into account a

few study limitations. As we included patients with a first

evaluation within 3 years from symptom onset, immortal

time bias can represent a concern. Indeed, we were not able

to perform a reliable sensitivity analysis because of the lim-

ited sample of patients with a first visit within 1 year from

disease onset. Furthermore, we included patients diagnosed

with different diagnostic criteria, which may lead to a phe-

nomenon known as the Will Rogers effect (Kalincik and

Butzkueven, 2016; Trojano et al., 2017). We tried to miti-

gate the inclusion of ‘historical patients’ by running sensitiv-

ity analyses of patients recorded in the registry after 2000.

However, we were not able to further stratify patients

according to their referring centre or region due to the

under-representation of POMS and LOMS cohorts. Our

patients were mostly treated with moderately effective

DMTs, so that results cannot be directly extrapolated to

patients treated with highly effective DMTs. Finally, due to

the observational nature of the study, the presence of un-

known confounders cannot be ruled out.

In conclusion, our real-world data add to available evi-

dence on the critical role of age in the evaluation of the

benefit-risk balance and provide some cues to treatment de-

cision-making in younger and older patient populations

under-represented in clinical trials.
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