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Abstract

The CDC (Centers for Disease Control and Prevention) currently diagnoses millions of
cases of infectious diseases annually, generating population disease distributions that, while
accurate, are far too delayed for real-time monitoring. The ability to instantly compile
and monitor such distributions is critical in identifying outbreaks and facilitating real-time
communication between health authorities and health-care providers. This task, however, is
made challenging due to the lack of instantly available public health information, creating
a need for the analysis of disease spread on frequently updated social media websites.
We introduce a novel pipeline based model to generate a real-time, accurate depiction of
infectious disease propagation using Twitter data. Our approach, an amalgam of natural
language processing and supervised machine learning, is invariant to mass media hype and
significantly reduces the noise introduced by the use of tweets. The correlation coefficient
between the Twitter disease distribution obtained via our approach and CDC data from
mid-2013 to mid-2014 was 0.983, improving upon the best model published for the 2012-13
flu season. Our model further correlates well with theoretical models of infection spread
across airport networks, verifying its robustness and applicability in the public sphere.

Keywords: infection spread; natural language processing; machine learning; disease prop-
agation; diffusion models; data mining; big data

1. Introduction

The widespread adoption of social media as a tool for daily communication has opened the
door for novel developments in big data computational epidemiology. With an estimated 113
million people in the United States alone using the Internet to access health-related infor-
mation, the relationship between search activity and underlying disease trends remains con-
founded without adequate contextual information (Bodnar and Salathé, 2013). Research in
the amalgamation of data science and disease spread has primarily been conducted in the
realms of social networks such as Twitter, Facebook, and Tumblr.

Twitter is of particular interest due to its widespread use as a microblog and as a tool for
mobile communication. Although recent studies have observed that a substantial portion of
the “Twitter stream” consists of simple discussions and high levels of noise, Twitter users
often provide relevant information regarding human behavior (Analytics, 2009). Due to
the 140 character limit enforced upon each tweet, most information is sent from handheld
devices on location, conveying a sense of urgency (Signorini et al., 2011).

Prior studies have utilized Twitter data to analyze textual sentiment, public anxiety
regarding stock market prices, and opinions of restaurants and movies (Pak and Paroubek,
2010; Basari et al., 2013; Bollen et al., 2011). However, few investigations have been con-
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ducted in the identification of disease propagation within such social networks. To date,
proposed methodologies have either presented a keyword-based Tweet distribution to ap-
proximate CDC curves or formulated a regression problem, employing supervised machine
learning techniques to model disease spread over time. Prior approaches, however, fail to
adequately eliminate irrelevant tweets, posing significant issues to learning-based predictors
that subsequently train using irrelevant data. Such algorithms are further prone to news
and media hype regarding rare diseases such as Ebola and Zika, presenting severe problems
to distributions that aim to characterize influenza-like illnesses (ILI). Finally, many prior
methods are unable to plot real-time ILI distributions, rendering them unable to provide
early-warning benefits for health care providers.

In this work, we attempt to holistically characterize disease spread using Twitter, with
the aim of ascertaining the efficacy of the social media platform in modeling infectious
illness frequency. Our method is distinguished from prior approaches in its multi-step
classification procedure, whereby tweets are categorized into distinct subsets from which
only relevant tweets are considered. We further develop random forest and support vector
machine classifiers to cull spam and identify tweets regarding infectious diseases, generating
a real-time ILI distribution exclusively from Twitter data. We evaluate the effectiveness
of our model by comparing our Twitter-generated disease distribution with both the CDC
ILI curve and SEIR (susceptible, exposed, infected, recovered) disease spread simulation
distribution (Yang et al., 2011).

Overview of results. Our model performed exceptionally well, achieving a Pearson’s
correlation coefficient of 0.983 with the CDC ILI distribution for the 2013-14 flu season.
Our model additionally reported a correlation coefficient of 0.947 with the theoretical SEIR
infection spread model, validating its holistic structure. Our approach can be readily de-
ployed to the public health and informatics sector, is the first to discard and manage noise
prevalent on large scale social networks, and may provide a tool to epidemiologists for faster
response to unknown infectious diseases.

In summary, the contributions of our work are the following:

• A novel infectious disease model premised on real-time Twitter data that incorporates
a multi-step approach to identify “disease-linked” relevant tweets.

• A correlation with the CDC ILI distribution (r = 0.983) representing an improvement
over current state-of-the-art Twitter-based methodologies across one year.

• Proof of robustness of our approach to external noise as signified by its correlation
coefficient of 0.947 with mathematical disease simulations.

• Applications of our pipeline to international disease surveillance, including the rec-
ommendation of quarantine zones (an impossible task without global data).

We begin by detailing the CDC ILI distribution and prior approaches that aim to model the
curve with social media data. We next discuss the intuition and methodology involved in our
Twitter pipeline, delving into each stage in the multi-step process. We further characterize
our SEIR infection spread simulation and depict its generated disease curves. The subse-
quent experiments section compares the Twitter-based distribution to the CDC ILI curve,
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qualitatively and quantitatively analyzing each curve’s characteristics. We conclude with a
foray into the international applications of our pipeline and further avenues for research.

2. Background

In this section, we introduce the CDC ILI distribution and provide qualitative graphical
analysis for sample curves from years 2003—2015 (Thompson et al., 2010). We further
discuss earlier attempts of disease distribution modeling using social media and state their
achieved correlations with the CDC distribution.

2.1. The CDC ILI Distribution

Figure 1: Percentage of visits for ILI as reported by ILINet (weekly national summary from
2003—mid-2015)

The ILI distribution (Figure 1) depicts the percentage of visits for influenza-like illness
reported to the CDC by the US outpatient ILI surveillance network. Note the right-skewed
nature of the curve, depicting the infection frequency increasing between months of Novem-
ber and January. An approximate three week delay is incurred in the generation of the
disease distribution due to the time-consuming process of aggregating national patient re-
ports. The methodology proposed in our work remedies this issue, using disease-related
tweets to provide an accurate, real-time representation of the annual curve. Specifically, we
test our Twitter model against the CDC ILI distribution for 2013—2014.

2.2. Prior Approaches

Prior work in the field of disease distribution modeling in social networks has been sparse and
limited (Culotta, 2010; Paul and Dredze, 2011; Lampos and Cristianini, 2012; Signorini et al.,
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2011; Sadilek et al., 2012; Lamb et al., 2013; Nagar et al., 2014). Bodnar and Salathé (2013)
provide a comprehensive summary of these methods, using over 240 million tweets in their
analysis. Their work concludes that the inclusion of “seemingly irrelevant” tweets in a sup-
port vector machine multivariable regressor yields correlations as high as 0.783, suggesting
that methods reporting lower r-values have failed to properly learn information from tweets,
potentially fitting the data due to other associated factors. The authors additionally de-
velop a Twitter-based model for the 2012-13 flu season utilizing keyword-based tweet topic
modeling, reporting a correlation coefficient of 0.877 with the ILI distribution.

While such approaches have detailed the benefits of Twitter-derived information in
influenza forecasting, their proposed techniques fail to categorically eliminate tweets on
premises other than hashtag analysis. With the expansion of big data and the ever-
increasing flow of information from social network websites, it is crucial to be able to
eliminate vast selections of irrelevant data, especially from a noise-riddled network such
as Twitter, and successfully model the disease distribution with the resulting salient infor-
mation. Our unique pipeline hopes to ameliorate this issue, developing a staged process
towards identifying critical tweets and achieving a high level of noise invariance as a result.
Following the paradigm that analysis is only as good as the data upon which it is based,
our work both achieves higher correlation coefficients than those currently cited and better
approaches the problem of ascertaining information from tweets, allowing for a reduced
runtime with improved results.

3. Pipeline Description

In this section, we discuss and develop intuition for the multi-step pipeline based approach
used to generate a real-time ILI distribution from input tweets.

3.1. Tweet Category Definitions

In order to develop a robust and viable model of the CDC ILI distribution, we differentiate
between three unique categories of tweets: self-reported, non self-reported, and spam. Note
that a tweet may only be placed in one of the three categories, and that each individual
tweet must reside in a given category. We only consider self-reported tweets in our pipeline;
in this process, we eliminate anomalies in our generated curve due to mass media coverage
of rare diseases. We additionally distinguish individuals who have a disease from those who
are worried about another’s ailments, with the former affecting the resultant distribution.

• Self-Reporting Tweets. Self-reporting tweets are those that originate from either
an infected individual or someone associated with an infected individual. Tweets in
this category signify that the author is likely to have a direct influence on the ILI
curve.

• Non Self-Reporting Tweets. Non self-reporting tweets encompass tweets posted
by news networks and concerned citizens not immediately affected by a sickness.
Tweets in this category, although they provide pertinent information regarding mas-
sive outbreaks, do not affect the ILI distribution. If included, such tweets would inflate
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portions of the generated distribution due to media hype, resulting in an incorrectly
augmented output.

• Spam. As in all social networks, spam messages drastically increase distribution
noise and provide no saliency when generating the ILI distribution. In this work, we
consider as spam all tweets that do not refer to disease.

3.2. Social Network Analysis Pipeline

Figure 2 details our model pipeline to its fullest extent, noting each relevant process. The
pipeline accepts as input either a list of hashtags or auto-inferred terms from prior analysis
(determined via linguistic term association). Our model leverages exhaustive uninformative
tweet elimination to allow for the identification of anomalies and unique disease outbreaks,
thus providing prognostic significance. The key steps involved are as follows:

1. Hashtag Specification: As our pipeline accepts keywords as input to search for rele-
vant tweets, we initially obtain hashtags linked to specific diseases (such as#influenza,
#dengue, #zika, etc.) by ascertaining the popularity of disease related hashtags cur-
rently in use.

2. Linguistic Term Association: We use linked n-grams in order to obtain additional
hashtags and keywords aside from those directly linked to disease, such as #sick and
#nyquil.

3. Term Corpus Topic Modeling: We assign numeric feature vectors to collected
tweets utilizing TF-IDF (term frequency–inverse document frequency) vectorization
within corpora of hashtags.

4. Tweet Clustering: Using the TF-IDF features ascertained in Step 3 and a mixed
euclidean-cosine similarity measure, we cluster tweets according to minimal cluster
RSS value via the centroid-based k-means approach.

5. Salient Tweet Isolation: We train and apply a linguistic attribute-based random
forest classifier to randomly selected subsets of each cluster, rejecting an entire cluster
if its chosen subset contains a sufficiently large number of non self-reported tweets.

6. ILI Analog Frequency Distribution: We subsequently plot the frequency distri-
bution of relevant tweets over time in order to model the CDC ILI curve.

3.3. Hashtag Specification

The developed pipeline accepts as input a list of hashtags and keywords with which candi-
date tweets are obtained. Hence, it is imperative to determine which terms best characterize
individual ailment or illness. We initially curated a list of relevant expressions of common
infectious diseases (Hay et al., 2013). As social networks are not predisposed to informative
discussions about specific illnesses, we ascertained the “popularity” of each disease keyword
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Figure 2: A comprehensive depiction of the model pipeline used to obtain disease distribu-
tion ILI curves from input tweets.

by analyzing recent tweet frequency and user variation. We define the popularity P of a
search term S as

P(S) = unique(U)×
3
∏

n=1

(

1

1 + #(Gn)− unique(Gn)

)n

(1)

where U is the set of users, Gn is the set of the top fifteen n-grams of the collected tweets,
and unique(Q) represents the number of unique elements in set Q. Intuitively, P is directly
proportional to the number of non-unique users and inversely proportional to the number
of unique phrases used. We exponentially weight repeated higher-order n-grams as such
occurrences are found with significantly diminished frequency and indicate repetition of
similar messages among tweets. We selected 63 terms with the highest P-metrics in a fixed
period of time as salient for analysis; the remainder either consisted of excessively repetitive
tweets or lacked enough unique users for ILI discrimination.

3.4. Linguistic Term Association

In order to expand our list of relevant keywords beyond disease names, we employed n-
gram based linguistic analysis to identify additional terms that may be linked to infectious
diseases. Specifically, we obtained the unigrams and bigrams that appeared with highest
frequency among the 63 chosen hashtags, as denoted in Algorithm 1. Note that our approach
maintains an algorithmic complexity of O(H2), with H denoting the number of hashtags;
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this computation is only required once to provide us with a sufficiently large list of terms to
process. Interesting results obtained by use of this approach include the keywords dayquil,
nyquil, sleepy, drowsy, and upset, all critical terms that may have been overlooked had we
exclusively used disease names and common hashtags (such as sick, headache, influenza,
etc.).

Algorithm 1: Identifying Associated Keywords

Input: A set of disease-related hashtags H and the level of k-grams to search
Output: A set of unique additional terms associated with H
L← [ ]
S ← stopwords
for i in range (0, length(H)) do

for j in range (i+ 1, length(H)) do
L← L+ topgrams(S,H(i),H(j), k)

end

end

L← unique(L)
Procedure topgrams(S,A,B,k)

UA ← k-grams(A) ∪ S̄
UB ← k-grams(B) ∪ S̄
U ← UA ∩ UB

return U

3.5. Term Corpus Topic Modeling

Our hashtag and keyword determination methodologies seek out potential candidates for
disease related tweets; we next consider approaches to eliminate irrelevant tweets as defined
in Section 3.1. To this end, we categorize tweets using TF-IDF feature vectors (Ramos,
2003). A numerical statistic that aims to reflect the importance of a word in a text corpus,
TF-IDF was used to weight tweets for k-means clustering. Specifically, we have

tf(t, d) = 1 + log ft,d (2)

idf(t,D) = log

(

1 +
|D|

nt

)

(3)

tfidf(t, d,D) = tf(t, d) × idf(t,D) (4)

where t is a term in document d within corpus D. To be precise, ft,d = |t ∈ d| and
nt = |{d ∈ D : t ∈ d}|. Each tweet is denoted as a document dj within its hashtag corpus
Di, and matrices of TF-IDF features across unigrams, bigrams, and trigrams are generated
for each tweet to effectively characterize their respective corpora.

3.6. Tweet Clustering

With each tweet represented as a matrix of pertinent features, it is possible to cluster tweets
by their pairwise similarity. In order to minimize the residual sum of squares metric in our
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Tweet Example

Self-reporting
ive never been more sick in my life than i am right now. Throat swollen,
body aches, flu like symptoms and i cant sleep ?

Non self-reporting
#Flu Myth: flu vaccine gives the flu. NO! Dead virus is used. Flu mist
has live but engineered to remove parts that cause sickness #smedtips

Spam
Try Swahili ones RT@FactHive “Sixth sich sheik’s sixth sheep’s sick” is
the world’s hardest tongue twister according to Guinness Wld Records

Table 1: Representation of automated tweet clustering on raw tweets

k-means clustering approach, we opted to use a mixed distance metric between each tweet
and cluster centroids, defined as the difference between the cosine and euclidean distances
respectively. We enforced a limit on the number of clusters proportional to number of
processed tweets to ensure that the resulting distribution of tweets among clusters would
remain dense. Table 1 depicts an example of such clustering where k = 3. For k > 3,
each defined category is divided into multiple unique components, which are retained or
eliminated by the same criteria.

3.7. Salient Tweet Isolation

3.7.1. Categorical Classification

In order to ascertain the salience of each cluster of tweets in modeling the ILI distribution,
we trained supervised classifiers to distinguish between self-reported, non self-reported,
and spam tweets. To perform this task, we characterized each tweet as a representative
feature vector with twenty linguistic attributes. Sample features calculated included the
number of conjunctions, average sentence length, and the number of emoticons in each
tweet. Utilizing a manually annotated training set of 200 examples derived from various
hashtags, we trained support vector machine and random forest classifiers to distinguish
between the three defined classes. Our linguistic attribute-based machine learning model
performed remarkably well, reporting a quadratic weighted kappa statistic of 0.872 and a
classification accuracy of 87% when tested using 10-fold cross-validation. We optimized
our random forest with 100 trees, each constructed considering five random features, and
we incorporated a Gaussian radial basis function kernel for our support vector classifier.
An analysis of each classifiers’ weights yielded the point of view of a tweet (first, second,
or third person), the number of slang words, and average word length as the most salient
inter-class differentiators.

3.7.2. Cluster Elimination

Maintaining model scalability when working with large-scale datasets is imperative; for
practical use, our pipeline must successfully compute disease distributions of a large (and
constantly updating) database of input data. Such a task calls for a more efficient manner
of irrelevant tweet elimination than classification of the relevance of each individual tweet;
we therefore classify N random samples from each cluster selected with probability p. If the
number of “bad” tweets (defined as the sum of non self-reporting and spam tweets) exceeds
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a given threshold T , we discard the entire cluster for further analysis. We additionally
incorporate a weighting function W to augment predictions based on each tweet’s medical
relevance. The introduction of such a bias increases the tweet’s relevance probability by a
constant factor if popular medical jargon (such as the terms stomach, tummy, and belly)
are present in a tweet. Although our method is certainly prone to reject relevant tweets
loosely associated with “bad” ones in their clusters, the sheer volume of data obtained via
Twitter allows for the elimination of false positives with minimal accuracy loss. Algorithm
2 provides a high-level depiction of the steps taken in this process.

Algorithm 2: Tweet Cluster Elimination

Input: A list of clusters C, the selection probability p, the threshold for individual tweet
retention T

Output: A set of salient clusters L culled from C; that is, L ⊆ C
L← [ ]
for i in range (0, length(C)) do

Ci ← C[i]
N ← 0
R← length(Ci)× p
for j in range (0, R) do

// Note: A larger P indicates a greater spam likelihood

P ←W (predict(random(Ci)))
if P > T then

N ← N + 1
end

end

if N < R× 0.5 then
L← L+ Ci

end

end

On average, our tweet clustering and elimination procedure discards 73% of clusters it
encounters, with the remaining high-quality data included in our resultant disease distribu-
tion. The unique free parameters in our approach (the selection probability p and the tweet
retention threshold T ) were initially defined as 0.25 and 0.5 respectively. A larger p ought
to be selected for faster cluster elimination (specifically, when generating distributions on
larger datasets), and an increase in T penalizes lower quality tweets with greater severity,
resulting in a more sparse (yet potentially more accurate) distribution. For our hashtag-
reduced dataset of approximately 400, 000 tweets, the aforementioned fixed values yielded
a dense and salient distribution, as desired.

Additionally, note that our procedure allows for a reduced complexity of O(|C||R|) as
opposed to O(C2), a significant improvement in the limit R≪ C (assuming the prediction
function for a given decision tree-based classifier is ∼ O(1)). We plot a frequency distribu-
tion of remaining tweets as a function of time, resembling a real-time ILI curve (similar to
that of the CDC) with the additional benefit of potential outbreak and anomaly detection.

9



Shah

3.8. ILI Analog Frequency Distribution

In the final steps of our pipeline, we synthesize a plot detailing the distribution of disease-
linked tweets as a function of time (analogous to individuals reporting infections to the
CDC). Our frequency distribution aims to be robust to news hype, spam, and irrelevant
information contained in Twitter noise. In order to better characterize the smooth CDC ILI
curve, we condense our daily distribution into a weekly one. We represent the frequency of
each week as the mean of the daily data, excluding the minimum and maximum values, and
we additionally apply sliding mean data smoothing with a window of 5 (the length of each
reduced week), such that each frequency value is the average of the corresponding subset
of a larger set of data points.

4. SEIR Disease Simulation

In addition to the empirical national CDC ILI distribution, disease spread within popu-
lations may be numerically modeled via a system of differential equations. Although the
primary goal of our pipeline is to approximate the ILI curve, a significant similarity between
the shapes of the theoretically simulated and generated distributions will further validate
our approach’s robustness to Twitter noise and media hype. Such a comparison will addi-
tionally allow for an analysis of the distinctions between both curves, potentially providing
salient information regarding variances between theoretical contact-based models and ob-
served outcomes. With the goal of ascertaining whether our model derived from Twitter
sufficiently represents the expected spread of infectious illness, we utilized an airport-based
disease network, defining airports as nodes and connecting flights as edges.

4.1. Theoretical Primer

Infectious diseases may be modeled within populations by stratifying individuals into broad
categories; the simplest simulation categorizes individuals into susceptible, infectious, and
recovered groups. As most common infectious diseases are not fatal, we can write S+I+R =
N , where N is the constant population (with the degenerate assumption of equal birth and
death rates) (Miller and Volz, 2013). Once such a model is developed, infection parameters
of disease extent, spread, and duration may be obtained. Common infections additionally
include an incubatory period in which an infected individual is not contagious. Assuming
the incubation period is a random variable with an exponential distribution, we have the
following system of differential equations for susceptible (S), exposed (E), infectious (I),
and recovered (R) individuals, with Ṅ = 0 (Heesterbeek, 2000).

dS

dt
= µN − µS − β

I

N
S (5)

dE

dt
= β

I

N
S − (µ+ a)E (6)

dI

dt
= aE − (γ + µ)I (7)

dR

dt
= γI − µR (8)
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Here, β, 1/γ, and µ are defined as the disease contact rate, the average infectious period,
and the average death rate respectively, and the average incubation period is modeled with
the hyperbolic distribution 1/a. In order to numerically compute the infection distribution
at arbitrary intervals, we may represent these differential equations as functions of time,
replacing the differentials with discrete (yet small) time intervals ∆t. We calculate the
values of S,E, I, and R at each interval, thereby generating disease distributions for each
identified subcategory.

4.2. Graph Dataset Description

The dataset we use to generate nodes and edges for our simulation is published on Open-
Flights.org (Patokallio, 2014), with the model structure derived from Yager and Taylor
(2014). The database contains 6,977 airports spanning the globe along with their locations,
and includes 5,888 airlines. 59,036 routes between 3,209 airports on 531 airlines spanning
the globe are recorded; graph nodes are selected airports, and edges are those routes in-
terconnecting multiple airports. Only airports that have entering or exiting routes are
considered; the resulting graph (Figure 3A) consists of one connected component depicting
an international network of travelers.

4.3. Simulation Execution and Evaluation

We may visualize our multi-nodal network in Figure 3, with blue representing a normal state,
red representing infectious or exposed transmission, and black representing recovery. Our
simulation propagates disease starting randomly from ten airports (with a higher probability
of inception in airports with more connecting flights). The airports themselves act as proxies
for disease spread among individuals located at each airport, with the assumption that
travelers are able to leave residual infection via permanent workers. Edges are weighted
to represent the probability of infected individuals in transit according to the degree of
the source and destination airports. We modeled our specific disease after influenza A,
such that β = 7, γ = 3, and µ ≈ 0. The basic reproductive rate R0 of our infection was
therefore 2.33; in other words, approximately 2.33 secondary infections are expected from
every unique primary case.

Figure 3A is a representation of the network at time t = 28 days, with less frequented
airports beginning to develop infection and those with the longest exposure to disease
sufficiently cured. As represented in the infection curve in Figure 3B, the disease spread is
beginning to decline, with black areas indicating recovered nodes.

5. Experiments

5.1. Dataset Description

We tested our pipeline’s efficacy in modeling the CDC ILI distribution using the Stanford
Spinn3r dataset, a collection of over 100 million tweets from 2013—2014 from which we
obtained disease-linked subsets for analysis. The dataset was obtained using a Gardenhose
stream consisting of a 10% random sample of all public statuses. As detailed in Section 3.4,
tweets were initially selected using both disease hashtags and illness-related terms, allowing
for a more salient input to process.
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Figure 3: (A) A visual depiction of the structure of the disease network at time t = 28.
(B) An illustration of disease propagation across the entire network for variables
S,E, I, and R.

5.2. Comparative Distribution Analysis with CDC Data

Proceeding according to the methodology discussed in Section 4, we obtained a 42-week
distribution from 2013 to 2014 that we compared to the analogous CDC distribution. The
results of our analysis are depicted in Figure 4A; the impact of smoothing on distribution
correlation is readily observed. Note that the frequency measure on the y-axis is not abso-
lute; that is, the estimated ILI mean line was vertically shifted to provide a visual depiction
of the similarity between the curves.

We additionally compared our estimated distribution with the infection propagation
distribution generated via the SEIR model. Figure 4B displays all three distributions in
tandem alongside a baseline distribution generated using tweets selected solely by hashtag
criteria. Although the curves seem similar in shape and skewness, the simulation dis-
tribution is distinctively bimodal, while both the estimated and ground truth curves are
unimodal. Furthermore, the simulation mean line predicts a more severe drop-off than the
estimated or ILI curves, and flattens out towards the end of the season (as opposed to both
other distributions, which seem to be slowly increasing, albeit non-monotonically).

5.3. Numerical Evaluation of Distribution Similarity

We evaluated the similarity between the determined distributions utilizing Pearson’s correla-
tion coefficient and the Kullback-Leibler divergence. The correlation coefficient r represents
a “normalized” covariance between random variables X and Y , defined as the covariance
of X and Y scaled by their respective standard deviations. The Kullback-Leibler (KL)
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Figure 4: (A) A comparison of the Twitter-derived distribution with the CDC ILI curve.
(B) A side-by-side plot of the Twitter, Baseline, SEIR, and CDC distributions.

CDC Twitter Simul Base CDC Twitter Simul Base

CDC ILI – 0.983 0.931 0.938 – 0.003 0.014 0.005
Twitter 0.983 – 0.947 0.972 0.003 – 0.018 0.001
Simulation 0.931 0.947 – 0.898 0.014 0.017 – 0.025
Baseline 0.938 0.972 0.898 – 0.005 0.001 0.025 –

Table 2: Statistical measures of distribution similarity. The first three columns list corre-
lation coefficient values; the next three list KL-divergence values.

divergence of Y from X, denoted K(X||Y ), represents the amount of information lost when
X is used to approximate Y . More precisely, the metric may be interpreted as the penalty
incurred in encoding X using a Huffman code optimized for Y . It is important to note that
K is non-symmetric and operates on normalized distributions.

Table 2 lists our obtained values representing the similarity between each proposed
distribution. The “baseline” model represents results obtained solely utilizing the proposed
hashtags and medical terms to cull tweets from our database; clustering and additional
processing premised on tweet saliency are excluded. Note that the Pearson correlation
coefficient between the official ILI distribution and our pipeline’s result was 0.983, with a
low KL divergence of 0.003 representing the robustness and accuracy of our method. The
KL divergences and correlation coefficients of both Twitter-based approaches (the baseline
model and the complete pipeline) outperform the SEIR simulation, successfully accounting
for the tail end of the distribution. The clustering approach, as visualized in Figure 4B,
better models the elongated infection decline over time than the generic hashtag approach,
yielding superior correlation coefficients and divergence metrics with both the simulation
and the CDC distribution. However, the KL divergence between the Twitter distributions
is quite small, indicating that, when normalized, little variation is observed between the
cluster-based and simple hashtag approach.
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6. Worldwide Disease Modeling

Our network analysis pipeline allows us to address new types of problems, such as the
identification of Twitter users infected by a certain illness. We applied our pipeline to
the problem of modeling the global spread of disease using Twitter user relationships. In
particular, we utilize Algorithm 2 and our hashtag list to generate a list of 10,000 disease-
linked tweets, which we associate with their respective users. We utilize Microsoft Bing
Maps’ reverse-geocoding API to obtain an approximate location for each unique user, and
subsequently obtain a random sample of each user’s potentially infected followers premised
upon the infection level of each followers’ prior tweets. With such information, we generated
a directed graph with countries as nodes and connections between individuals and followers
as edges (Figure 5). As expected, the most prominent nodes (those with largest in and
out degrees) represent Mexico, the United States, Spain, Italy, and Pakistan respectively;
populous nations and popular tourist sites were frequently expressed.

Figure 5: Depiction of the international disease relationship graph, with edges representing
connections between infected individuals and infected followers.

We further ascertained the most prevalent relationships between countries, determining
the listing of top connections depicted in Table 3. As our graph was directed, certain paths
may appear twice; however, as edges were weighted in each direction, highest weighted
paths are listed first. This preliminary analysis indicates potential quarantine locations if
an infectious disease is found in a certain location. Our method enabled us to identify some
surprising connections, such as a strong relationship between users in India and those in
Mexico. For example, if India were to develop an epidemic, it may not be immediately
intuitive to suggest a quarantine of Mexico; however, our results indicate a significant
connection between the two countries. Such an anomaly may be explained by the rising
popularity of Mexico as a tourist destination for Indian residents, with the number of Indian
tourists expected to increase by over 200,000 from 2014 to 2020 (Bisaria, 2014). Our model
may thus be used both as a national metric to ascertain outbreaks and anomalies in the
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ILI curve and as a method for analyzing international disease connections, making it a
prominent tool in the development of more effective responses.

Source Node Destination Node

Mexico Spain
Mexico United States
South Africa United States
United States Mexico
Australia United States
Mexico Argentina
Canada United States
Italy United States
Mexico India
India United States

Table 3: Highest-ranked connections within the international disease network (Figure 5).

7. Conclusions

In this work, we improve upon current methodologies used for determining disease spread by
developing a pipeline that can accurately plot disease distributions in real time. Our work is
unique in its conflation of topic modeling, machine learning, and natural language processing
to eliminate tweet noise and irrelevant information, allowing for a robust characterization
of the CDC ILI distribution. Our model can further scale to massive datasets, and is robust
to news and media hype regarding rare (but not infectious) diseases. We verified our model
by determining its correlation with both the 2013-14 CDC ILI distribution and an SEIR
disease simulation, obtaining correlation coefficients of 0.983 and 0.947 respectively. To our
knowledge, our model is the first in the field to achieve such high correlation coefficient
values when compared to the CDC distribution over an entire flu season.

We further demonstrate the real-world applicability of our model in ascertaining impor-
tant quarantine locations premised on connections between infected Twitter users and their
followers. Our model thus provides a real-time disease distribution tracker with the ability
to identify infectious outbreaks and facilitates international disease spread analysis at an
unprecedented level.

Future Work. We hope to leverage our pipeline-based methodology in areas of spatial
disease location, cascade prediction, and international modeling. As the ability to pinpoint
the regional spread of certain diseases is crucial for local outbreak analysis and identification
of the propagation point of disease, we initially plan on using our disease-linked tweet
dataset to ascertain how diseases are distributed amongst populations of Twitter users. We
additionally hope to develop a framework for cascade prediction within the Twitter disease
network sub-space in order to identify how long a certain disease will last and the rate of its
progression. Furthermore, as motivated in the discussion regarding Figure 5 and Table 3,
we have provided a proof-of-concept use of our model in determining potential quarantine
sites and international disease networks; we are excited to further investigate these avenues
in future work.
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